Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis
Abstract
:1. Introduction
2. In Vitro Modeling of C. trachomatis Infection
3. Current Advances in Three-Dimensional Cell-Culture Modeling
Scaffold-Based 3D Cell-Culture Models | |||
---|---|---|---|
Technology | General Characteristics | Advantages | Disadvantages |
Hydrogels/Matrigels [54] | 3D hydrophilic extracellular matrix-rich meshes used as framework to surround and encapsulate cells | hydrophilic nature, chemical stability, biological compatibility, and biodegradability | labor intensive, high variability in matrix composition, long working time |
Non-scaffold-based 3D cell-culture models | |||
Bioreactors [59] | 3D spheroids generated by creating a micro-gravity environment via rotational motion | limited cell damage and long-term culture periods due to low-shear environment, enhanced natural diffusion of gas and nutrients | heterogeneous spheroid size, challenging to monitor |
Spinner Flasks [60] | spontaneous cell collision and adhesion in cell suspension via continuous rotary motion | enhanced gas and nutrient diffusion, large number of spheroids | harmful shear stress forces, challenging to monitor |
Hanging drops [61] | single spheroid per droplet via cell self-aggregation following upside-down incubation of droplets | basic laboratory equipment, easy to monitor | limited number of spheroids, long working time |
Ultra-low attachment plates [62] | cell suspension loaded on round-bottom cell culture microplates covered with non-adhesive materials | inexpensive and easy to use, spheroid size and shape reproducible and homogenous, high throughput screening, easy to monitor | limited number of spheroids, incompatible for large spheroids |
Centrifugation pellet cultures [63] | cell aggregation via centrifugation of cell suspension | inexpensive and easy to use, large number of spheroids | harmful shear stress forces, challenging to monitor |
Electric, magnetic and ultrasound based cultures [63,64,65] | spheroid formation via electric or magnetic fields, or ultrasound forces | control of spheroid’s development settings | challenges in controlling spheroid size, specific equipment, harmful external forces |
Microwell arrays [66] | cell suspensions loaded in microwells layered with non-adhesive substances via micro-patterning | inexpensive, easy to use, spheroid size and shape reproducible and homogenous, complex-shaped spheroids, high throughput screening as well as standard monitoring methodologies | incompatible with large spheroids |
Microfluidic systems [67] | cell suspensions loaded through a micro-channel system in microwells, leading to cell aggregation via small bioreactors | easy to use and fast, enhanced natural diffusion of gas and nutrients, large number of spheroids with homogenous size, high throughput screening | advanced specialized laboratories |
3D Bioprinting [48,49] | tissue-like structure formation by automated deposition of cells, biological materials, and supportive matrix in layers | possibility to precisely arrange cells, enhanced cell viability, functions, migration, and self-assembly, high throughput screening | harmful shear stress forces, expensive, long working time |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowley, J.; vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, Gonorrhoea, Trichomoniasis and Syphilis: Global Prevalence and Incidence Estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef]
- O’Connell, C.M.; Ferone, M.E. Chlamydia trachomatis Genital Infections. Microb. Cell 2016, 3, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.; Filardo, S.; Romano, S.; Sessa, R. Chlamydia trachomatis and Chlamydia Pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.N.; Niles, J.K.; Kaufman, H.W.; Marlowe, E.M.; Alagia, D.P.; Chi, G.; van der Pol, B. Impact of the COVID-19 Pandemic on Chlamydia and Gonorrhea Screening in the U.S. Am. J. Prev. Med. 2021, 61, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Mylonas, I. Female Genital Chlamydia trachomatis Infection: Where Are We Heading? Arch. Gynecol. Obs. 2012, 285, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.; Coleman, D.; O’Sullivan, M.; Stephens, N. Stephens Public Health Policies and Management Strategies for Genital Chlamydia trachomatis Infection. Risk Manag. Healthc. Policy 2011, 4, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Lanjouw, E.; Ouburg, S.; de Vries, H.; Stary, A.; Radcliffe, K.; Unemo, M. 2015 European Guideline on the Management of Chlamydia trachomatis Infections. Int. J. STD AIDS 2016, 27, 333–348. [Google Scholar] [CrossRef]
- Buckner, L.R.; Amedee, A.M.; Albritton, H.L.; Kozlowski, P.A.; Lacour, N.; McGowin, C.L.; Schust, D.J.; Quayle, A.J. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS ONE 2016, 11, e0146663. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Cerqueira, F.; Medeiros, R. Chlamydia trachomatis Infection: Implications for HPV Status and Cervical Cancer. Arch. Gynecol. Obstet. 2014, 289, 715–723. [Google Scholar] [CrossRef]
- Harb, A.; Fakhreddine, M.; Zaraket, H.; Saleh, F.A. Three-Dimensional Cell Culture Models to Study Respiratory Virus Infections Including COVID-19. Biomimetics 2021, 7, 3. [Google Scholar] [CrossRef]
- Da Silva da Costa, F.A.; Soares, M.R.; Malagutti-Ferreira, M.J.; da Silva, G.R.; dos Reis Lívero, F.A.; Ribeiro-Paes, J.T. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng. Regen. Med. 2021, 18, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Roy, S.; Ghosh, D.; Nandi, S.K. Role of Animal Models in Biomedical Research: A Review. Lab. Anim. Res. 2022, 38, 18. [Google Scholar] [CrossRef] [PubMed]
- Dolat, L.; Valdivia, R.H. A Renewed Tool Kit to Explore Chlamydia Pathogenesis: From Molecular Genetics to New Infection Models. F1000Research 2019, 8, 935. [Google Scholar] [CrossRef] [PubMed]
- Belland, R.J.; Zhong, G.; Crane, D.D.; Hogan, D.; Sturdevant, D.; Sharma, J.; Beatty, W.L.; Caldwell, H.D. Genomic Transcriptional Profiling of the Developmental Cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 2003, 100, 8478–8483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guseva, N.V.; Dessus-Babus, S.; Moore, C.G.; Whittimore, J.D.; Wyrick, P.B. Differences in Chlamydia trachomatis Serovar E Growth Rate in Polarized Endometrial and Endocervical Epithelial Cells Grown in Three-Dimensional Culture. Infect. Immun. 2007, 75, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Vromman, F.; Laverrière, M.; Perrinet, S.; Dufour, A.; Subtil, A. Quantitative Monitoring of the Chlamydia trachomatis Developmental Cycle Using GFP-Expressing Bacteria, Microscopy and Flow Cytometry. PLoS ONE 2014, 9, e99197. [Google Scholar] [CrossRef] [Green Version]
- Petyaev, I.M.; Zigangirova, N.A.; Morgunova, E.Y.; Kyle, N.H.; Fedina, E.D.; Bashmakov, Y.K. Resveratrol Inhibits Propagation of Chlamydia trachomatis in McCoy Cells. BioMed Res. Int. 2017, 2017, 4064071. [Google Scholar] [CrossRef] [Green Version]
- Sessa, R.; Di Pietro, M.; Filardo, S.; Bressan, A.; Rosa, L.; Cutone, A.; Frioni, A.; Berlutti, F.; Paesano, R.; Valenti, P. Effect of Bovine Lactoferrin on Chlamydia trachomatis Infection and Inflammation. Biochem. Cell Biol. 2017, 95, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Filardo, S.; Di Pietro, M.; Tranquilli, G.; Sessa, R. Biofilm in Genital Ecosystem: A Potential Risk Factor for Chlamydia trachomatis Infection. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 1672109. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Mahony, J.B. Enumeration of Viable Chlamydia from Infected Animals Using Immunofluorescent Microscopy. Methods Mol. Biol. 2019, 2042, 237–244. [Google Scholar] [CrossRef]
- Jøraholmen, M.W.; Johannessen, M.; Gravningen, K.; Puolakkainen, M.; Acharya, G.; Basnet, P.; Škalko-Basnet, N. Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020, 12, 1203. [Google Scholar] [CrossRef] [PubMed]
- Foschi, C.; Bortolotti, M.; Marziali, G.; Polito, L.; Marangoni, A.; Bolognesi, A. Survival and Death of Intestinal Cells Infected by Chlamydia trachomatis. PLoS ONE 2019, 14, e0215956. [Google Scholar] [CrossRef] [PubMed]
- Hayward, R.J.; Marsh, J.W.; Humphrys, M.S.; Huston, W.M.; Myers, G.S.A. Early Transcriptional Landscapes of Chlamydia trachomatis-Infected Epithelial Cells at Single Cell Resolution. Front. Cell. Infect. Microbiol. 2019, 9, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.; Al-Zeer, M.A.; Meyer, T.F.; Daumke, O. HGBP1 Coordinates Chlamydia Restriction and Inflammasome Activation through Sequential GTP Hydrolysis. Cell Rep. 2020, 31, 107667. [Google Scholar] [CrossRef]
- Yang, M.; Rajeeve, K.; Rudel, T.; Dandekar, T. Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and QRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection. Front. Microbiol. 2019, 10, 2350. [Google Scholar] [CrossRef] [Green Version]
- Grieshaber, S.; Grieshaber, N.; Yang, H.; Baxter, B.; Hackstadt, T.; Omsland, A. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. J. Bacteriol. 2018, 200, e00065-18. [Google Scholar] [CrossRef] [Green Version]
- Gitsels, A.; Sanders, N.; Vanrompay, D. Chlamydial Infection From Outside to Inside. Front. Microbiol. 2019, 10, 2329. [Google Scholar] [CrossRef]
- Nans, A.; Ford, C.; Hayward, R.D. Host-Pathogen Reorganisation during Host Cell Entry by Chlamydia trachomatis. Microbes Infect. 2015, 17, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-S.; Bastidas, R.J.; Saka, H.A.; Carpenter, V.K.; Richards, K.L.; Plano, G.V.; Valdivia, R.H. The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-Phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling. PLoS Pathog. 2014, 10, e1003954. [Google Scholar] [CrossRef]
- Wurihan, W.; Zou, Y.; Weber, A.M.; Weldon, K.; Huang, Y.; Bao, X.; Zhu, C.; Wu, X.; Wang, Y.; Lai, Z.; et al. Identification of a GrgA-Euo-HrcA Transcriptional Regulatory Network in Chlamydia. mSystems 2021, 6, e00738-21. [Google Scholar] [CrossRef]
- Dong, F.; Su, H.; Huang, Y.; Zhong, Y.; Zhong, G. Cleavage of Host Keratin 8 by a Chlamydia-Secreted Protease. Infect. Immun. 2004, 72, 3863–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, S.J.; Brode, S.; Ellis, L.; Fitzmaurice, T.J.; Elder, M.J.; Gekara, N.O.; Tourlomousis, P.; Bryant, C.; Clare, S.; Chee, R.; et al. Detection of a Microbial Metabolite by STING Regulates Inflammasome Activation in Response to Chlamydia trachomatis Infection. PLoS Pathog. 2017, 13, e1006383. [Google Scholar] [CrossRef] [PubMed]
- Shu, M.; Lei, W.; Su, S.; Wen, Y.; Luo, F.; Zhao, L.; Chen, L.; Lu, C.; Zhou, Z.; Li, Z. Chlamydia trachomatis Pgp3 Protein Regulates Oxidative Stress via Activation of the Nrf2/NQO1 Signal Pathway. Life Sci. 2021, 277, 119502. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wen, Y.; Li, Z. Clear Victory for Chlamydia: The Subversion of Host Innate Immunity. Front. Microbiol. 2019, 10, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panzetta, M.E.; Valdivia, R.H.; Saka, H.A. Chlamydia Persistence: A Survival Strategy to Evade Antimicrobial Effects in-Vitro and in-Vivo. Front. Microbiol. 2018, 9, 3101. [Google Scholar] [CrossRef]
- Foschi, C.; Bortolotti, M.; Polito, L.; Marangoni, A.; Zalambani, C.; Liparulo, I.; Fato, R.; Bolognesi, A. Insights into Penicillin-Induced Chlamydia trachomatis Persistence. Microb. Pathog. 2020, 142, 104035. [Google Scholar] [CrossRef]
- Brockett, M.R.; Liechti, G.W. Persistence Alters the Interaction between Chlamydia trachomatis and Its Host Cell. Infect. Immun. 2021, 89, e00685-20. [Google Scholar] [CrossRef]
- Zadora, P.K.; Chumduri, C.; Imami, K.; Berger, H.; Mi, Y.; Selbach, M.; Meyer, T.F.; Gurumurthy, R.K. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep. 2019, 26, 1286–1302.e8. [Google Scholar] [CrossRef]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular Mechanisms of Epithelial–Mesenchymal Transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
- McQueen, B.E.; Kiatthanapaiboon, A.; Fulcher, M.L.; Lam, M.; Patton, K.; Powell, E.; Kollipara, A.; Madden, V.; Suchland, R.J.; Wyrick, P.; et al. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect. Immun. 2020, 88, e00105-20. [Google Scholar] [CrossRef]
- Sellami, H.; Said-Sadier, N.; Znazen, A.; Gdoura, R.; Ojcius, D.M.; Hammami, A. Chlamydia trachomatis Infection Increases the Expression of Inflammatory Tumorigenic Cytokines and Chemokines as Well as Components of the Toll-like Receptor and NF-ΚB Pathways in Human Prostate Epithelial Cells. Mol. Cell. Probes 2014, 28, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; Skilton, R.J.; O’Neill, C.E.; Di Pietro, M.; Sessa, R.; Clarke, I.N. Growth Kinetics of Chlamydia trachomatis in Primary Human Sertoli Cells. Sci. Rep. 2019, 9, 5847. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.; Filardo, S.; Alfano, V.; Pelloni, M.; Splendiani, E.; Po, A.; Paoli, D.; Ferretti, E.; Sessa, R. Chlamydia trachomatis Elicits TLR3 Expression but Disrupts the Inflammatory Signaling Down-Modulating NFκB and IRF3 Transcription Factors in Human Sertoli Cells. J. Biol. Regul. Homeost. Agents 2020, 34, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; Di Pietro, M.; Frasca, F.; Diaco, F.; Scordio, M.; Antonelli, G.; Scagnolari, C.; Sessa, R. Potential IFNγ Modulation of Inflammasome Pathway in Chlamydia trachomatis Infected Synovial Cells. Life 2021, 11, 1359. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Frasca, F.; Scagnolari, C.; Manera, M.; Sessa, V.; Antonelli, G.; Sessa, R. Interferon-γ Possesses Anti-Microbial and Immunomodulatory Activity on a Chlamydia trachomatis Infection Model of Primary Human Synovial Fibroblasts. Microorganisms 2020, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Singh, N. Advancements in Three Dimensional In-Vitro Cell Culture Models. Chem. Rec. 2022, e202200058. [Google Scholar] [CrossRef]
- Placone, J.K.; Engler, A.J. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1701161. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D Bioprinting of Tissues/Organs for Regenerative Medicine and in-Vitro Models. Biomaterials 2022, 287, 121639. [Google Scholar] [CrossRef]
- Zhang, J.; Wehrle, E.; Rubert, M.; Müller, R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef]
- Koyilot, M.C.; Natarajan, P.; Hunt, C.R.; Sivarajkumar, S.; Roy, R.; Joglekar, S.; Pandita, S.; Tong, C.W.; Marakkar, S.; Subramanian, L.; et al. Breakthroughs and Applications of Organ-on-a-Chip Technology. Cells 2022, 11, 1828. [Google Scholar] [CrossRef]
- Mir, M.; Palma-Florez, S.; Lagunas, A.; López-Martínez, M.J.; Samitier, J. Biosensors Integration in Blood–Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases. ACS Sens. 2022, 7, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- De Chiara, F.; Ferret-Miñana, A.; Ramón-Azcón, J. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines 2021, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Human Organs-on-Chips for Disease Modelling, Drug Development and Personalized Medicine. Nat. Rev. Genet. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Poudel, H.; Sanford, K.; Szwedo, P.K.; Pathak, R.; Ghosh, A. Synthetic Matrices for Intestinal Organoid Culture: Implications for Better Performance. ACS Omega 2022, 7, 38–47. [Google Scholar] [CrossRef]
- Dolat, L.; Valdivia, R.H. An Endometrial Organoid Model of Interactions between Chlamydia and Epithelial and Immune Cells. J. Cell Sci. 2021, 134, jcs252403. [Google Scholar] [CrossRef]
- Bishop, R.C.; Boretto, M.; Rutkowski, M.R.; Vankelecom, H.; Derré, I. Murine Endometrial Organoids to Model Chlamydia Infection. Front. Cell. Infect. Microbiol. 2020, 10, 416. [Google Scholar] [CrossRef]
- Koster, S.; Gurumurthy, R.K.; Kumar, N.; Prakash, P.G.; Dhanraj, J.; Bayer, S.; Berger, H.; Kurian, S.M.; Drabkina, M.; Mollenkopf, H.-J.; et al. Modelling Chlamydia and HPV Co-Infection in Patient-Derived Ectocervix Organoids Reveals Distinct Cellular Reprogramming. Nat. Commun. 2022, 13, 1030. [Google Scholar] [CrossRef]
- Kessler, M.; Hoffmann, K.; Fritsche, K.; Brinkmann, V.; Mollenkopf, H.-J.; Thieck, O.; Teixeira da Costa, A.R.; Braicu, E.I.; Sehouli, J.; Mangler, M.; et al. Chronic Chlamydia Infection in Human Organoids Increases Stemness and Promotes Age-Dependent CpG Methylation. Nat. Commun. 2019, 10, 1194. [Google Scholar] [CrossRef]
- Qian, X.; Jacob, F.; Song, M.M.; Nguyen, H.N.; Song, H.; Ming, G. Generation of Human Brain Region–Specific Organoids Using a Miniaturized Spinning Bioreactor. Nat. Protoc. 2018, 13, 565–580. [Google Scholar] [CrossRef]
- Schneeberger, K.; Sánchez-Romero, N.; Ye, S.; Steenbeek, F.G.; Oosterhoff, L.A.; Pla Palacin, I.; Chen, C.; Wolferen, M.E.; Tienderen, G.; Lieshout, R.; et al. Large-Scale Production of LGR5-Positive Bipotential Human Liver Stem Cells. Hepatology 2020, 72, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Eder, T.; Eder, I.E. 3D Hanging Drop Culture to Establish Prostate Cancer Organoids. In 3D Cell Culture; Humana Press: New York, NY, USA, 2017; pp. 167–175. [Google Scholar]
- Lee, S.; Chang, J.; Kang, S.-M.; Parigoris, E.; Lee, J.-H.; Huh, Y.S.; Takayama, S. High-Throughput Formation and Image-Based Analysis of Basal-in Mammary Organoids in 384-Well Plates. Sci. Rep. 2022, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Ryu, N.-E.; Lee, S.-H.; Park, H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019, 8, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okochi, M.; Takano, S.; Isaji, Y.; Senga, T.; Hamaguchi, M.; Honda, H. Three-Dimensional Cell Culture Array Using Magnetic Force-Based Cell Patterning for Analysis of Invasive Capacity of BALB/3T3/v-Src. Lab Chip 2009, 9, 3378. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Teng, Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front. Mol. Biosci. 2020, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Amereh, M.; Seyfoori, A.; Akbari, M. In Vitro Brain Organoids and Computational Models to Study Cell Death in Brain Diseases. In Neuronal Cell Death; Humana: New York, NY, USA, 2022; pp. 281–296. [Google Scholar]
- Jahn, P.; Karger, R.K.; Soso Khalaf, S.; Hamad, S.; Peinkofer, G.; Sahito, R.G.A.; Pieroth, S.; Nitsche, F.; Lu, J.; Derichsweiler, D.; et al. Engineering of Cardiac Microtissues by Microfluidic Cell Encapsulation in Thermoshrinking Non-Crosslinked PNIPAAm Gels. Biofabrication 2022, 14, 035017. [Google Scholar] [CrossRef] [PubMed]
- Filardo, S.; Di Pietro, M.; Diaco, F.; Sessa, R. In Vitro Modelling of Chlamydia trachomatis Infection in the Etiopathogenesis of Male Infertility and Reactive Arthritis. Front. Cell. Infect. Microbiol. 2022, 12, 840802. [Google Scholar] [CrossRef]
- O’Neill, C.E.; Skilton, R.J.; Pearson, S.A.; Filardo, S.; Andersson, P.; Clarke, I.N. Genetic Transformation of a C. Trachomatis Ocular Isolate With the Functional Tryptophan Synthase Operon Confers an Indole-Rescuable Phenotype. Front. Cell. Infect. Microbiol. 2018, 8, 434. [Google Scholar] [CrossRef]
- Filardo, S.; Pietro, M.D.; Tranquilli, G.; Latino, M.A.; Recine, N.; Porpora, M.G.; Sessa, R. Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia trachomatis Infection. mSystems 2019, 4, e00094-19. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Yang, L.; Lacko, L.A.; Chen, S. Human Organoid Models to Study SARS-CoV-2 Infection. Nat. Methods 2022, 19, 418–428. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filardo, S.; Di Pietro, M.; Sessa, R. Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. Life 2022, 12, 1065. https://doi.org/10.3390/life12071065
Filardo S, Di Pietro M, Sessa R. Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. Life. 2022; 12(7):1065. https://doi.org/10.3390/life12071065
Chicago/Turabian StyleFilardo, Simone, Marisa Di Pietro, and Rosa Sessa. 2022. "Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis" Life 12, no. 7: 1065. https://doi.org/10.3390/life12071065
APA StyleFilardo, S., Di Pietro, M., & Sessa, R. (2022). Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. Life, 12(7), 1065. https://doi.org/10.3390/life12071065