Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Collection of Medicinal Plants
2.3. Isolation of Essential Oils
2.4. Identification of Chemical Compounds
2.5. Determination of Antioxidant Activity
2.5.1. Hydroxyl Radical Scavenging Assay
2.5.2. Inhibition of Superoxide Radical Assay
2.5.3. DPPH Assay
2.5.4. Lipid Peroxidation Inhibition Assay
2.6. In Vitro Anti-Diabetic Assay
2.7. Anti-Acetylcholinesterase Activity
2.8. In Vitro Anti-Inflammatory Assays
2.9. In Vivo Anti-Inflammatory Assay
2.10. Antimicrobial Activity
2.10.1. Tested Microorganisms
2.10.2. Inoculum Preparation
2.10.3. Disc-Diffusion Assay
2.10.4. Determination of Minimum Inhibitory Concentration
2.10.5. Determination of Minimum Lethal Concentration
2.11. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Antioxidant Activity
3.3. Anti-Diabetic Activity
3.4. Anti-Acetylcholinesterase Activity
3.5. Anti-Inflammatory Activity
3.6. Antimicrobial Activity
4. Discussion
4.1. Chemical Composition
4.2. Antioxidant Activity
4.3. Anti-Diabetic Activity
4.4. Anti-Acetylcholinesterase Activity
4.5. Anti-Inflammatory Activity
5. Antimicrobial Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid |
Ach | Acetylcholine |
AChE | Acetylcholinesterase |
AD | Alzheimer’s Disease |
ASCh | Acetylthiocholine Iodide |
BHT | Butylated Hydroxytoluene |
AUEO | Arbutus unedo Essential Oil. |
DM | Diabetes Mellitus |
DMSO | Dimethyl Sulfoxide |
DNA | Deoxyribonucleic Acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
DTNB | 5,5′-dithio-bis-2-nitrobenzoic acid |
EO | Essential Oil |
EDTA | Ethylenediaminetetraacetic acid |
FeCl3 | Chlorure ferrique |
GC-MS | Gas Chromatography-Mass Spectrometry |
LNEO | Laurus nobilis Essential Oil. |
MHA | Mueller-Hinton Agar |
MFC | Minimum Fungicidal Concentration |
MIC | Minimum Inhibitory Concentration |
MLC | Minimum Lethal Concentration |
NBT | Nitro Blue Tetrazolium |
NF-κB | Transcription Factor-κB |
OH | Hydroxyl Radical |
PGE2 | Prostaglandin E2 |
RT | Retention Time |
SA | Sabouraud dextrose agar |
TBA | Thiobarbituric Acid |
TBARS | Thiobarbituric Acid Reactive Substances |
TCA | Trichloroacetic Acid |
Trolox | 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid |
WHO | World Health Organization |
5-LOX | Lipoxygenase |
TBA | Thiobarbituric Acid |
References
- Abdallah, E.M. Plants: An Alternative Source for Antimicrobials. J. Appl. Pharm. Sci. 2011, 1, 16–20. [Google Scholar]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Abdelaali, B.; El Menyiy, N.; El Omari, N.; Benali, T.; Guaouguaou, F.-E.; Salhi, N.; Naceiri Mrabti, H.; Bouyahya, A. Phytochemistry, Toxicology, and Pharmacological Properties of Origanum Elongatum. Evid. Based Complement. Altern. Med. 2021, 2021, 6658593. [Google Scholar] [CrossRef] [PubMed]
- Al-Mijalli, S.H.; Assaggaf, H.; Qasem, A.; El-Shemi, A.G.; Abdallah, E.M.; Mrabti, H.N.; Bouyahya, A. Antioxidant, Antidiabetic, and Antibacterial Potentials and Chemical Composition of Salvia Officinalis and Mentha Suaveolens Grown Wild in Morocco. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 2844880. [Google Scholar] [CrossRef] [PubMed]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Hammani, K. Chemical Composition and Antibacterial Activity of the Essential Oil and Extracts of Cistus Ladaniferus Subsp. Ladanifer and Mentha Suaveolens against Phytopathogenic Bacteria and Their Ecofriendly Management of Phytopathogenic Bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional Use, Phytochemistry, Toxicology, and Pharmacology of Origanum majorana L. J. Ethnopharmacol. 2021, 265, 113318. [Google Scholar] [CrossRef]
- Bouyahya, A.; Belmehdi, O.; El Jemli, M.; Marmouzi, I.; Bourais, I.; Abrini, J.; Faouzi, M.E.A.; Dakka, N.; Bakri, Y. Chemical Variability of Centaurium Erythraea Essential Oils at Three Developmental Stages and Investigation of Their in Vitro Antioxidant, Antidiabetic, Dermatoprotective and Antibacterial Activities. Ind. Crops Prod. 2019, 132, 111–117. [Google Scholar] [CrossRef]
- El Omari, N.; Guaouguaou, F.E.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G. Phytochemical and Biological Activities of Pinus Halepensis Mill., and Their Ethnomedicinal Use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef]
- Khouchlaa, A.; Talbaoui, A.; El Idrissi, A.E.Y.; Bouyahya, A.; Ait Lahsen, S.; Kahouadji, A.; Tijane, M. Determination of Phenol Content and Evaluation of in Vitro Litholytic Effects on Urolithiasis of Moroccan Zizyphus Lotus L. Extract. Phytothérapie 2017, 16, 14–19. [Google Scholar] [CrossRef]
- Marmouzi, I.; Bouyahya, A.; Ezzat, S.M.; El Jemli, M.; Kharbach, M. The Food Plant Silybum Marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and Clinical Evidence. J. Ethnopharmacol. 2021, 265, 113303. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Dey, A.; Koirala, N.; Shaheen, S.; El Omari, N.; Salehi, B.; Goloshvili, T.; Cirone Silva, N.C.; Bouyahya, A.; Vitalini, S. Cinnamomum Species: Bridging Phytochemistry Knowledge, Pharmacological Properties and Toxicological Safety for Health Benefits. Front. Pharmacol. 2021, 12, 600139. [Google Scholar] [CrossRef] [PubMed]
- Boukhatem, M.N.; Sudha, T.; Darwish, N.H.; Nada, H.G.; Mousa, S.A. Rose-Scented Geranium Essential Oil from Algeria (Pelargonium Graveolens L’Hérit.): Assessment of Antioxidant, Anti-Inflammatory and Anticancer Properties against Different Metastatic Cancer Cell Lines. Ann. Pharm. Fr. 2021, 80, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Nada, H.G.; Mohsen, R.; Zaki, M.E.; Aly, A.A. Evaluation of Chemical Composition, Antioxidant, Antibiofilm and Antibacterial Potency of Essential Oil Extracted from Gamma Irradiated Clove (Eugenia Caryophyllata) Buds. J. Food Meas. Charact. 2022, 16, 673–686. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical Fluid Technologies Applied to the Extraction of Compounds of Industrial Interest from Cannabis Sativa L. and to Their Pharmaceutical Formulations: A Review. J. Supercrit. Fluids 2020, 165, 104960. [Google Scholar] [CrossRef]
- Sahraoui, N.; Boutekedjiret, C. Innovative Process of Essential Oil Extraction: Steam Distillation Assisted by Microwave. In Progress in Clean Energy; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1, pp. 831–841. [Google Scholar]
- Gonzalez-Coloma, A.; Martín, L.; Mainar, A.M.; Urieta, J.S.; Fraga, B.M.; Rodríguez-Vallejo, V.; Díaz, C.E. Supercritical Extraction and Supercritical Antisolvent Fractionation of Natural Products from Plant Material: Comparative Results on Persea Indica. Phytochem. Rev. 2012, 11, 433–446. [Google Scholar] [CrossRef]
- Macıas-Sánchez, M.D.; Mantell, C.; Rodrıguez, M.; de La Ossa, E.M.; Lubián, L.M.; Montero, O. Supercritical Fluid Extraction of Carotenoids and Chlorophyll a from Nannochloropsis Gaditana. J. Food Eng. 2005, 66, 245–251. [Google Scholar] [CrossRef]
- Janssen, A.M.; Scheffer, J.J.C.; Svendsen, A.B. Antimicrobial Activity of Essential Oils: A 1976-1986 Literature Review. Aspects of the Test Methods. Planta Med. 1987, 53, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Yao, L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Bhalla, Y.; Gupta, V.K.; Jaitak, V. Anticancer Activity of Essential Oils: A Review. J. Sci. Food Agric. 2013, 93, 3643–3653. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; Usman, L.A.; Akolade, J.O.; Idowu, O.A.; Abdulazeez, A.T.; Amuzat, A.O. Antidiabetic Potentials of Citrus Aurantifolia Leaf Essential Oil. Drug Res. 2019, 69, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef] [PubMed]
- Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The Role of Oxidative Stress and Antioxidants in Diabetic Complications. Sultan Qaboos Univ. Med. J. 2012, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Mohora, M.; Greabu, M.; Muscurel, C.; Duta, C.; Totan, A. The Sources and the Targets of Oxidative Stress in the Etiology of Diabetic Complications. Rom. J. Biophys. 2007, 17, 63–84. [Google Scholar]
- Hong, J.-H.; Kim, M.-J.; Park, M.-R.; Kwag, O.-G.; Lee, I.-S.; Byun, B.H.; Lee, S.-C.; Lee, K.-B.; Rhee, S.-J. Effects of Vitamin E on Oxidative Stress and Membrane Fluidity in Brain of Streptozotocin-Induced Diabetic Rats. Clin. Chim. Acta 2004, 340, 107–115. [Google Scholar] [CrossRef]
- Coleman, H.N.; Greenfield, W.W.; Stratton, S.L.; Vaughn, R.; Kieber, A.; Moerman-Herzog, A.M.; Spencer, H.J.; Hitt, W.C.; Quick, C.M.; Hutchins, L.F. Human Papillomavirus Type 16 Viral Load Is Decreased Following a Therapeutic Vaccination. Cancer Immunol. Immunother. 2016, 65, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Jamila, F.; Mostafa, E. Ethnobotanical Survey of Medicinal Plants Used by People in Oriental Morocco to Manage Various Ailments. J. Ethnopharmacol. 2014, 154, 76–87. [Google Scholar] [CrossRef]
- Boulanouar, B.; Abdelaziz, G.; Aazza, S.; Gago, C.; Miguel, M.G. Antioxidant Activities of Eight Algerian Plant Extracts and Two Essential Oils. Ind. Crops Prod. 2013, 46, 85–96. [Google Scholar] [CrossRef]
- Coates, A.; Hu, Y.; Bax, R.; Page, C. The Future Challenges Facing the Development of New Antimicrobial Drugs. Nat. Rev. Drug Discov. 2002, 1, 895–910. [Google Scholar] [CrossRef]
- Sadeek, A.M.; Abdallah, E.M. Phytochemical Compounds as Antibacterial Agents a Mini Review. Saudi Arab. Glob. J. Pharm. Sci. 2019, 53, 555720. [Google Scholar]
- Hachlafi, N.E.; Aanniz, T.; Menyiy, N.E.; Baaboua, A.E.; Omari, N.E.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2021, 1–28. [Google Scholar] [CrossRef]
- El Menyiy, N.; Guaouguaou, F.-E.; El Baaboua, A.; El Omari, N.; Taha, D.; Salhi, N.; Shariati, M.A.; Aanniz, T.; Benali, T.; Zengin, G.; et al. Phytochemical Properties, Biological Activities and Medicinal Use of Centaurium Erythraea Rafn. J. Ethnopharmacol. 2021, 276, 114171. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Jaouadi, I.; Lahyaoui, M.; Benali, T.; Taha, D.; Bakrim, S.; El Menyiy, N.; El Kamari, F.; Zengin, G.; Bangar, S.P.; et al. Natural Sources, Pharmacological Properties, and Health Benefits of Daucosterol: Versatility of Actions. Appl. Sci. 2022, 12, 5779. [Google Scholar] [CrossRef]
- El Omari, N.; Akkaoui, S.; El Blidi, O.; Ghchime, R.; Bouyahya, A.; Kharbach, M.; Yagoubi, M.; Balahbib, A.; Chokairi, O.; Barkiyou, M. HPLC-DAD/TOF-MS Chemical Compounds Analysis and Evaluation of Antibacterial Activity of Aristolochia Longa Root Extracts. Nat. Prod. Commun. 2020, 15, 1934578X20932753. [Google Scholar] [CrossRef]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef]
- Rios, J.-L.; Recio, M.C. Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Kim, D.J. The Epidemiology of Diabetes in Korea. Diabetes Metab. J. 2011, 35, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Surya, S.; Salam, A.D.; Tomy, D.V.; Carla, B.; Kumar, R.A.; Sunil, C. Diabetes Mellitus and Medicinal Plants-a Review. Asian Pac. J. Trop. Dis. 2014, 4, 337–347. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Doble, M. A Target Based Therapeutic Approach towards Diabetes Mellitus Using Medicinal Plants. Curr. Diabetes Rev. 2008, 4, 291–308. [Google Scholar] [CrossRef]
- Serçe, S.; Özgen, M.; Torun, A.A.; Ercişli, S. Chemical Composition, Antioxidant Activities and Total Phenolic Content of Arbutus Andrachne L. (Fam. Ericaceae) (the Greek Strawberry Tree) Fruits from Turkey. J. Food Compos. Anal. 2010, 23, 619–623. [Google Scholar] [CrossRef]
- Bnouham, M.; Merhfour, F.Z.; Ziyyat, A.; Aziz, M.; Legssyer, A.; Mekhfi, H. Antidiabetic Effect of Some Medicinal Plants of Oriental Morocco in Neonatal Non-Insulin-Dependent Diabetes Mellitus Rats. Hum. Exp. Toxicol. 2010, 29, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Legssyer, A.; Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Herrenknecht, C.; Roumy, V.; Fourneau, C.; Laurens, A.; Hoerter, J.; Fischmeister, R. Tannins and Catechin Gallate Mediate the Vasorelaxant Effect of Arbutus Unedo on the Rat Isolated Aorta. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2004, 18, 889–894. [Google Scholar]
- Ruiz-Rodríguez, B.-M.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Camara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Molina, M.; Tardío, J. Valorization of Wild Strawberry-Tree Fruits (Arbutus Unedo L.) through Nutritional Assessment and Natural Production Data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Tahri, A.; Legssyer, A.; Hoerter, J.; Fischmeister, R. Arbutus Unedo Induces Endothelium-Dependent Relaxation of the Isolated Rat Aorta. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 572–575. [Google Scholar] [CrossRef]
- Alarcão-e-Silva, M.; Leitão, A.E.B.; Azinheira, H.G.; Leitão, M.C.A. The Arbutus Berry: Studies on Its Color and Chemical Characteristics at Two Mature Stages. J. Food Compos. Anal. 2001, 14, 27–35. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A.; Mohamed, S.; Abdellah, B. Chemical Composition and Antibacterial Activity of Leaves Essential Oil of Laurus Nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Basak, S.S.; Candan, F. Effect of Laurus Nobilis L. Essential Oil and Its Main Components on α-Glucosidase and Reactive Oxygen Species Scavenging Activity. Iran. J. Pharm. Res. 2013, 12, 367. [Google Scholar]
- Hamad Al-Mijalli, S.; ELsharkawy, E.R.; Abdallah, E.M.; Hamed, M.; El Omari, N.; Mahmud, S.; Alshahrani, M.M.; Mrabti, H.N.; Bouyahya, A. Determination of Volatile Compounds of Mentha Piperita and Lavandula Multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. Evid. Based Complement. Altern. Med. 2022, 2022, e9306251. [Google Scholar] [CrossRef]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Alyamani, R.A.; Hamed, M.; El Omari, N.; El Menyiy, N.; Hazzoumi, Z.; Benali, T.; et al. Chemical Analysis and Investigation of Biological Effects of Salvia Officinalis Essential Oils at Three Phenological Stages. Molecules 2022, 27, 5157. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, H.N.; Assaggaf, H.; Attar, A.A.; Hamed, M.; Baaboua, A.E.; Omari, N.E.; Menyiy, N.E.; Hazzoumi, Z.; Sheikh, R.A. Chemical Profiling and Biological Activities of Pelargonium Graveolens Essential Oils at Three Different Phenological Stages. Plants 2022, 11, 2226. [Google Scholar] [CrossRef]
- Hu, B.; Cui, F.; Yin, F.; Zeng, X.; Sun, Y.; Li, Y. Caffeoylquinic Acids Competitively Inhibit Pancreatic Lipase through Binding to the Catalytic Triad. Int. J. Biol. Macromol. 2015, 80, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for Acetylcholinesterase Inhibitory Activity in Plants Used in Thai Traditional Rejuvenating and Neurotonic Remedies. J. Ethnopharmacol. 2003, 89, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Rege, M.G.; Ayanwuyi, L.O.; Zezi, A.U.; Odoma, S. Anti-Nociceptive, Anti-Inflammatory and Possible Mechanism of Anti-Nociceptive Action of Methanol Leaf Extract of Nymphaea Lotus Linn (Nymphaeceae). J. Tradit. Complement. Med. 2021, 11, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J.; Recio, S.; Escribano, P.; Torres-Narbona, M.; Peláez, T.; Sánchez-Carrillo, C.; Rodríguez-Créixems, M.; Bouza, E. Rapid Antifungal Susceptibility Determination for Yeast Isolates by Use of Etest Performed Directly on Blood Samples from Patients with Fungemia. J. Clin. Microbiol. 2010, 48, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Doudach, L.; Al-Mijalli, S.H.; Abdallah, E.M.; Mrabti, H.N.; Chibani, F.; Faouzi, M.E.A. Antibacterial Evaluation of The Roots of Moroccan Aristolochia Longa Against Referenced Gram-Positive and Gram-Negative Bacteria. Adv. Life Sci. 2022, 9, 116–121. [Google Scholar]
- Hu, F.; Tu, X.-F.; Thakur, K.; Hu, F.; Li, X.-L.; Zhang, Y.-S.; Zhang, J.-G.; Wei, Z.-J. Comparison of Antifungal Activity of Essential Oils from Different Plants against Three Fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Presti, V.L.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida, A. Chemical Composition, Antioxidant Capacity and Antibacterial Action of Five Moroccan Essential Oils against Listeria Monocytogenes and Different Serotypes of Salmonella Enterica. Microb. Pathog. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Abdallah, E.M. Antibacterial Activity of Hibiscus Sabdariffa L. Calyces against Hospital Isolates of Multidrug Resistant Acinetobacter Baumannii. J. Acute Dis. 2016, 5, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Safian, S.; Majid, H.; Swift, S.; Silva, F.V. Antimicrobial Properties against Human Pathogens of Medicinal Plants from New Zealand. Appl. Microbiol. 2022, 2, 357–366. [Google Scholar] [CrossRef]
- Chipiti, T.; Ibrahim, M.A.; Singh, M.; Islam, M.S. In Vitro α-Amylase and α-Glucosidase Inhibitory Effects and Cytotoxic Activity of Albizia Antunesiana Extracts. Pharmacogn. Mag. 2015, 11, S231. [Google Scholar]
- Al-Reza, S.M.; Yoon, J.I.; Kim, H.J.; Kim, J.-S.; Kang, S.C. Anti-Inflammatory Activity of Seed Essential Oil from Zizyphus Jujuba. Food Chem. Toxicol. 2010, 48, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-T.; Lai, C.-P.; Lin, C.-C.; Shih, Y. Study of the Chemical Composition, Antioxidant Activity and Anti-Inflammatory Activity of Essential Oil from Vetiveria Zizanioides. Food Chem. 2012, 134, 262–268. [Google Scholar] [CrossRef]
- Bessah, R.; Benyoussef, E.-H. Essential Oil Composition of Arbutus Unedo L. Leaves from Algeria. J. Essent. Oil Bear. Plants 2012, 15, 678–681. [Google Scholar] [CrossRef]
- Kivcak, B.; Mer, T.; Demirci, B.; Baser, K.H.C. Composition of the Essential Oil of Arbutus Unedo. Chem. Nat. Compd. 2001, 37, 445–446. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; Belmehdi, O.; Salhi, N.; Imtara, H.; Mrabti, H.N.; El-Shazly, M. Moroccan Antidiabetic Medicinal Plants: Ethnobotanical Studies, Phytochemical Bioactive Compounds, Preclinical Investigations, Toxicological Validations and Clinical Evidences; Challenges, Guidance and Perspectives for Future Management of Diabetes Worldwide. Trends Food Sci. Technol. 2021, 115, 147–254. [Google Scholar]
- Bouyahya, A.; Guaouguaou, F.-E.; El Omari, N.; El Menyiy, N.; Balahbib, A.; El-Shazly, M.; Bakri, Y. Anti-Inflammatory and Analgesic Properties of Moroccan Medicinal Plants: Phytochemistry, in Vitro and in Vivo Investigations, Mechanism Insights, Clinical Evidences and Perspectives. J. Pharm. Anal. 2021, 12, 35–57. [Google Scholar] [CrossRef]
- Di Leo Lira, P.; Retta, D.; Tkacik, E.; Ringuelet, J.; Coussio, J.D.; van Baren, C.; Bandoni, A.L. Essential Oil and By-Products of Distillation of Bay Leaves (Laurus Nobilis L.) from Argentina. Ind. Crops Prod. 2009, 30, 259–264. [Google Scholar] [CrossRef]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus Nobilis L. Essential Oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [Green Version]
- Mohammadreza, V. Chemical Composition and Larvicidal Activity of the Essential Oil of Iranian Laurus nobilis L. J. Appl. Hortic. 2010, 12, 155–157. [Google Scholar] [CrossRef]
- Dadalioǧlu, I.; Evrendilek, G.A. Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano (Origanum Minutiflorum), Bay Laurel (Laurus Nobilis), Spanish Lavender (Lavandula Stoechas L.), and Fennel (Foeniculum Vulgare) on Common Foodborne Pathogens. J. Agric. Food Chem. 2004, 52, 8255–8260. [Google Scholar] [CrossRef]
- Nabila, B.; Piras, A.; Fouzia, B.; Falconieri, D.; Kheira, G.; Fedoul, F.-F.; Majda, S.-R. Chemical Composition and Antibacterial Activity of the Essential Oil of Laurus Nobilis Leaves. Nat. Prod. Res. 2022, 36, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Baptista, P.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Influence of Strawberry Tree (Arbutus Unedo L.) Fruit Ripening Stage on Chemical Composition and Antioxidant Activity. Food Res. Int. 2011, 44, 1401–1407. [Google Scholar] [CrossRef]
- Liang, T.; Yue, W.; Li, Q. Comparison of the Phenolic Content and Antioxidant Activities of Apocynum Venetum L. (Luo-Bu-Ma) and Two of Its Alternative Species. Int. J. Mol. Sci. 2010, 11, 4452–4464. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N. Essential Oils of Mentha Viridis Rich Phenolic Compounds Show Important Antioxidant, Antidiabetic, Dermatoprotective, Antidermatophyte and Antibacterial Properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus Nobilis L. Flowers Growing in Morocco. J. Food Qual. 2020, 2020, 8819311. [Google Scholar] [CrossRef]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, C.; Neng, N.R.; Nogueira, J.M.F.; Nunes, M.L.; Marques, A. Antioxidant and Antibacterial Activity of Essential Oil and Extracts of Bay Laurel Laurus Nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Sayah, K.; Jaradat, N.; Kichou, F.; Ed-Dra, A.; Belarj, B.; Cherrah, Y.; Faouzi, M.E.A. Antidiabetic and Protective Effects of the Aqueous Extract of Arbutus Unedo L. in Streptozotocin-Nicotinamide-Induced Diabetic Mice. J. Complement. Integr. Med. 2018, 15. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S.; Mohammed Ameen, M.S.; Anwer, E.T. Essential Oil Composition and Antidiabetic, Anticancer Activity of Rosmarinus Officinalis L. Leaves from Erbil (Iraq). J. Essent. Oil Bear. Plants 2019, 22, 1544–1553. [Google Scholar] [CrossRef]
- Paul, K.; Bhattacharjee, P. Process Optimization of Supercritical Carbon Dioxide Extraction of 1,8-Cineole from Small Cardamom Seeds by Response Surface Methodology: In Vitro Antioxidant, Antidiabetic and Hypocholesterolemic Activities of Extracts. J. Essent. Oil Bear. Plants 2018, 21, 317–329. [Google Scholar] [CrossRef]
- More, T.A.; Kulkarni, B.R.; Nalawade, M.L.; Arvindekar, A.U. Antidiabetic Activity of Linalool and Limonene in Streptozotocin-Induced Diabetic Rat: A Combinatorial Therapy Approach. Int. J. Pharm. Pharm. Sci. 2014, 6, 159–163. [Google Scholar]
- Macchioni, V.; Santarelli, V.; Carbone, K. Phytochemical Profile, Antiradical Capacity and α-Glucosidase Inhibitory Potential of Wild Arbutus Unedo L. Fruits from Central Italy: A Chemometric Approach. Plants 2020, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Qadir, S.A.; Kwon, M.C.; Han, J.G.; Ha, J.H.; Chung, H.S.; Ahn, J.; Lee, H.Y. Effect of Different Extraction Protocols on Anticancer and Antioxidant Activities of Berberis Koreana Bark Extracts. J. Biosci. Bioeng. 2009, 107, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Torrero, D. Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer’s Disease. Curr. Med. Chem. 2008, 15, 2433–2455. [Google Scholar] [CrossRef] [PubMed]
- Bores, G.M.; Huger, F.P.; Petko, W.; Mutlib, A.E.; Camacho, F.; Rush, D.K.; Selk, D.E.; Wolf, V.; Kosley, R.W.; Davis, L. Pharmacological Evaluation of Novel Alzheimer’s Disease Therapeutics: Acetylcholinesterase Inhibitors Related to Galanthamine. J. Pharmacol. Exp. Ther. 1996, 277, 728–738. [Google Scholar]
- Ren, Y.; Houghton, P.J.; Hider, R.C.; Howes, M.-J.R. Novel Diterpenoid Acetylcholinesterase Inhibitors from Salvia Miltiorhiza. Planta Med. 2004, 70, 201–204. [Google Scholar]
- Kennedy, D.O.; Scholey, A.B. The Psychopharmacology of European Herbs with Cognition-Enhancing Properties. Curr. Pharm. Des. 2006, 12, 4613–4623. [Google Scholar] [CrossRef] [Green Version]
- Owokotomo, I.A.; Ekundayo, O.; Abayomi, T.G.; Chukwuka, A.V. In-Vitro Anti-Cholinesterase Activity of Essential Oil from Four Tropical Medicinal Plants. Toxicol. Rep. 2015, 2, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Smeriglio, A.; Alloisio, S.; Raimondo, F.M.; Denaro, M.; Xiao, J.; Cornara, L.; Trombetta, D. Essential Oil of Citrus Lumia Risso: Phytochemical Profile, Antioxidant Properties and Activity on the Central Nervous System. Food Chem. Toxicol. 2018, 119, 407–416. [Google Scholar] [CrossRef]
- Bonesi, M.; Okusa, P.N.; Tundis, R.; Loizzo, M.R.; Menichini, F.; Stévigny, C.; Duez, P.; Menichini, F. Chemical Composition, Antioxidant Properties and Anti-Cholinesterase Activity of Cordia Gilletii (Boraginaceae) Leaves Essential Oil. Nat. Prod. Commun. 2011, 6, 1934578X1100600225. [Google Scholar] [CrossRef] [Green Version]
- Grobler, J.A.; Stillmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A.S.; Wolfe, A.; Egbertson, M.; Bourgeois, M.; Melamed, J. Diketo Acid Inhibitor Mechanism and HIV-1 Integrase: Implications for Metal Binding in the Active Site of Phosphotransferase Enzymes. Proc. Natl. Acad. Sci. USA 2002, 99, 6661–6666. [Google Scholar] [CrossRef] [Green Version]
- López, M.D.; Pascual-Villalobos, M.J. Mode of Inhibition of Acetylcholinesterase by Monoterpenoids and Implications for Pest Control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The Crucial Roles of Inflammatory Mediators in Inflammation: A Review. Vet. World 2018, 11, 627. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S. Chronic Inflammation: Importance of NOD2 and NALP3 in Interleukin-1β Generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Medicherla, K.; Sahu, B.D.; Kuncha, M.; Kumar, J.M.; Sudhakar, G.; Sistla, R. Oral Administration of Geraniol Ameliorates Acute Experimental Murine Colitis by Inhibiting Pro-Inflammatory Cytokines and NF-ΚB Signaling. Food Funct. 2015, 6, 2984–2995. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-W.; Chao, S.-H.; Lee, M.-H.; Ou, T.-Y.; Tsai, Y.-C. Inhibitory Effects of Citronellol and Geraniol on Nitric Oxide and Prostaglandin E2 Production in Macrophages. Planta Med. 2010, 76, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G.; Faleiro, M.L.; Guerreiro, A.C.; Antunes, M.D. Arbutus Unedo L.: Chemical and Biological Properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moualek, I.; Aiche, G.I.; Guechaoui, N.M.; Lahcene, S.; Houali, K. Antioxidant and Anti-Inflammatory Activities of Arbutus Unedo Aqueous Extract. Asian Pac. J. Trop. Biomed. 2016, 6, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Frum, Y.; Viljoen, A.M. In Vitro 5-Lipoxygenase Activity of Three Indigenous South African Aromatic Plants Used in Traditional Healing and the Stereospecific Activity of Limonene in the 5-Lipoxygenase Assay. J. Essent. Oil Res. 2006, 18, 85–88. [Google Scholar] [CrossRef]
- de Cássia da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Mohamed, N.; Lg, M.; Sa, R. Linalool Glycosides from Flowers of Lantana Montevidensis with Promising AntiInflammatory Potentials. Nat. Prod. Chem. Res. 2020, 8, 1–8. [Google Scholar]
- Maleš, I.; Dragović-Uzelac, V.; Jerković, I.; Zorić, Z.; Pedisić, S.; Repajić, M.; Garofulić, I.E.; Dobrinčić, A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Guedouari, R.; Nabiev, M. Anti-Inflammatory Activity of Different Extracts from Laurus Nobilis Growing in Algeria. Algerian J. Environ. Sci. Technol. 2021, 7, 2115–2120. [Google Scholar]
- Valdés, C.; Laurido, C.; Morales, B.; Jaimes, L.; Vinet, R.; Martínez, J.L. Complete Essential Oils of Laurus Nobilis Inducing Antinociceptive Action by Opioid Mechanism in C-Reflex and Spinal Wind-Up Model in Rat. Bol. Latinoam. Caribe Plantas Med. Aromáticas 2020, 19, 420–427. [Google Scholar] [CrossRef]
- Biswas, B.; Rogers, K.; McLaughlin, F.; Daniels, D.; Yadav, A. Antimicrobial Activities of Leaf Extracts of Guava (Psidium Guajava L.) on Two Gram-Negative and Gram-Positive Bacteria. Int. J. Microbiol. 2013, 2013, 746165. [Google Scholar] [CrossRef] [PubMed]
- Soniya, M.; Kuberan, T.; Anitha, S.; Sankareswari, P. In Vitro Antibacterial Activity of Plant Extracts against Gram Positive and Gram Negative Pathogenic Bacteria. Int. J. Microbiol. Immunol. Res. 2013, 2, 1–5. [Google Scholar]
- Bouyahya, A.; Abrini, J.; El-Baabou, A.; Bakri, Y.; Dakka, N. Determination of Phenol Content and Antibacterial Activity of Five Medicinal Plants Ethanolic Extracts from North-West of Morocco. J. Plant Pathol. Microbiol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Cunha, B.A. Pseudomonas Aeruginosa: Resistance and Therapy. Semin. Respir. Infect. 2002, 17, 231–239. [Google Scholar] [CrossRef]
- Lambert, P. Mechanisms of Antibiotic Resistance in Pseudomonas Aeruginosa. J. R. Soc. Med. 2002, 95, 22. [Google Scholar]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World Health Organization Releases Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. J. Med. Soc. 2018, 32, 76. [Google Scholar] [CrossRef]
- Brahmi, F.; Achat, S.; Guendouze-Bouchefa, N.; Benazzouz-Smail, L.; Elsebai, M.F.; Madani, K. Recent Advances in the Identification and the Study of Composition and Activities of Medicinal Plants. J. Coast. Life Med. 2016, 4, 983–999. [Google Scholar]
- da Silveira, S.M.; Luciano, F.B.; Fronza, N.; Cunha Jr, A.; Scheuermann, G.N.; Vieira, C.R.W. Chemical Composition and Antibacterial Activity of Laurus Nobilis Essential Oil towards Foodborne Pathogens and Its Application in Fresh Tuscan Sausage Stored at 7 C. LWT-Food Sci. Technol. 2014, 59, 86–93. [Google Scholar] [CrossRef]
- Mrabti, H.N.; Bouyahya, A.; Ed-Dra, A.; Kachmar, M.R.; Mrabti, N.N.; Benali, T.; Shariati, M.A.; Ouahbi, A.; Doudach, L.; Faouzi, M.E.A. Polyphenolic Profile and Biological Properties of Arbutus Unedo Root Extracts. Eur. J. Integr. Med. 2021, 42, 101266. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Kontogiorgos, V.; Daygon, V.D.; Fitzgerald, M.A. Pectin-Based Films and Coatings with Plant Extracts as Natural Preservatives: A Systematic Review. Trends Food Sci. Technol. 2022, 120, 193–211. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgado, S.; Morgado, M.; Plácido, A.I.; Roque, F.; Duarte, A.P. Arbutus Unedo L.: From Traditional Medicine to Potential Uses in Modern Pharmacotherapy. J. Ethnopharmacol. 2018, 225, 90–102. [Google Scholar] [CrossRef]
- Sırıken, B.; Yavuz, C.; Güler, A. Antibacterial Activity of Laurus Nobilis: A Review of Literature. Med. Sci. Discov. 2018, 5, 374–379. [Google Scholar] [CrossRef]
Number | AUEO | LNEO | ||||
---|---|---|---|---|---|---|
RT | Compounds | % | RT | Compounds | % | |
1 | 0.479 | Caryophyllene | 0.26 | 2.036 | α-Thujene | 0.43 |
2 | 0.805 | Myrtenol | 0.78 | 2.115 | α-Pinene | 3.34 |
3 | 1.481 | Geraniol | 0.57 | 2.262 | Camphene | 0.47 |
4 | 1.741 | β-Eudesmol | 1.28 | 2.791 | β-Thujene | 5.74 |
5 | 2.439 | γ-Eudesmol | 1.43 | 4.132 | Eucalyptol | 36.40 |
6 | 3.228 | Nonanoicacid | 4.38 | 5.947 | Linalool | 10.34 |
7 | 4.445 | Decenal | 13.47 | 7.479 | α-terpineol | 13.05 |
8 | 5.099 | Palmitic acid | 6.00 | 10.048 | 4-Thujen-2-α-yl acetate | 0.91 |
9 | 5.211 | (E,Z)-2,6-Nonadienal | 0.62 | 10.150 | Bornyl acetate | 0.87 |
10 | 5.420 | (E)-2-Undecenal | 0.7 | 12.426 | α-Terpinyl acetate | 10.61 |
11 | 8.186 | (E)-Geranylacetone | 3.36 | 12.595 | Eugenol | 1.58 |
12 | 10.057 | α-Terpineol | 7.8 | 14.071 | Methyleugenol | 3.74 |
13 | 10.125 | Linalool | 1.82 | 15.018 | Naphthalene | 0.64 |
14 | 10.226 | Nonanal | 3.8 | 17.441 | β-Neoclovene | 0.50 |
15 | 10.384 | Dodecanoicacid | 1.2 | 17.666 | Isoelemicin | 0.38 |
16 | 11.409 | β-Ionone | 1.26 | - | - | - |
17 | 11.815 | Octanol | 0.64 | - | - | - |
18 | 17.167 | Myristic acid | 3.96 | - | - | - |
Total identified compounds % | 53.33% | Total identified compounds % | 89% | |||
Monoterpene hydrocarbons % | - | Monoterpene hydrocarbons % | 4.88% | |||
Oxygenated monoterpenes % | 24.44% | Oxygenated monoterpenes % | 72.18% | |||
Sesquiterpene hydrocarbons % | 1.52% | Sesquiterpene hydrocarbons % | 6.24% | |||
Oxygenated sesquiterpenes % | 2.71% | Oxygenated sesquiterpenes % | 0.38% |
EOs | Hydroxyl IC50 (μL/mL) | Superoxide IC50 (μL/mL) | Lipid Peroxidation IC50 (μL/mL) | DPPH IC50 (μL/mL) |
---|---|---|---|---|
Laurus nobilis | 0.354 ± 0.02 a | 0.133 ± 0.01 a | 0.101 ± 0.05 a | 0.489 ± 0.07 a |
Arbutus unedo | 0.527 ± 0.01 b | 0.275 ± 0.07 b | 0.207 ± 0.03 b | 0.711 ± 0.04 b |
BHT | 12.027 ± 0.01 c | 43.307 ± 0.001 c | 2.022 ± 0.031 c | 21.057 ± 0.051 c |
IC50 (µg/mL) | α-Amylase | α-Glucosidase | Lipase |
---|---|---|---|
Arbutus unedo EO | 102 ± 0.06 c | 76 ± 0.021 c | 97.018 ± 0.012 c |
Laurus nobilis EO | 42.51 ± 0.012 b | 1.347 ± 0.021 a | 21.23 ± 0.021 b |
Acarbose | 32.14 ± 0.016 a | 22 ± 0.005 b | _ |
Orlistat | _ | _ | 14.12 ± 0.023 a |
IC50 (µg/mL ± SEM) | AUEO | LNEO |
---|---|---|
AChE | 378.57 ± 0.05 b | 89.44 ± 0.07 a |
Rivastigmine | - | 2.24 ± 0.03 c |
Assays. | (IC50 μg/mL) | Control | |
---|---|---|---|
AUEO | LNEO | Quercetin | |
5-Lipoxygenase | 86.14 ± 0.05 c | 48.31 ± 0.07 b | 17.59 ± 0.01 a |
Compounds | Dose (mg/kg) | Carrageenan-Induced Hind Paw Edema Volume (mL; Mean) and % of Inhibition | ||||||
---|---|---|---|---|---|---|---|---|
T0 | 1 h | % inh. | 3 h | % inh. | 6 h | % inh. | ||
Control | - | 0.84 | 1.43 | - | 1.63 | - | 1.86 | - |
L. nobilis | 50 | 0.89 | 1.31 | 28.81 | 1.27 | 51.90 | 1.19 | 70.59 |
100 | 0.89 | 1.23 | 42.37 | 1.15 | 67.09 | 1.01 | 88.26 | |
A. unedo | 50 | 0.76 | 1.24 | 18.64 | 1.25 | 37.97 | 1.18 | 58.82 |
100 | 0.82 | 1.26 | 25.42 | 1.23 | 48.10 | 1.19 | 63.72 | |
Indomethacin | 10 | 0.85 | 1.14 | 50.85 | 1.16 | 60.76 | 1.13 | 72.55 |
Microorganism | Arbutus unedo EO (100%) | Laurus nobilis EO (100%) | Chloramphenicol (30 µg/mL) | Nystatin (100 I.U.) |
---|---|---|---|---|
Escherichia coli ATCC 25922 | 14.6 ± 0.2 | 16.2 ± 0.1 | 22.9 ± 0.1 | 0.0 |
Proteus mirabilis ATCC 25933 | 14.2 ± 0.1 | 15.6 ± 0.2 | 22.6 ± 0.2 | 0.0 |
Salmonella typhimurium ATCC 700408 | 11.0 ± 0.1 | 12.7 ± 0.8 | 13.6 ± 0.0 | 0.0 |
Pseudomonas aeruginosa ATCC 27853 | 8.0 ± 0.0 | 8.0 ± 0.0 | 6.0 ± 0.0 | 0.0 |
Bacillus subtilis ATCC 6633 | 16.2 ± 0.3 | 18.0 ± 0.2 | 16.3 ± 0.1 | 0.0 |
Staphylococcus aureus ATCC 29213 | 15.4 ± 0.2 | 18.3 ± 0.2 | 25.6 ± 0.1 | 0.0 |
Listeria monocytogenes ATCC 13932 | 16.9 ± 0.2 | 19.3 ± 0.2 | 28.6 ± 0.2 | 0.0 |
Candida albicans | 16.2 ± 0.2 | 19.8 ± 0.3 | 0.0 | 28.8 ± 0.3 |
Trichophyton rubrum | 13.0 ± 0.3 | 15.6 ± 0.3 | 0.0 | 25.0 ± 0.02 |
Aspergillus niger | 13.4 ± 0.2 | 16.2 ± 0.2 | 0.0 | 25.8 ± 0.1 |
Microorganisms | EOs % (v/v) | Controls (µg/mL) | ||||
---|---|---|---|---|---|---|
AUEO | LNEO | Chloramphenicol | Nystatin | |||
MIC | MLC | MIC | MLC | MIC | MIC | |
Escherichia coli ATCC 25922 | 1.0 | 2.0 | 1.0 | 1.0 | 4.0 | NT |
Proteus mirabilis ATCC 25933 | 2.0 | 2.0 | 1.0 | 1.0 | 4.0 | NT |
Salmonella typhimurium ATCC 700408 | 2.0 | 4.0 | 1.0 | 2.0 | 64.0 | NT |
Pseudomonas aeruginosa ATCC 27853 | >4.0 | >4.0 | >4.0 | >4.0 | >64.0 | NT |
Bacillus subtilis ATCC 6633 | 1.0 | 2.0 | 0.5 | 1.0 | 32.0 | NT |
Staphylococcus aureus ATCC 29213 | 1.0 | 2.0 | 0.5 | 1.0 | 4.0 | NT |
Listeria monocytogenes ATCC 13932 | 1.0 | 1.0 | 0.5 | 1.0 | 2.0 | NT |
Candida albicans | 0.5 | NT | 0.25 | NT | NT | 4.0 |
Trichophyton rubrum | 2.0 | NT | 1.0 | NT | NT | 16.0 |
Aspergillus niger | 2.0 | NT | 1.0 | NT | NT | 16.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mijalli, S.H.; Mrabti, H.N.; Ouassou, H.; Flouchi, R.; Abdallah, E.M.; Sheikh, R.A.; Alshahrani, M.M.; Awadh, A.A.A.; Harhar, H.; Omari, N.E.; et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. Life 2022, 12, 1876. https://doi.org/10.3390/life12111876
Al-Mijalli SH, Mrabti HN, Ouassou H, Flouchi R, Abdallah EM, Sheikh RA, Alshahrani MM, Awadh AAA, Harhar H, Omari NE, et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. Life. 2022; 12(11):1876. https://doi.org/10.3390/life12111876
Chicago/Turabian StyleAl-Mijalli, Samiah Hamad, Hanae Naceiri Mrabti, Hayat Ouassou, Rachid Flouchi, Emad M. Abdallah, Ryan A. Sheikh, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Hicham Harhar, Nasreddine El Omari, and et al. 2022. "Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils" Life 12, no. 11: 1876. https://doi.org/10.3390/life12111876