The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Participants
2.3. Study Design
2.4. Laser Acupuncture Intervention
2.5. HRV Data Collection
2.6. Statistical Analysis
3. Results
3.1. Subjects
3.2. Time Domain Indexes
3.3. Frequency Domain Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moskvin, S.V.; Agasarov, L.G. Laser Acupuncture: 35 Years of Successful Application in Russia (Narrative Review). J. Lasers Med. Sci. 2020, 11, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.L.; Yu, H.J.; Pan, L.Y.; Wu, P.C.; Pan, C.C.; Kuo, C.E.; Tseng, Y.J.; Hung, Y.C. Laser Acupuncture Improves Tear Film Stability in Patients with Dry Eye Disease: A Two-Center Randomized-Controlled Trial. J. Altern. Complement. Med. 2021, 27, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Yeh, M.L.; Chen, F.P.; Kuo, M. A randomised controlled trial of laser acupuncture improves early outcomes of osteoarthritis patients’ physical functional ability after total knee replacement. Complement. Ther. Clin. Pract. 2021, 43, 101340. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.W.; Chang, M.H.; Lin, T.H.; Hwang, K.L.; Fu, T.C.; Shih, P.H.; Chang, C.M.; Yang, C.P. Laser Acupuncture for Carpal Tunnel Syndrome: A Single-Blinded Controlled Study. J. Altern. Complement. Med. 2019, 25, 1035–1043. [Google Scholar] [CrossRef]
- Ton, G.; Lee, L.W.; Chen, Y.H.; Tu, C.H.; Lee, Y.C. Effects of laser acupuncture in a patient with a 12-year history of facial paralysis: A case report. Complement. Ther. Med. 2019, 43, 306–310. [Google Scholar] [CrossRef]
- Madani, A.; Ahrari, F.; Fallahrastegar, A.; Daghestani, N. A randomized clinical trial comparing the efficacy of low-level laser therapy (LLLT) and laser acupuncture therapy (LAT) in patients with temporomandibular disorders. Lasers Med. Sci. 2020, 35, 181–192. [Google Scholar] [CrossRef]
- Putri, D.E.; Srilestari, A.; Abdurrohim, K.; Mangunatmadja, I.; Wahyuni, L.K. The Effect of Laser Acupuncture on Spasticity in Children with Spastic Cerebral Palsy. J. Acupunct. Meridian Stud. 2020, 13, 152–156. [Google Scholar] [CrossRef]
- Surapaty, I.A.; Simadibrata, C.; Rejeki, E.S.; Mangunatmadja, I. Laser Acupuncture Effects on Speech and Social Interaction in Patients with Autism Spectrum Disorder. Med. Acupunct. 2020, 32, 300–309. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic dose response in low level light therapy—An update. Dose-Response 2011, 9, 602–618. [Google Scholar] [CrossRef]
- De Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quant. Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Zein, R.; Selting, W.; Hamblin, M.R. Review of light parameters and photobiomodulation efficacy: Dive into complexity. J. Biomed. Opt. 2018, 23, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübscher, M.; Vogt, L.; Banzer, W. Laser Needle Acupuncture at Neiguan (PC6) Does Not Mediate Heart Rate Variability in Young, Healthy Men. Photomed. Laser Surg. 2007, 25, 21–25. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Arany, P. Feeling the Heat: Evolutionary and Microbial Basis for the Analgesic Mechanisms of Photobiomodulation Therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.K.; Lin, Y.C.; Cheng, J.W.; Pei, Y.C.; Liu, G.H.; Chen, Y.L.; Wong, A.M.K. Effectiveness of Laser Acupuncture in Alleviating Chronic Insomnia: A Single-Blinded Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2019, 13, 8136967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.H.; Chen, H.Y.; Chang, Y.J.; Wu, H.C.; Chang, W.D.; Chu, Y.J.; Jiang, J.A. Study of Autonomic Nervous Activity of Night Shift Workers Treated with Laser Acupuncture. Photomed. Laser Surg. 2009, 27, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejía-Mejía, E.; Budidha, K.; Abay, T.Y.; May, J.M.; Kyriacou, P.A. Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic Responses. Front. Physiol. 2020, 11, 779. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Pagaduan, J.C.; Chen, Y.S.; Fell, J.W.; Wu, S.S.X. Can Heart Rate Variability Biofeedback Improve Athletic Performance? A Systematic Review. J. Hum. Kinet. 2020, 73, 103–114. [Google Scholar] [CrossRef]
- Pagaduan, J.C.; Chen, Y.S.; Fell, J.W.; Wu, S.S.X. A preliminary systematic review and meta-analysis on the effects of heart rate variability biofeedback on heart rate variability and respiration of athletes. J. Complement. Integr. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Schiweck, C.; Piette, D.; Berckmans, D.; Claes, S.; Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 2019, 49, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Cygankiewicz, I.; Zareba, W. Heart rate variability. Handb. Clin. Neurol. 2013, 117, 379–393. [Google Scholar] [PubMed]
- Sessa, F.; Anna, V.; Messina, G.; Cibelli, G.; Monda, V.; Marsala, G.; Ruberto, M.; Biondi, A.; Cascio, O.; Bertozzi, G.; et al. Heart rate variability as predictive factor for sudden cardiac death. Aging 2018, 10, 166–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.P.; He, S.Y.; Xu, B.; Hu, C.J.; Lu, S.F.; Shen, W.X.; Huang, Y.; Hong, H.; Li, Q.; Wang, N.; et al. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene. PLoS ONE 2014, 9, e94604. [Google Scholar] [CrossRef]
- Kurono, Y.; Egawa, M.; Yano, T.; Shimoo, K. The effect of acupuncture on the coronary arteries as evaluated by coronary angiography: A preliminary report. Am. J. Chin. Med. 2002, 30, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liang, D.; Wang, F.; Li, W.; Han, Y.; Zhang, W.; Xie, Y.; Xin, W.; Zhou, B.; Sun, D.; et al. Efficacy of electroacupuncture pretreatment for myocardial injury in patients undergoing percutaneous coronary intervention: A randomized clinical trial with a 2-year follow-up. Int. J. Cardiol. 2015, 194, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, C.; Yan, C.; Zhao, S.; Yang, S.; Liu, P.; Liu, X.; Wang, M.; Wang, X. Cardioprotective effect of transcutaneous electrical acupuncture point stimulation on perioperative elderly patients with coronary heart disease: A prospective, randomized, controlled clinical trial. Clin. Interv. Aging 2019, 14, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K.; Kitagawa, Y.; Tajima, F. Effects of a Single Session of Acupuncture Treatment on Blood Pressure and Heart Rate Variability in Patients with Mild Hypertension. J. Altern. Complement. Med. 2021, 27, 342–348. [Google Scholar] [CrossRef] [PubMed]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef] [PubMed]
- Charlot, K.; Cornolo, J.; Brugniaux, J.V.; Richalet, J.P.; Pichon, A. Interchangeability between heart rate and photoplethysmography variabilities during sympathetic stimulations. Physiol. Meas. 2009, 30, 1357–1369. [Google Scholar] [CrossRef]
- World Health Organization—Regional Office for the Western Pacific. WHO Standard Acupuncture Point Locations in the Western Pacific Region; WHO Regional Office for the Western Pacific: Manila, Philippines, 2008; p. 154. [Google Scholar]
- Massotti, F.P.; Gomes, F.V.; Mayer, L.; de Oliveira, M.G.; Baraldi, C.E.; Ponzoni, D.; Puricelli, E. Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed. Laser Surg. 2015, 33, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, D.; de Souza, R.A.; Xavier, M.; da Silva, F.F.; Arisawa, E.A.; Villaverde, A.G. Effects of low-level laser therapy (LLLT) on bone repair in rats: Optical densitometry analysis. Lasers Med. Sci. 2013, 28, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Faurholt-Jepsen, M.; Kessing, L.V.; Munkholm, K. Heart rate variability in bipolar disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017, 73, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Bradler, K.; Moorti, P.; MacLean, S.; Husain, M.I.; Sanches, M.; Goldstein, B.I.; Alda, M.; Mulsant, B.H. Reduced heart rate variability is associated with higher illness burden in bipolar disorder. J. Psychosom. Res. 2021, 145, 110478. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. Heart rate variability in individuals with autism spectrum disorders: A meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 463–471. [Google Scholar] [CrossRef]
- Florez-Perdomo, W.A.; García-Ballestas, E.; Moscote-Salazar, L.R.; Konar, S.K.; Raj, S.; Chouksey, P.; Shrivastava, A.; Mishra, R.; Agrawal, A. Heart Rate Variability as a Predictor of Mortality in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. World Neurosurg. 2021, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Adolph, D.; Teismann, T.; Forkmann, T.; Wannemüller, A.; Margraf, J. High frequency heart rate variability: Evidence for a transdiagnostic association with suicide ideation. Biol. Psychol. 2018, 138, 165–171. [Google Scholar] [CrossRef]
- Williams, D.P.; Chelimsky, G.; McCabe, N.P.; Koenig, J.; Singh, P.; Janata, J.; Thayer, J.F.; Buffington, C.A.; Chelimsky, T. Effects of Chronic Pelvic Pain on Heart Rate Variability in Women. J. Urol. 2015, 194, 1289–1294. [Google Scholar] [CrossRef]
- Harnod, D.; Wen, S.H.; Chen, S.Y.; Harnod, T. The association of heart rate variability with parkinsonian motor symptom duration. Yonsei Med. J. 2014, 55, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T., Jr. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Hadase, M.; Azuma, A.; Zen, K.; Asada, S.; Kawasaki, T.; Kamitani, T.; Kawasaki, S.; Sugihara, H.; Matsubara, H. Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ. J. 2004, 68, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huikuri, H.V.; Raatikainen, M.J.; Moerch-Joergensen, R.; Hartikainen, J.; Virtanen, V.; Boland, J.; Anttonen, O.; Hoest, N.; Boersma, L.V.; Platou, E.S.; et al. Prediction of fatal or near-fatal cardiac arrhythmia events in patients with depressed left ventricular function after an acute myocardial infarction. Eur. Heart J. 2009, 30, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, Ö.Ç.; Ozkan, S.; Yavuz, B. Masked hypertension is related to alteration of myocardial arrhythmia Parameters. Clin. Exp. Hypertens. 2021, 43, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.X.; Zhang, B.X.; Wang, X.D.; Peng, Y.C.; Wang, M.L.; Fu, Y.; Luo, X.L.; Zhang, L.M. Decreased LF/HF ratio is associated with worse outcomes in patients who received mechanical thrombectomy under general anesthesia for emergent large vessel occlusion: A retrospective study. Neurol. Sci. 2021, 42, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Mol, M.B.A.; Strous, M.T.A.; van Osch, F.H.M.; Vogelaar, F.J.; Barten, D.G.; Farchi, M.; Foudraine, N.A.; Gidron, Y. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS ONE 2021, 16, e0258841. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Chen, C.; Li, W.; Yu, Z.; Xu, B. EA at PC6 Promotes Gastric Motility: Role of Brainstem Vagovagal Neurocircuits. Evid. Based Complement. Altern. Med. 2019, 2019, 7457485. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiao, K.; Chen, M.; Wang, C. Reducing the effects of driving fatigue with magnitopuncture stimulation. Accid. Anal. Prev. 2004, 36, 501–505. [Google Scholar] [CrossRef]
- Ceyhan, Ö.; Taşcı, S.; Elmalı, F.; Doğan, A. The Effect of Acupressure on Cardiac Rhythm and Heart Rate Among Patients with Atrial Fibrillation: The Relationship Between Heart Rate and Fatigue. Altern. Ther. Health Med. 2019, 25, 12–19. [Google Scholar]
- Li, J.; Li, J.; Chen, Z.; Liang, F.; Wu, S.; Wang, H. The influence of PC6 on cardiovascular disorders: A review of central neural mechanisms. Acupunct. Med. 2012, 30, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Kumral, D.; Schaare, H.L.; Beyer, F.; Reinelt, J.; Uhlig, M.; Liem, F.; Lampe, L.; Babayan, A.; Reiter, A.; Erbey, M.; et al. The age-dependent relationship between resting heart rate variability and functional brain connectivity. Neuroimage 2019, 185, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Cysarz, D.; von Bonin, D.; Brachmann, P.; Buetler, S.; Edelhäuser, F.; Laederach-Hofmann, K.; Heusser, P. Day-to-night time differences in the relationship between cardiorespiratory coordination and heart rate variability. Physiol. Meas. 2008, 29, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Li, X.; Jing, W.; Omorodion, I.; Liu, L. Association Between Heart Rate Variability and Parkinson’s Disease: A Meta-analysis. Curr. Pharm. Des. 2021, 27, 2056–2067. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Wilhelm, M.; Salzmann, S.; Rief, W.; Euteneuer, F. A meta-analysis of heart rate variability in major depression. Psychol. Med. 2019, 49, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Buchner, T. HRV strongly depends on breathing. Are we questioning the right suspect? In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 7739–7742. [Google Scholar]
- Bae, D.; Matthews, J.J.L.; Chen, J.J.; Mah, L. Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults. Psychophysiology 2021, 58, e13905. [Google Scholar] [CrossRef] [PubMed]
Laser device | Gallium-aluminum-arsenide (GaAIAs) infrared laser RJ laser | |||||
Wavelength | 810 nm | |||||
Intervention mode | Contact | |||||
Frequency | Pulsed wave at Bahr 2: 1199 Hz for central/middle tissue layer | |||||
Intervention region | Bilateral PC6 | |||||
Set | Probe Size | Output Power | Exposure Time | Single Joule | Total Joule | Energy Density |
1 | 4 mm | 0 mW | 20 s | 0 J | 0 J | ------------- |
2 | 4 mm | 100 mW | 20 s | 1 J | 2 J | 7.96 J/cm2 |
3 | 4 mm | 100 mW | 60 s | 3 J | 6 J | 23.87 J/cm2 |
Sex | |
---|---|
Female | 13 |
Male | 7 |
Age, Years | |
<20 | 0 |
20–29 | 7 |
30–39 | 11 |
40–49 | 2 |
>50 | 0 |
Mean ± SD | 32.25 ± 5.52 |
BMI (kg/cm2) | |
18.5–19.9 | 4 |
20.0–21.4 | 7 |
21.5–23.0 | 4 |
23.0–24.0 | 5 |
Mean ± SD | 21.48 ± 1.60 |
Index | Group, Mean ± SD | p-Value | |||||
---|---|---|---|---|---|---|---|
Δ Set 1 0 J/cm2 | Δ Set 2 7.96 J/cm2 | Δ Set 3 23.87 J/cm2 | Over All | Set 1 vs. 2 | Set 1 vs. 3 | Set 2 vs. 3 | |
SBP (mmHg) | −3.6 ± 5.73 | −3 ± 4.34 | −2.1 ± 4.69 | 0.631 | 0.923 | 0.607 | 0.834 |
DBP (mmHg) | −1.5 ± 2.72 | −0.45 ± 2.63 | −0.55 ± 1.61 | 0.311 | 0.348 | 0.420 | 0.990 |
HR (bpm) | −0.6 ± 3.91 | −0.45 ± 4.11 | −1.55 ± 4.30 | 0.658 | 0.993 | 0.746 | 0.676 |
HRV § (ms) | −6 ± 30.95 2% ± 0.4 | −4.3 ± 41.72 13% ± 0.94 | 3.1 ± 56.33 35% ± 0.95 | 0.788 0.416 | 0.992 0.895 | 0.793 0.394 | 0.857 0.666 |
RMSSD | −3.9 ± 30.98 | 2 ± 34.42 | 5.8 ± 39.10 | 0.679 | 0.855 | 0.657 | 0.937 |
PNN50 (%) | −4 ± 23.27 | 0.1 ± 25.83 | 5.05 ± 28.45 | 0.564 | 0.886 | 0.535 | 0.819 |
Index | Group, Mean ± SD | p-Value | |||||
---|---|---|---|---|---|---|---|
Δ Set 1 0 J/cm2 | Δ Set 2 7.96 J/cm2 | Δ Set 3 23.87 J/cm2 | Over All | Set 1 vs. 2 | Set 1 vs. 3 | Set 2 vs. 3 | |
LF power § (ms2) | −232.3 ± 2122.34 67% ± 2.13 | −653.1 ± 2532.79 127% ± 4.96 | 855.95 ± 3606.65 510% ± 12.87 | 0.227 0.178 | 0.885 0.979 | 0.447 0.200 | 0.218 0.297 |
HF power § (ms2) | −230.45 ± 977.17 33% ± 1.31 | 68.20 ± 1134.10 121% ± 3.86 | 422.4 ± 1320.80 294% ± 7.67 | 0.209 0.254 | 0.963 0.846 | 0.182 0.235 | 0.598 0.522 |
VLF power § (ms2) | −766.8 ± 3099.65 24% ± 1.63 | −8.05 ± 3946.00 131% ± 5.05 | −1240.95 ± 486.85 167% ± 4.53 | 0.788 0.509 | 0.907 0.679 | 0.962 0.504 | 0.773 0.957 |
TP § (ms2) | −1229.6 ± 5617.16 19% ± 0.94 | −592.95 ± 6764.02 113% ± 4.79 | 37.4 ± 10750.78 168% ± 3.59 | 0.883 0.403 | 0.966 0.678 | 0.872 0.377 | 0.967 0.871 |
TP’ § (ms2) | −462.75 ± 2967.77 49% ± 1.62 | −337.05 ± 3431.80 121% ± 4.43 | 1278.35 ± 4729.40 390% ± 10.42 | 0.276 0.236 | 0.994 0.937 | 0.320 0.240 | 0.374 0.408 |
LF% | 2.2 ± 14.01 | −9.85 ±15.88 | 4.65 ± 15.97 | 0.009 ** | 0.041 * | 0.869 | 0.011 * |
HF% | −2.2 ± 14.01 | 9.85 ±15.88 | −4.65 ± 15.97 | 0.009 ** | 0.041 * | 0.869 | 0.011 * |
LF/HF ratio | 0.278 ± 0.91 | −0.756 ± 1.63 | 0.107 ± 1.29 | 0.034 * | 0.040 * | 0.910 | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Chen, C.-M.; Lay, I.-S.; Lee, Y.-C.; Tu, C.-H. The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study. Life 2022, 12, 1951. https://doi.org/10.3390/life12121951
Chang Y-C, Chen C-M, Lay I-S, Lee Y-C, Tu C-H. The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study. Life. 2022; 12(12):1951. https://doi.org/10.3390/life12121951
Chicago/Turabian StyleChang, Yi-Chuan, Chun-Ming Chen, Ing-Shiow Lay, Yu-Chen Lee, and Cheng-Hao Tu. 2022. "The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study" Life 12, no. 12: 1951. https://doi.org/10.3390/life12121951
APA StyleChang, Y. -C., Chen, C. -M., Lay, I. -S., Lee, Y. -C., & Tu, C. -H. (2022). The Dosage Effect of Laser Acupuncture at PC6 (Neiguan) on Heart Rate Variability: A Pilot Study. Life, 12(12), 1951. https://doi.org/10.3390/life12121951