Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Biological Control Experiment
2.3. Habitat
2.4. Vole Abundance
2.5. Distance to Nest-Box
2.6. Number of Fledglings
2.7. Data Analysis
3. Results
4. Discussion
5. Concluding Remarks, Management Recommendations and Future Research
- -
- -
- Increasing the density of nest-boxes, particularly for barn owls, trying to reach the maximum density of raptors known in a similar agricultural system in Israel [34].
- -
- Promoting any habitat management that may increase the presence of weasels as predators within alfalfa fields (i.e., leaving strips or patches of wild vegetation within alfalfa fields connected with field edges).
- -
- -
- Reducing the number of years that alfalfas remain in the same field, applying deep, large-scale ploughing when vole populations in alfalfas have developed at landscape scale [68].
- -
- Promoting actions reducing vole numbers in alfalfa fields during the non-productive season of the crop, in winter, which is also the less favorable season for survival and reproduction of voles, when minimal numbers in the yearly cycle are usually found. These actions may include temporal flooding of fields (whenever possible), but also recovering traditional management currently rare, such as using alfalfa fields as winter pastures for livestock [21,69] or removing as much possible aerial parts of alfalfa plants (leaving the field in a similar condition to ploughed fields).
- -
- Promoting an increase in the number of cuts in alfalfa fields, as well as cuts as low as possible, when vole abundance is high. However, the use of this technique should be carefully evaluated at the local scale because it may be detrimental for endangered steppe birds that can commonly nest within this habitat, contradicting current agro-environmental measures promoting delays in alfalfa cuts to improve the population-scale productivity of those birds [50].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D. Environmental and economic costs of nonindigenous species in the United States. BioScience 2000, 50, 53–66. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Leirs, H.; Skonhoft, A.; Davies, S.A.; Pech, R.P.; Andreassen, H.P.; Singleton, G.R.; Lima, M.; Machangu, R.M.; Makundi, R.H.; et al. Mice, rats, and people: The dynamics and bio-economics of agricultural rodents pests. Front. Ecol. Environ. 2003, 1, 367–375. [Google Scholar] [CrossRef]
- Jacob, J.; Tkadlec, E. Rodent outbreaks in Europe: Dynamics and damage. In Rodent Outbreaks: Ecology and Impacts; Singleton, G., Belmain, S., Brown, P.R., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippine, 2010; pp. 207–224. [Google Scholar]
- Meerburg, B.G.; Singleton, G.R.; Leirs, H. The year of the rat ends-time to fight hunger! Pest Manag. Sci. 2009, 65, 351–352. [Google Scholar] [CrossRef]
- Vidal, D.; Alzaga, V.; Luque-Larena, J.J.; Mateo, R.; Arroyo, L.; Viñuela, J. Possible interaction between a rodenticide treatment and a pathogen in common vole (Microtus arvalis) during a population peak. Sci. Total Environ. 2009, 408, 267–271. [Google Scholar] [CrossRef]
- Tian, H.Y.; Yu, P.B.; Luis, A.D.; Bi, P.; Cazelles, B.; Laine, M.; Huang, S.Q.; Ma, C.F.; Zhou, S.; Wei, J.; et al. Changes in rodent abundance and weather conditions Potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLOS Negl. Trop. Dis. 2015, 9, e0003530. [Google Scholar] [CrossRef]
- Vadell, M.; Gómez Villafañe, I. Environmental variables associated with hantavirus reservoirs and other small rodent species in two National Parks in the Paraná Delta, Argentina: Implications for disease prevention. EcoHealth 2016, 13, 248–260. [Google Scholar] [CrossRef]
- Luque-Larena, J.J.; Mougeot, F.; Arroyo, B.; Vidal, M.D.; Rodríguez-Pastor, R.; Escudero, R.; Anda, P.; Lambin, X. Irruptive mammal host populations shape tularemia epidemiology. PLoS Pathog. 2017, 13, e1006622. [Google Scholar] [CrossRef]
- Geduhn, A.; Esther, A.; Schenke, D.; Gabriel, D.; Jacob, J. Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl. Sci. Total Environ. 2016, 544, 150–157. [Google Scholar] [CrossRef]
- Sarabia, J.; Sánchez-Barbudo, I.; Siqueira, W.; Mateo, R.; Rollán, E.; Pizarrod, M. Lesions associated with the plexus venosus subcutaneus collaris of pigeons with chlorophacinone toxicosis. Avian Dis. 2008, 52, 540–543. [Google Scholar] [CrossRef]
- Olea, P.P.; Sánchez-Barbudo, I.; Viñuela, J.; Barja, I.; Mateo-Tomás, P.; Piñeiro, A.; Mateo, R.; Purroy, F.J. Lack of scientific evidence and precautionary principle in massive release of rodenticides threatens biodiversity: Old lessons need new reflections. Environ. Conserv. 2009, 36, 1–4. [Google Scholar] [CrossRef]
- Song, Y.; Endepols, S.; Klemann, N.; Richter, D.; Matuschka, F.R.; Shih, C.H.; Nachman, M.W.; Kohn, M.H. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 2011, 21, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Barbudo, I.S.; Camarero, P.R.; Mateo, R. Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci. Total Environ. 2012, 420, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Padilla, J.; López-Idiáquez, D.; López-Perea, J.J.; Mateo, R.; Paz, A.; Viñuela, J. A negative association between bromadiolone exposure and nestling body condition in common kestrels: Management implications for vole outbreaks. Pest Manag. Sci. 2016, 73, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-de-Simon, J.; Coeurdassier, M.; Couval, G.; Fourel, I.; Giraudoux, P. Do bromadiolone treatments to control grassland water voles (Arvicola scherman) affect small mustelid abundance? Pest Manag. Sci. 2019, 75, 900–907. [Google Scholar] [CrossRef]
- Baudrot, V.; Fernandez-de-Simon, J.; Coeurdassier, M.; Couval, G.; Giraudoux, P.; Lambin, X. Trophic transfer of pesticides: The fine line between predator-prey regulation and pesticide-pest regulation. J. Appl. Ecol. 2020, 13578, 1365–2664. [Google Scholar] [CrossRef]
- Paz Luna, A.; Bintanel, H.; Viñuela, J.; Villanúa, D. Nest-boxes for raptors as a biological control system of vole pests: High local success with moderate negative consequences for non-target species. Biol. Control 2020, 146, 104267. [Google Scholar] [CrossRef]
- Jacob, J.; Manson, P.; Barfknecht, R.; Fredricks, T. Common vole (Microtus arvalis) ecology and management: Implications for risk assessment of plant protection products. Pest Manag. Sci. 2014, 70, 869–878. [Google Scholar] [CrossRef]
- Jareño, D.; Viñuela, J.; Luque-Larena, J.J.; Arroyo, L.; Arroyo, B.; Mougeot, F. A comparison of methods for estimating common vole (Microtus arvalis) abundance in agricultural habitats. Ecol. Indic. 2014, 36, 111–119. [Google Scholar] [CrossRef]
- Janova, E.; Heroldova, M.; Cepelka, L. Rodent food quality and its relation to crops and other environmental and population parameters in and agricultural landscape. Sci. Total Environ. 2016, 562, 164–169. [Google Scholar] [CrossRef]
- Jareño, D.; Viñuela, J.; Luque-Larena, J.J.; Arroyo, L.; Arroyo, B.; Mougeot, F. Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 2015, 17, 2315–2327. [Google Scholar] [CrossRef]
- Santamaría, A.E.; Olea, P.P.; Viñuela, J.; García, J.T. Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur. J. Wildl. Res. 2019, 65, 52. [Google Scholar] [CrossRef]
- Luque-Larena, J.J.; Mougeot, F.; Viñuela, J.; Jareño, D.; Arroyo, L.; Lambin, X.; Arroyo, B. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 2013, 14, 432–441. [Google Scholar] [CrossRef]
- Delibes, M.; Smith, A.T.; Slobodchikoff, C.N.; Swenson, J.E. The paradox of keystone species persecuted as pests: A call for the conservation of abundant small mammals in their native range. Biol. Conserv. 2011, 144, 1335–1346. [Google Scholar] [CrossRef]
- Ferreira, C.; Delibes, M. Conflictive management of small mammals considered as pests: A long way to evidence-based policy making. Curr. Zool. 2012, 58, 353–357. [Google Scholar] [CrossRef]
- Lauret, V.; Delibes-Mateos, M.; Mougeot, F.; Arroyo-Lopez, B. Understanding conservation conflicts associated with rodent outbreaks in farmland areas. Ambio 2020, 49, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Kallio-Kokko, H.; Uzcategui, N.; Vapalahti, O.; Vaheri, A. Viral zoonoses in Europe. FEMS Microbiol. Rev. 2005, 29, 1051–1077. [Google Scholar] [CrossRef]
- Singleton, G.R.; Hinds, L.A.; Leirs, H.; Zhang, Z. Ecologically-Based Rodent Management; ACIAR: Canberra, Australia, 1999.
- Brown, P.R.; Tuan, N.; Singleton, G.R.; Ha, P.T.; Hoa, P.T.; Hue, D.T.; Tan, T.Q.; Tuat, N.V.; Jacob, J.; Müller, W.J. Ecologically based management of rodents in the real world: Applied to a mixed agroecosystem in Vietnam. Ecol. Appl. 2006, 16, 2000–2010. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Regulation (EC) No 1907/2006. Available online: http://data.europa.eu/eli/reg/2006/1907/2014-04-10 (accessed on 15 January 2023).
- Borowski, Z.; Zub, Z.; Jacob, J. Applied research for optimized vertebrate management: 11th European Vertebrate Pest Management Conference. Pest Manag. Sci. 2019, 75, 885–886. [Google Scholar] [CrossRef]
- Ojwang, D.O.; Oguge, N.O. Testing a biological control program for rodent management in a maize cropping system in Kenya. In Rats, Mice and People: Rodent Biology and Management; Singleton, G.R., Hinds, L.A., Krebs, C.J., Spratt, D.M., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 2003; pp. 251–253. [Google Scholar]
- Haim, A.; Shanas, U.; Brandes, O.; Gilboa, A. Suggesting the use of integrated methods for vole population management in alfalfa fields. Integr. Zool. 2007, 2, 184–190. [Google Scholar] [CrossRef]
- Meyrom, K.; Motro, Y.; Leshem, Y.; Aviel, S.; Izhaki, I.; Argyle, F.; Charter, M. Nest-Box use by the barn owl Tyto alba in a biological pest control program in the Beit She’an valley, Israel. Ardea 2009, 97, 463–467. [Google Scholar] [CrossRef]
- Muñoz-Pedreros, A.; Gil, C.; Yanez, J.; Rau, J.R. Raptor habitat management and its implication on the biological control of the Hantavirus. Eur. J. Wildl. Res. 2010, 56, 703–715. [Google Scholar] [CrossRef]
- Paz, A.; Jareño, D.; Arroyo, L.; Viñuela, J.; Arroyo, B.; Mougeot, F.; Luque-Larena, J.J.; Fargallo, J.A. Avian predators as a biological control system of common vole (Microtus arvalis) populations in north-western Spain: Experimental set-up and preliminary results. Pest Manag. Sci. 2013, 69, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Fargallo, J.A.; Martínez-Padilla, J.; Viñuela, J.; Blanco, G.; Torre, I.; Vergara, P.; De Neve, L. Kestrel-prey dynamic in a mediterranean region: The effect of generalist predation and climatic factors. PLoS ONE 2009, 4, e4311. [Google Scholar] [CrossRef]
- Charter, M.; Meyrom, K.; Leshem, Y.; Aviel, S.; Izhaki, I.; Motro, Y. Does nest box location and orientation affect occupation rate and breeding success of Barn Owls Tyto alba in a semi-arid environment? Acta Ornithol. 2010, 45, 115–119. [Google Scholar] [CrossRef]
- Whelan, C.J.; Wenny, D.G.; Marquis, R.J. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 2008, 1134, 25–60. [Google Scholar] [CrossRef]
- Labuschagne, L.; Swanepoel, L.H.; Taylor, P.J.; Belmain, S.R.; Keith, M. Are avian predators effective biological control agents for rodent pest management in agricultural systems? Biol. Control 2016, 101, 94–102. [Google Scholar] [CrossRef]
- Mougeot, F.; Lambin, X.; Rodríguez-Pastor, R.; Romairone, J.; Luque-Larena, J.J. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 2019, 100, e02776. [Google Scholar] [CrossRef]
- Ministerio de Agricultura Alimentación y Medio Ambiente. Anuario de Estadística; Centro de Publicaciones, Ministerio de Agricultura Alimentación y Medio Ambiente: Madrid, Spain, 2011.
- Jacob, J.; Hempel, N. Effects of farming practices on spatial behavior of common voles. J. Ethol. 2003, 21, 45–50. [Google Scholar] [CrossRef]
- Bonnet, T.; Crespin, L.; Pinot, A.; Bruneteau, L.; Bretagnolle, V.; Gauffre, B. How the common vole copes with modern farming: Insights from a capture–mark–recapture experiment. Agric. Ecosyst. Environ. 2013, 177, 21–27. [Google Scholar] [CrossRef]
- Spanish Cadastre. Available online: http://ovc.catastro.meh.es/Cartografia/WMS/ServidorWMS.aspx (accessed on 15 June 2015).
- Hafidzi, M.N.; Mohd, N. The use of barn owl, Tyto alba, to suppress rat damage in rice fields in Malaysia. In Rats, Mice and People:rRodentbBiology and Management; Singleton, G.R., Hinds, L., Krebs, C.J., Spratt, D., Eds.; ACIAR: Bruce, ACT, Australia, 2003; pp. 233–237. [Google Scholar]
- Heroldová, M.; Sipos, J.; Suchomel, J.; Zejda, J. Influence of crop type on common vole abundance in Central European agroecosystems. Agric. Ecosyst. Environ. 2021, 315, 107443. [Google Scholar] [CrossRef]
- Luque-Larena, J.J.; Mougeot, F.; Arroyo, B.; Lambin, X. “Got rats?” Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production. Glob. Chang. Biol. 2018, 24, 2752–2754. [Google Scholar] [CrossRef] [PubMed]
- Aulicky, R.; Tkadlec, E.; Suchomel, J.; Frankova, M.; Heroldová, M.; Stejskal, V. Management of the common vole in the Czech lands: Historical and current perspectives. Agronomy 2022, 12, 1629. [Google Scholar] [CrossRef]
- González del Portillo, D.; Arroyo, B.; Morales, M.B. The adequacy of alfalfa crops as an agri-environmental scheme: A review of agronomic benefits and effects on biodiversity. J. Nat. Conserv. 2022, 69, 126253. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Heroldová, M.; Bryja, J.; Zejda, J.; Tkadlec, E. Structure and diversity of small mammal communities in agriculture landscape. Agric. Ecosyst. Environ. 2007, 120, 206–210. [Google Scholar] [CrossRef]
- Krebs, C.J. Population Fluctuations in Rodents; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- Roos, D.; Caminero-Saldaña, C.; Elston, D.; Mougeot, F.; García-Ariza, M.; Arroyo, B.; Luque-Larena, J.J.; Rojo Revilla, F.J.; Lambin, X. From pattern to process? Dual travelling waves, with contrasting propagation speeds, best describe a self-organised spatio-temporal pattern in population growth of a cyclic rodent. Ecol. Lett. 2022, 25, 1986–1998. [Google Scholar] [CrossRef]
- Planillo, A.; Viñuela, J.; Malo, J.E.; García, J.T.; Acebes, P.; Santamaría, A.E.; Domínguez, J.C.; Olea, P.P. Addressing phase of population cycle and spatial scale is key to understand vole abundance in crop field margins: Implications for managing a cyclic pest species. Agric. Ecosyst. Environ. 2023, 345, 108306. [Google Scholar] [CrossRef]
- García, J.T.; Morales, M.B.; Martínez, J.; Iglesias, L.; García de la Morena, E.; Suárez, F.; Viñuela, J. Foraging activity and use of space by Lesser Kestrel Falco naumanni in relation to agrarian management in central Spain. Bird Conserv. Int. 2016, 16, 83–95. [Google Scholar] [CrossRef]
- Jubete, F.; Onrubia, A.; Román, J. La lechuza campestre en España: De invernante a reproductor. Quercus 1996, 119, 19–22. [Google Scholar]
- Jacob, J. The response of small mammal populations to flooding. Mamm. Biol. 2003, 68, 102–111. [Google Scholar] [CrossRef]
- Mougeot, F.; Lambin, X.; Arroyo, B.; Luque-Larena, J.J. Body size and habitat use of the common weasel Mustela nivalis vulgaris in Mediterranean farmlands colonised by common voles Microtus arvalis. Mammal. Res. 2020, 65, 75–84. [Google Scholar] [CrossRef]
- Preisser, E.L.; Bolnick, D.I.; Benard, M.F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 2005, 86, 501–509. [Google Scholar] [CrossRef]
- Jacob, J.; Brown, J.S. Microhabitat Use, Giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 2000, 91, 131–138. [Google Scholar] [CrossRef]
- Wood, B.J.; Fee, C.G. A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot. 2003, 22, 445–461. [Google Scholar] [CrossRef]
- Jacob, J.; Singleton, G.; Singleton, G.R.; Herawati, N.; Brown, P. Ecologically based management of rodents in lowland irrigated rice fields in Indonesia. Wildl. Res. 2010, 37, 418–427. [Google Scholar] [CrossRef]
- Martínez-Padilla, J.; Fargallo, J.A.; Carrillo-Hidalgo, J.; López-Jimenez, N.; López-Idíaquez, D. Cernícalo vulgar, Falco tinnunculus. In Libro Rojo de las Aves de España; López-Jiménez, N., Ed.; SEO/Birdlife-MITECO: Madrid, Spain, 2021; pp. 366–374. [Google Scholar]
- Fajardo, I. Monitoring non-natural mortality in the barn owl (Tyto alba), as an indicator of land use and social awareness in Spain. Biol. Cons. 2001, 97, 143–149. [Google Scholar] [CrossRef]
- Machar, I.; Pechanec, V. Applying of summer and autumn raptor aggregation in integrated pest control of sugar beet. Listy Cukrov. Řepařské 2013, 129, 231–233. [Google Scholar]
- Machar, I.; Harmacek, J.; Vrublova, K.; Filippovová, J.; Brus, J. Biocontrol of common vole populations by avian predators versus rodenticide application. Pol. J. Ecol. 2017, 65, 434–444. [Google Scholar] [CrossRef]
- Jacob, J. Short-term effects of farming practices on populations of common voles. Agric. Ecosyst. Environ. 2003, 95, 321–325. [Google Scholar] [CrossRef]
- Torre, I.; Diaz, M.; Martinez Padilla, J.; Bonal, R.; Viñuela, J.; Fargallo, J.A. Cattle grazing, raptor abundance and small mammal communities in Mediterranean grasslands. Basic Appl. Ecol. 2007, 8, 565–575. [Google Scholar] [CrossRef]
- Kan, I.; Motro, Y.; Horvitz, N.; Kimhi, A.; Leshem, Y.; Yom-Tov, Y.; Nathan, R. Agricultural rodent control using barn owls. Is it profitable? Am. J. Agric. Econ. 2013, 96, 733–752. [Google Scholar] [CrossRef]
Study Area | Species | Breeding Parameter | 2011 | 2012 |
---|---|---|---|---|
BC | Falco tinnunculus | Total clutches | 27 | 56 |
Total clutches breeding success | 25 | 47 | ||
Total number of fledglings | 103 | 190 | ||
Average fledglings by nest | 4.12 | 4.04 | ||
Tyto alba | Total clutches | 1 | 8 | |
Total clutches breeding success | 0 | 6 | ||
Total number of fledglings | 0 | 22 | ||
Average fledglings by nest | NA | 3.67 | ||
SMV | Falco tinnunculus | Total clutches | 38 | 45 |
Total clutches breeding success | 32 | 41 | ||
Total number of fledglings | 142 | 168 | ||
Average fledglings by nest | 4.44 | 4.10 | ||
Tyto alba | Total clutches | 17 | 6 | |
Total clutches breeding success | 14 | 4 | ||
Total number of fledglings | 57 | 11 | ||
Average fledglings by nest | 4.07 | 2.75 | ||
VC | Falco tinnunculus | Total clutches | 42 | 38 |
Total clutches breeding success | 37 | 31 | ||
Total number of fledglings | 152 | 128 | ||
Average fledglings by nest | 4.11 | 4.13 | ||
Tyto alba | Total clutches | 3 | 5 | |
Total clutches breeding success | 3 | 5 | ||
Total number of fledglings | 15 | 23 | ||
Average fledglings by nest | 5 | 4.60 |
Study Areas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
BC | VC | SMV | ||||||||
Year | Transect | Used | Total | % | Used | Total | % | Used | Total | % |
2011 | 1 | 58 | 74 | 78.38% | 91 | 114 | 79.82% | 112 | 113 | 99.12% |
2 | 73 | 76 | 96.05% | 89 | 100 | 89.00% | 60 | 63 | 95.24% | |
3 | 61 | 61 | 100.00% | 49 | 97 | 50.52% | 56 | 70 | 80.00% | |
4 | 59 | 67 | 88.06% | 117 | 156 | 75.00% | 77 | 80 | 96.25% | |
5 | 65 | 65 | 100.00% | 40 | 50 | 80.00% | 0 | 0 | nd | |
6 | 30 | 47 | 63.83% | 41 | 48 | 85.42% | 0 | 0 | nd | |
7 | 0 | 0 | nd | 86 | 124 | 69.35% | 0 | 0 | nd | |
8 | 0 | 0 | nd | 54 | 81 | 66.67% | 0 | 0 | nd | |
Total | 346 | 390 | 88.72% | 567 | 770 | 73.64% | 305 | 326 | 93.56% | |
2012 | 1 | 48 | 48 | 100.00% | 48 | 49 | 97.96% | 57 | 60 | 95.00% |
2 | 56 | 56 | 100.00% | 32 | 33 | 96.97% | 65 | 66 | 98.48% | |
3 | 59 | 59 | 100.00% | 54 | 62 | 87.10% | 44 | 55 | 80.00% | |
4 | 56 | 57 | 98.25% | 34 | 35 | 97.14% | 46 | 47 | 97.87% | |
5 | 0 | 0 | nd | 39 | 39 | 100.00% | 0 | 0 | nd | |
6 | 0 | 0 | nd | 0 | 0 | nd | 0 | 0 | nd | |
7 | 0 | 0 | nd | 0 | 0 | nd | 0 | 0 | nd | |
8 | 0 | 0 | nd | 0 | 0 | nd | 0 | 0 | nd | |
Total | 219 | 220 | 99.55% | 207 | 218 | 94.95% | 212 | 228 | 92.98% |
Factor | Distance to Closest Unoccupied Nest-Box | Distance to Closest Occupied Nest-Box | ||||
---|---|---|---|---|---|---|
χ2 | df | p-Value | χ2 | df | p-Value | |
Intercept | 39.11 | 1 | <0.001 | 44.09 | 1 | <0.001 |
Distance | Dropped | 6.6 | 2 | <0.05 | ||
Year | 0.94 | 1 | >0.05 | 0.56 | 1 | >0.05 |
Area | 23.58 | 2 | <0.001 | 23.21 | 2 | <0.001 |
Season | 4.37 | 1 | <0.05 | 4.49 | 1 | <0.05 |
Area:Season | 11.66 | 2 | <0.05 | 11.66 | 2 | <0.001 |
Season:Year | 27.21 | 1 | <0.001 | 26.95 | 1 | <0.001 |
Year:Area | 15.76 | 2 | <0.001 | 17.45 | 2 | <0.001 |
Factor | Number of Fledglings within 180 m | Number of Fledglings within 540 m | ||||
---|---|---|---|---|---|---|
χ2 | df | p-Value | χ2 | df | p-Value | |
Fledglings | Dropped | 4.99 | 1 | <0.05 | ||
Year | 42.64 | 1 | <0.001 | 43.74 | 1 | <0.001 |
Area | 20.65 | 2 | <0.001 | 22.13 | 2 | <0.001 |
Year:Area | 16.08 | 2 | <0.001 | 17.25 | 2 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jareño, D.; Paz Luna, A.; Viñuela, J. Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak. Life 2023, 13, 1963. https://doi.org/10.3390/life13101963
Jareño D, Paz Luna A, Viñuela J. Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak. Life. 2023; 13(10):1963. https://doi.org/10.3390/life13101963
Chicago/Turabian StyleJareño, Daniel, Alfonso Paz Luna, and Javier Viñuela. 2023. "Local Effects of Nest-Boxes for Avian Predators over Common Vole Abundance during a Mid-Density Outbreak" Life 13, no. 10: 1963. https://doi.org/10.3390/life13101963