Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Extraction
2.3. Statistical Analysis
3. Results
3.1. Regional Distribution of Soil Organic Carbon in Saline-Alkali Soil in China
3.2. Response Characteristics of SOC to Improvement and Utilization
3.3. The Relationship between SOC and Other Physicochemical Properties in Saline-Alkali Soil
4. Discussion
4.1. The Relationship between the Type and Content of Saline Alkali and SOC
4.2. Effect of Saline-Alkali Land Improvement on SOC
4.3. Changes of Physical and Chemical Properties of Soil after Saline-Alkali Land Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.H.; Yue, Z.H. Overview of application of restoration ecology technology in saline alkali grassland restoration. Biol. Teach. 2018, 43, 6–8. [Google Scholar]
- Li, X.G.; Guo, K.; Feng, X.H. Study on carbon storage of soil vegetation system under different land use modes in coastal saline area. Chin. J. Ecol. Agric. 2017, 25, 1580–1590. [Google Scholar]
- Li, B.; Wang, Z.C.; Sun, Z.G.; Chen, Y.; Yang, F. Study on sustainable utilization of saline alkali land resources in China. Agric. Res. Arid. Areas 2005, 2, 154–158. [Google Scholar]
- Zhang, J.F.; Zhang, X.D.; Zhou, J.X.; Liu, G.H.; Li, D.X. World saline alkali land resources and basic measures for their improvement and utilization. Res. Water Soil Conserv. 2005, 6, 32–34. [Google Scholar]
- Ma, C.; Ma, L.Y.; Liu, T.X. Research progress on improvement and utilization technology of saline alkali land. World For. Res. 2010, 23, 28–32. [Google Scholar]
- Xu, C.L.; Dong, Y.C.; Lu, J.L. Research progress on soil improvement and resource utilization of coastal saline alkali land in China. World For. Res. 2020, 33, 68–73. [Google Scholar]
- Hu, M.F.; Tian, C.Y.; Zhao, Z.Y. Research progress on the causes and improvement measures of saline alkali land in Xinjiang. J. Northwest Agric. For. Univ. 2012, 40, 111–117. [Google Scholar]
- Zhang, H.; Fan, W.H.; Tian, J. Effect of improver application on water stable aggregates and organic carbon components of reclaimed soil in mining area. Soil Bull. 2022, 53, 392–402. [Google Scholar]
- Cui, Q.; Xia, J.; Yang, H. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Fu, B. Biodiversity and Ecosystem Functional Enhancement by Forest Restoration: A Meta-analysis in China. Land Degrad. Dev. 2017, 28, 2062–2073. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.C.; Yang, F. Application progress of biochar in saline alkali land improvement. J. Soil Water Conserv. 2021, 35, 1–8. [Google Scholar]
- Zhao, Y.; Wang, L.; Zhao, H.L. Research status and prospect of coastal saline alkali land improvement. Chin. J. Agron. 2022, 38, 67–74. [Google Scholar]
- Xu, X.H.; Liu, S.; Zhao, Y.J. The influence of different environmental factors on the distribution of soda saline alkali land in the west of Jilin Province. Water Soil Conserv. Bull. 2018, 38, 89–95. [Google Scholar]
- Chen, W.F.; Zhang, W.M.; Meng, J. Research progress and prospect of agricultural biochar. China Agric. Sci. 2013, 46, 3324–3333. [Google Scholar]
- Chen, X.; Diao, H.; Wang, S. Plant community mediated methane uptake in response to increasing nitrogen addition level in a saline-alkaline grassland by rhizospheric effects. Geoderma 2023, 429, 116235. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, X.; Yang, T. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression. Funct. Ecol. 2020, 34, 2158–2169. [Google Scholar] [CrossRef]
- Schimel, J.P.; Schaeffer, S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012, 3, 348. [Google Scholar] [CrossRef] [Green Version]
- Luo, G.; Li, L.; Friman, V. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Liang, J.; Shi, W. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment. Field Crops Res. 2021, 262, 108027. [Google Scholar] [CrossRef]
- Zakery-Asl, M.A.; Bolandnazar, S.; Oustan, S. Effect of salinity and nitrogen on growth, sodium, potassium accumulation, and osmotic adjustment of halophyte Suaeda aegyptiaca (Hasselq.). Arch. Acker-Pflanzenbau Bodenkd. 2014, 60, 785–792. [Google Scholar]
- Ashraf, M.Y.; Ashraf, M.; Mahmood, K.; Akhter, J.; Hussain, F.; Arshad, M. Phytoremediation of saline soils for sustainable agricultural productivity. In Plant Adaptation and Phytoremediation; Springer: Dordrecht, The Netherlands, 2010; pp. 335–355. [Google Scholar]
Study Area | Latitude Longitude | Land Use Type | Soil Type | pH | Average Organic Carbon Content (g/kg) |
---|---|---|---|---|---|
Shanghai | 121°54′ E, 31°34′ N | Degraded grassland | Chestnut soil | 8.1 | 4.96 |
Xinjiang | 87°56′ E, 44°17′ N | Desert | Chestnut soil | 8.2 | 10.64 |
Xinjiang | 87°56′ E, 44°17′ N′ | Desert | Chestnut soil | 8.2 | 9.16 |
Jilin | 124°22′ E, 45°46′ N | Farmland | Soda saline-alkali soil | 9.2 | 13.67 |
Jilin | 123°221′ E, 44°461′ N | Farmland | Chestnut soil | 9.1 | 15.5 |
Xinjiang | 85°08′ E, 42°51′ N | Farmland | Grey desert soil | 8.1 | 10.09 |
Jilin | 125°18′ E, 45°28′ N | Farmland | Chestnut soil | 9.72 | 4.29 |
Jilin | 124°68′ E, 44°91′ N | Degraded grassland | Soda saline-alkali soil | 9.79 | 4.96 |
Gansu | 100°30′ E, 39°42′ N | Farmland | Grey desert soil | 8.9 | 6.01 |
Inner Mongolia | 106°20′ E, 41°18′ N | Farmland | Chestnut soil | 8.2 | 13.27 |
Jilin | 124°1′ E, 45°19′ N | bare land | Soda saline-alkali soil | 9.94 | 3.05 |
Jiangsu | 120°22′ E, 33°32′ N | Farmland | Chestnut soil | 8.5 | 12 |
Jilin | 126°11′ E, 46°18′ N | Farmland | Chestnut soil | 9.41 | 14.74 |
Jilin | 124°22′ E, 45°46′ N | Farmland | Chestnut soil | 9.45 | 9.92 |
Jilin | 124°1′ E, 45°19′ N | Farmland | Soda saline-alkali soil | 9.94 | 1.68 |
Shandong | 118°31′ E, 37°54′ N | Farmland | Chestnut soil | 8.3 | 6 |
Xinjiang | 86°12′ E, 41°36′ N | Farmland | Chestnut soil | 8.5 | 6.2 |
Shandong | 119°20′ E, 37°04′ N | Coastal wetland | Chestnut soil | 8.9 | 6 |
Shandong | 118°59′ E, 37°45′ N | Coastal wetland | Chestnut soil | 7.49 | 5.35 |
Shandong | 37° 03′ E, 119°39′ N | bare land | Chestnut soil | 8.8 | 2.9 |
Jilin | 123°51′ E, 45°35′ N | Farmland | Chestnut soil | 9.63 | 17.8 |
Jilin | 124°1′ E, 45◦19′ N | Farmland | Chestnut soil | 9.94 | 1.68 |
Hebei | 117°33′ E, 38°9′ N | Coastal wetland | Chestnut soil | 9.1 | 10.36 |
Jilin | 123°21′ E, 45°16′ N | Wetland | Chestnut soil | 8.63 | 9.63 |
Jilin | 125°18′ E, 45°28′ N | Farmland | Chestnut soil | 9.3 | 7.91 |
Jilin | 124°1′ E, 45°19′ N | Farmland | Chestnut soil | 8.9 | 1.68 |
Jilin | 124°03′ E, 45°05′ N | Wetland | Chestnut soil | 7.52 | 16.28 |
Shandong | 119°20′ E, 38°12′ N | Farmland | Chestnut soil | 8.62 | 3.24 |
Jiangsu | 120° 49′ E, 32°59′ N | Coastal wetland | Chestnut soil | 7.9 | 8.12 |
Tianjin | 117°30′ E, 38°44′ N | Wetland | Chestnut soil | 7.76 | 3.65 |
Shandong | 118°32′ E, 37°31′ N | Farmland | Chestnut soil | 8.4 | 4.9 |
Inner Mongolia | 111°23′ E, 40°23′ N | Farmland | Chestnut soil | 9.8 | 5.7 |
Shandong | 118°32′ E, 37°31′ N | Farmland | Chestnut soil | 8.1 | 4.7 |
Jilin | 125°38′ E, 43°05′ N | Farmland | Chestnut soil | 8.96 | 16.18 |
Shandong | 118°32′ E, 37°31′ N | Farmland | Chestnut soil | 8.89 | 4.9 |
SOC (g/kg) | |
---|---|
Salt content (g/kg) | −0.182 |
PH | −0.299 |
Soil bulk density (g/cm3) | −0.391 |
ESP (%) | −0.182 |
EC (dS/m) | −0.078 |
Organic matter (g/kg) | 0.570 |
water content (%) | 0.132 |
Total nitrogen (g/kg) | 0.313 |
Available nitrogen (mg/kg) | 0.787 * |
Total phosphorus (g/kg) | 0.330 |
Available phosphorus (mg/kg) | 0.103 |
Available potassium (mg/kg) | −0.326 |
Physical and Chemical Properties of Soil | Before Utilization | After Utilization |
---|---|---|
pH | 9.32 ± 0.54 | 8.26 ± 0.57 |
Electrical conductivity (dS/m) | 5.10 ± 4.84 | 0.36 ± 0.22 |
Exchangeable sodium percentage (%) | 27.04 ± 0.01 | 2.18 ± 3.06 |
Water content (%) | 41.40 ± 0.01 | 52.40 ± 5.51 |
Soil bulk density (g/cm3) | 1.37 ± 0.01 | 1.21 ± 0.02 |
Total nitrogen (g/kg) | 0.32 ± 0.12 | 0.84 ± 0.32 |
Available phosphorus (mg/kg) | 5.66 ± 1.53 | 12.28 ± 11.11 |
Available potassium (mg/kg) | 172.0 ± 0.01 | 231.0 ± 108.89 |
Physical and chemical properties of soil | Before improvement | After improvement |
pH | 8.58 ± 0.50 | 8.10 ± 0.88 |
Electrical conductivity (dS/m) | 0.32 ± 0.01 | 0.29 ± 0.05 |
Soil bulk density (g/cm3) | 1.49 ± 0.16 | 1.45 ± 0.16 |
Total nitrogen (g/kg) | 0.85 ± 0.08 ** | 1.51 ± 0.23 |
Available nitrogen (mg/kg) | 28.81 ± 0.27 ** | 49.91 ± 9.34 |
Total phosphorus (g/kg) | 0.19 ± 0.01 ** | 0.75 ± 0.25 |
Available phosphorus (mg/kg) | 8.75 ± 0.27 * | 18.15 ± 8.89 |
Available potassium (mg/kg) | 163.68 ± 30.96 ** | 243.13 ± 51.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Hao, X.; Xu, Y.; Yang, J.; Su, D. Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon. Life 2022, 12, 1870. https://doi.org/10.3390/life12111870
Yang S, Hao X, Xu Y, Yang J, Su D. Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon. Life. 2022; 12(11):1870. https://doi.org/10.3390/life12111870
Chicago/Turabian StyleYang, Shuai, Xinghai Hao, Yiming Xu, Juejie Yang, and Derong Su. 2022. "Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon" Life 12, no. 11: 1870. https://doi.org/10.3390/life12111870
APA StyleYang, S., Hao, X., Xu, Y., Yang, J., & Su, D. (2022). Meta-Analysis of the Effect of Saline-Alkali Land Improvement and Utilization on Soil Organic Carbon. Life, 12(11), 1870. https://doi.org/10.3390/life12111870