Improvements in Plasma Tumor Necrosis Factor-Alpha Levels after a Weight-Loss Lifestyle Intervention in Patients with Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unnikrishnan, D.; Jun, J.; Polotsky, V. Inflammation in sleep apnea: An update. Rev. Endocr. Metab. Disord. 2015, 16, 25–34. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef]
- Barnes, M.; Goldsworthy, U.R.; Cary, B.A.; Hill, C.J. A diet and exercise program to improve clinical outcomes in patients with obstructive sleep apnea--a feasibility study. J. Clin. Sleep Med. 2009, 5, 409–415. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Gurubhagavatula, I.; Teff, K.; Rader, D.J.; Wadden, T.A.; Townsend, R.; Foster, G.D.; Maislin, G.; Saif, H.; Broderick, P.; et al. CPAP, weight loss, or both for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 2265–2275. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, X. Tumor necrosis factor alpha is a promising circulating biomarker for the development of obstructive sleep apnea syndrome: A meta-analysis. Oncotarget 2017, 8, 27616–27626. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. The effectiveness of a weight-loss Mediterranean diet/lifestyle intervention in the management of obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Clin. Nutr. 2021, 40, 850–859. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Tenta, R.; Fragopoulou, E.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. A weight-loss Mediterranean diet/lifestyle intervention ameliorates inflammation and oxidative stress in patients with obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Eur. J. Nutr. 2021, 60, 3799–3810. [Google Scholar] [CrossRef]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. Cardiometabolic Benefits of a Weight-Loss Mediterranean Diet/Lifestyle Intervention in Patients with Obstructive Sleep Apnea: The “MIMOSA” Randomized Clinical Trial. Nutrients 2020, 12, 1570. [Google Scholar] [CrossRef]
- Qaseem, A.; Holty, J.E.; Owens, D.K.; Dallas, P.; Starkey, M.; Shekelle, P.; Clinical Guidelines Committee of the American College of Physicians. Management of obstructive sleep apnea in adults: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2013, 159, 471–483. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea with Positive Airway Pressure: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010.
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Wadden, T.A.; Webb, V.L.; Moran, C.H.; Bailer, B.A. Lifestyle modification for obesity: New developments in diet, physical activity, and behavior therapy. Circulation 2012, 125, 1157–1170. [Google Scholar] [CrossRef]
- Wadden, T.A.; Butryn, M.L.; Wilson, C. Lifestyle modification for the management of obesity. Gastroenterology 2007, 132, 2226–2238. [Google Scholar] [CrossRef]
- Bountziouka, V.; Bathrellou, E.; Giotopoulou, A.; Katsagoni, C.; Bonou, M.; Vallianou, N.; Barbetseas, J.; Avgerinos, P.C.; Panagiotakos, D.B. Development, repeatability and validity regarding energy and macronutrient intake of a semi-quantitative food frequency questionnaire: Methodological considerations. Nutr. Metab. Cardiovasc. Dis. NMCD 2012, 22, 659–667. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Papathanasiou, G.; Georgoudis, G.; Georgakopoulos, D.; Katsouras, C.; Kalfakakou, V.; Evangelou, A. Criterion-related validity of the short International Physical Activity Questionnaire against exercise capacity in young adults. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 380–386. [Google Scholar] [CrossRef]
- Little, R.J.; D’Agostino, R.; Cohen, M.L.; Dickersin, K.; Emerson, S.S.; Farrar, J.T.; Frangakis, C.; Hogan, J.W.; Molenberghs, G.; Murphy, S.A.; et al. The prevention and treatment of missing data in clinical trials. N. Engl. J. Med. 2012, 367, 1355–1360. [Google Scholar] [CrossRef]
- Beavers, K.M.; Nicklas, B.J. Effects of lifestyle interventions on inflammatory markers in the metabolic syndrome. Front. Biosci. 2011, 3, 168–177. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Angadi, S.S.; Ryan, D.M.; Johnston, C.S. Lifestyle Measures to Reduce Inflammation. Am. J. Lifestyle Med. 2012, 6, 4–13. [Google Scholar] [CrossRef]
- Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 245–254. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.C.; Liu, S.; Song, Y. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002014. [Google Scholar] [CrossRef]
- Irwin, M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Rolski, F.; Blyszczuk, P. Complexity of TNF-alpha Signaling in Heart Disease. J. Clin. Med. 2020, 9, 3267. [Google Scholar] [CrossRef]
- Floras, J.S. Sleep Apnea and Cardiovascular Disease: An Enigmatic Risk Factor. Circ. Res. 2018, 122, 1741–1764. [Google Scholar] [CrossRef]
- Xie, X.; Pan, L.; Ren, D.; Du, C.; Guo, Y. Effects of continuous positive airway pressure therapy on systemic inflammation in obstructive sleep apnea: A meta-analysis. Sleep Med. 2013, 14, 1139–1150. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, T.S.; Wen, W.W.; Li, K.; Yang, Y.X.; Qin, Y.W.; Zhang, H.N.; Du, Y.H.; Li, L.Y.; Yang, S.; et al. Effects of continuous positive airway pressure on cardiovascular biomarkers in patients with obstructive sleep apnea: A meta-analysis of randomized controlled trials. Sleep Breath. Schlaf Atm. 2019, 23, 77–86. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Gaines, J.; Ryan, S.; McNicholas, W.T. CrossTalk proposal: Metabolic syndrome causes sleep apnoea. J. Physiol. 2016, 594, 4687–4690. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Chrousos, G.P. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med. Rev. 2005, 9, 211–224. [Google Scholar] [CrossRef]
- van Namen, M.; Prendergast, L.; Peiris, C. Supervised lifestyle intervention for people with metabolic syndrome improves outcomes and reduces individual risk factors of metabolic syndrome: A systematic review and meta-analysis. Metab. Clin. Exp. 2019, 101, 153988. [Google Scholar] [CrossRef]
- Askland, K.; Wright, L.; Wozniak, D.R.; Emmanuel, T.; Caston, J.; Smith, I. Educational, supportive and behavioural interventions to improve usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst. Rev. 2020, 4, CD007736. [Google Scholar] [CrossRef]
Total (n = 84) | SCG (n = 42) | MLG (n = 42) | p a | |
---|---|---|---|---|
Age, years | 46.5 ± 9.4 | 46.5 ± 9.4 | 46.5 ± 9.5 | 0.991 |
Male sex, n (%) | 68 (81) | 35 (83) | 33 (79) | 0.578 |
BMI, kg/m2 | 35.5 ± 5.5 | 35.6 ± 5.4 | 35.5 ± 5.7 | 0.953 |
Obesity, n (%) b | 69 (82) | 34 (81) | 35 (83) | 0.776 |
MedDietScore (0–55) c | 31.9 ± 4.6 | 32.1 ± 4.6 | 31.7 ± 4.7 | 0.709 |
Physical activity, min/day | 12.9 (4.29, 34.3) | 10.7 (0.00, 34.3) | 16.0 (5.71, 34.5) | 0.296 |
Sleep duration, h/day | 6.1 ± 1.5 | 5.9 ± 1.4 | 6.3 ± 1.6 | 0.183 |
AHI, events/h | 58.0 (26.0, 89.0) | 52.0 (28.5, 87.0) | 63.5 (21.0, 94.0) | 0.989 |
Severe OSA, n (%) d | 62 (74) | 32 (76) | 30 (71) | 0.666 |
CPAP therapy, n (%) | 69 (82) | 36 (86) | 33 (79) | 0.393 |
Intention-to-Treat Analysis (n = 84) | |||||
---|---|---|---|---|---|
SCG (n = 42) | p a | MLG (n = 42) | p a | p b | |
TNF-a BL (pg/mL) | 2.98 (1.42, 4.09) | 0.975 | 2.92 (2.37, 4.00) | 0.001 | 0.986 |
TNF-a FU (pg/mL) | 2.90 (2.58, 3.11) | 2.00 (0.92, 3.30) | 0.009 | ||
Δ TNF-a (pg/mL) | 0.13 (−1.58, 1.78) | −0.73 (−2.24, 0.14) | 0.029 | ||
%Δ TNF-a | 11.1 (−36.3, 108) | −25.0 (−67.1, 6.85) | 0.004 | ||
Per Protocol Analysis (n = 60) | |||||
SCG (n = 28) | p a | MLG (n = 32) | p a | p b | |
TNF-a BL (pg/mL) | 2.96 (1.30, 3.90) | 0.685 | 2.97 (2.42, 4.18) | 0.006 | 0.575 |
TNF-a FU (pg/mL) | 2.90 (1.62, 3.60) | 2.27 (0.79, 3.38) | 0.283 | ||
Δ TNF-a (pg/mL) | 0.63 (−1.29, 1.79) | −1.02 (−2.30, 0.28) | 0.049 | ||
%Δ TNF-a | 29.7 (−33.0, 117) | −29.5 (−70.0, 4.68) | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgoulis, M.; Yiannakouris, N.; Tenta, R.; Kechribari, I.; Lamprou, K.; Vagiakis, E.; Kontogianni, M.D. Improvements in Plasma Tumor Necrosis Factor-Alpha Levels after a Weight-Loss Lifestyle Intervention in Patients with Obstructive Sleep Apnea. Life 2022, 12, 1252. https://doi.org/10.3390/life12081252
Georgoulis M, Yiannakouris N, Tenta R, Kechribari I, Lamprou K, Vagiakis E, Kontogianni MD. Improvements in Plasma Tumor Necrosis Factor-Alpha Levels after a Weight-Loss Lifestyle Intervention in Patients with Obstructive Sleep Apnea. Life. 2022; 12(8):1252. https://doi.org/10.3390/life12081252
Chicago/Turabian StyleGeorgoulis, Michael, Nikos Yiannakouris, Roxane Tenta, Ioanna Kechribari, Kallirroi Lamprou, Emmanouil Vagiakis, and Meropi D. Kontogianni. 2022. "Improvements in Plasma Tumor Necrosis Factor-Alpha Levels after a Weight-Loss Lifestyle Intervention in Patients with Obstructive Sleep Apnea" Life 12, no. 8: 1252. https://doi.org/10.3390/life12081252
APA StyleGeorgoulis, M., Yiannakouris, N., Tenta, R., Kechribari, I., Lamprou, K., Vagiakis, E., & Kontogianni, M. D. (2022). Improvements in Plasma Tumor Necrosis Factor-Alpha Levels after a Weight-Loss Lifestyle Intervention in Patients with Obstructive Sleep Apnea. Life, 12(8), 1252. https://doi.org/10.3390/life12081252