Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review
Abstract
:1. Introduction
2. Therapeutic Options against MPX
3. Tecovirimat
- Severe disease (hemorrhagic disease; large number of lesions such that they are confluent; sepsis; encephalitis; ocular or periorbital infections; or other conditions requiring hospitalization);
- Involvement of anatomic areas that might result in serious sequelae including scarring or strictures and severe infections (including secondary bacterial skin infections), especially those that require surgical intervention, such as debridement.
- −
- People currently experiencing severe immunocompromise due to conditions such as: HIV/AIDS leukemia, lymphoma, generalized malignancy, solid organ transplantation, therapy with alkylating agents, antimetabolites, radiation, tumor necrosis factor inhibitors, or high-dose corticosteroids, being a recipient of a hematopoietic stem cell transplant <24 months post-transplant or ≥24 months but with graft-versus-host disease or disease relapse, or having autoimmune disease with immunodeficiency as a clinical component;
- −
- Pediatric populations, particularly patients younger than 8 years of age;
- −
- Pregnancy or breastfeeding women;
- −
- People with the following conditions: atopic dermatitis, eczema, burns, impetigo, varicella zoster virus infection, herpes simplex virus infection, severe acne, severe diaper dermatitis with extensive areas of denuded skin, psoriasis, or Darier disease (keratosis follicularis).
Author Study, Year and Reference | n. | Type of Study | n. of PLWH | n. Treated with Tecovirimat | Control Group | Clinical Setting | Outcome | Notes |
---|---|---|---|---|---|---|---|---|
Thornill, 2022 [55] | 528 | Retrospective | 41% | 2% | No | Outpatients and inpatients | 70 (13%) were hospitalized. No deaths were reported. | Mild clinical course. Only 13% of the persons were admitted to a hospital with a low rate of non-serious complications. |
Hermanussen, 2023 [56] | 12 | Case series | 8 | All | No | 11/12 hospitalized | All subjects with severe or complicated MPX. No deaths. | Treatment with tecovirimat was well tolerated and all individuals showed clinical improvement. |
Raccagni, 2023 [57] | 9 | Case series | 2 | All | No | 3 hospitalized | Complete resolution of symptoms after a median of 12 days; clinical improvement after 3 days from the prescription. | Treatment well tolerated without severe adverse events. |
6 outpatients | ||||||||
Desai, 2022 [58] | 25 | Compassionate use | 9 | All | No | Outpatients and inpatients | Complete resolution of lesions was reported in 10 patients (40%) on day 7 of therapy, while 23 (92%) had resolution of lesions and pain by day 21. No deaths. | Minimal adverse events. |
Conclusions related to antiviral use vs. natural evolution of disease should be made with caution | ||||||||
Matias, 2022 [59] | 3 | Case series | 1 | All | No | Hospitalized | No severe MPX or complications. No deaths. | A mild increase in ALT in one patient resolved without tecovirimat discontinuation |
Mazzotta, 2023 [60] | 42 | Case series | 15 | 19 | Yes | All hospitalized | Among the 41 patients included, 19 completed a course of tecovirimat. The median time from symptom onset to hospitalization and drug initiation was 4 days and 10 days, respectively. | The authors found no evidence for a significant effect of tecovirimat in shortening healing time and viral clearance. |
Mc Lean, 2023 [61] | 154 | Retrospective cohort study | 72 | All | No | 16 hospitalized | Groups had similar rates of hospitalization, indications for treatment, and co-occurring infections, but PWH had fewer days from symptom onset to treatment (7.5 vs. 10). | Four participants had serious adverse events; none were attributed to tecovirimat. Twenty-two percent of participants had non-severe adverse effects. HIV status did not seem to affect treatment outcomes. |
Mitià, 2023 [62] | 382 | Retrospective study | All | 62 (16%) | No | 107 (28%) of 382 were hospitalized, of whom 27 (25%) died. | 107 (28%) of 382 were hospitalized, of whom 27 (25%) died. Among the 27 individuals who died, 10 people had completed one or two full courses of tecovirimat. | All deaths occurred in people with CD4 counts of less than 200 cells per mm3. Three individuals had laboratory confirmation of tecovirimat resistance. |
Higgins, 2023 [65] | 11 | Case series | NA | All | No | 11 subjects with a history of organ transplantation. The majority were kidney transplant recipients (91%, n = 10). | Eight were hospitalized during the clinical course. There was one Mpox-related death in the cohort. Infection was reported to have resolved at 30-day follow-up in all other cases. | Median duration of symptoms at presentation was 6 days (range 3–14 days). Rates of hospitalization were high (73%, n = 8) with a median length of stay of 4.5 days (range 1–10 days). |
4. Brincidofovir
- −
- Having severe disease or at a high risk of progressing to severe disease, and fulfilling either of the following conditions:
- (1)
- Showing clinically significant disease worsening while on tecovirimat treatment, or experiencing disease recurrence (initial improvement followed by a deterioration) after an initial period of improvement on tecovirimat.
- (2)
- Being otherwise ineligible for or having a medical reason preventing the use of oral or intravenous tecovirimat.
5. Cidofovir
6. Vaccines against Mpox: A Brief Summary
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nuzzo, J.B.; Borio, L.L.; Gostin, L.O. The WHO declaration of monkeypox as a global public health emergency. JAMA 2022, 328, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Kaler, J.; Hussain, A.; Flores, G.; Kheiri, S.; Desrosiers, D. Monkeypox: A comprehensive review of transmission, pathogenesis, and manifestation. Cureus 2022, 14, e26531. [Google Scholar] [CrossRef] [PubMed]
- León-Figueroa, D.A.; Bonilla-Aldana, D.K.; Pachar, M.; Romaní, L.; Saldaña-Cumpa, H.M.; Anchay-Zuloeta, C.; Diaz-Torres, M.; Franco-Paredes, C.; Suárez, J.A.; Ramirez, J.D.; et al. The never-ending global emergence of viral zoonoses after COVID-19? The rising concern of monkeypox in Europe, North America and beyond. Travel Med. Infect. Dis. 2022, 49, 102362. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/emergencies/situations/monkeypox-oubreak-2022 (accessed on 29 August 2023).
- Magnus, P.V.; Andersen, E.K.; Petersen, K.B.; Birch-Andersen, A. A Pox-like Disease in Cynomolgus Monkeys. Acta Pathol. Microbiol. Scand. 1959, 46, 156–176. [Google Scholar] [CrossRef]
- Breman, J.G.; Kalisa, R.; Steniowski, M.V.; Zanotto, E.; Gromyko, A.I.; Arita, I. Human monkeypox, 1970–1979. Bull. World Health Organ. 1980, 58, 165–182. [Google Scholar]
- McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis. 2014, 58, 260–267. [Google Scholar] [CrossRef]
- Henderson, D.A. The eradication of smallpox—An overview of the past, present, and future. Vaccine 2011, 29 (Suppl. 4), D7–D9. [Google Scholar] [CrossRef]
- Aljabali, A.A.; Obeid, M.A.; Nusair, M.B.; Hmedat, A.; Tambuwala, M.M. Monkeypox virus: An emerging epidemic. Microb. Pathog. 2022, 173, 105794. [Google Scholar] [CrossRef]
- Shchelkunova, G.A.; Shchelkunov, S.N. Smallpox, monkeypox and other human orthopoxvirus infections. Viruses 2022, 15, 103. [Google Scholar] [CrossRef]
- Parker, S.; Buller, R.M. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol. 2013, 8, 129–157. [Google Scholar] [CrossRef]
- Ghosh, N.; Chacko, L.; Vallamkondu, J.; Banerjee, T.; Sarkar, C.; Singh, B.; Kalra, R.S.; Bhatti, J.S.; Kandimalla, R.; Dewanjee, S. Clinical Strategies and Therapeutics for Human Monkeypox Virus: A Revised Perspective on Recent Outbreaks. Viruses 2023, 15, 1533. [Google Scholar] [CrossRef]
- Kozlov, M. How does monkeypox spread? What scientists know. Nature 2022, 608, 655–656. [Google Scholar] [CrossRef] [PubMed]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Vivancos, R.; Anderson, C.; Blomquist, P.; Balasegaram, S.; Bell, A.; Bishop, L.; Brown, C.S.; Chow, Y.; Edeghere, O.; Florence, I.; et al. Community transmission of monkeypox in the United Kingdom, April to May 2022. Eurosurveillance 2022, 27, 2200422. [Google Scholar] [CrossRef] [PubMed]
- Ferre, V.M.; Bachelard, A.; Zaidi, M.; Armand-Lefevre, L.; Descamps, D.; Charpentier, C.; Ghosn, J. Detection of Monkeypox Virus in Anorectal Swabs from Asymptomatic Men Who Have Sex with Men in a Sexually Transmitted Infection Screening Program in Paris, France. Ann. Intern. Med. 2022, 175, 1491–1492. [Google Scholar] [CrossRef]
- Bruno, G.; Fabrizio, C.; Rodano, L.; Buccoliero, G.B. Monkeypox in a 71-year-old woman. J. Med. Virol. 2023, 95, e27993. [Google Scholar] [CrossRef]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004, 428, 182–185. [Google Scholar] [CrossRef]
- Isaacs, S.N.; Friedman, H.M.; Kaplan, S.L. Vaccines to Prevent Smallpox, Mpox (Monkeypox), and Other Orthopoxviruses. Available online: https://medilib.ir/uptodate/show/8296 (accessed on 24 April 2023).
- Saghazadeh, A.; Rezaei, N. Poxviruses and the immune system: Implications for monkeypox virus. Int. Immunopharmacol. 2022, 113, 109364. [Google Scholar] [CrossRef]
- Bruno, G.; Buccoliero, G.B. Monkeypox in the elderly: Is an unwelcome surprise to be expected? Maturitas 2022, 164, 87. [Google Scholar] [CrossRef]
- Girometti, N.; Byrne, R.; Bracchi, M.; Heskin, J.; McOwan, A.; Tittle, V.; Gedela, K.; Scott, C.; Patel, S.; Gohil, J. Demographic and clinical characteristics of confirmed human monkeypox virus cases in individuals attending a sexual health centre in London, UK: An observational analysis. Lancet Infect. Dis. 2022, 22, 1321–1328. [Google Scholar] [CrossRef]
- Tarín-Vicente, E.J.; Alemany, A.; Agud-Dios, M.; Ubals, M.; Suñer, C.; Antón, A.; Arando, M.; Arroyo-Andrés, J.; Calderón-Lozano, L.; Casañ, C. Clinical presentation and virological assessment of confirmed human monkeypox virus cases in Spain: A prospective observational cohort study. Lancet 2022, 400, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Nazareth, J.; Sze, S.; Martin, C.A.; Decker, J.; Fletcher, E.; Déirdre Hollingsworth, T.; Barer, M.R.; Pareek, M.; Tang, J.W. Transmission of monkeypox/mpox virus: A narrative review of environmental, viral, host, and population factors in relation to the 2022 international outbreak. J. Med. Virol. 2023, 95, e28534. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Mailhe, M.; Beaumont, A.-L.; Thy, M.; Le Pluart, D.; Perrineau, S.; Houhou-Fidouh, N.; Deconinck, L.; Bertin, C.; Ferré, V.M.; Cortier, M. Clinical characteristics of ambulatory and hospitalized patients with monkeypox virus infection: An observational cohort study. Clin. Microbiol. Infect. 2022, 29, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Kamoi, K.; Zhang, J.; Yang, M.; Ohno-Matsui, K. Mpox (Monkeypox) and the Eye: Ocular Manifestation, Diagnosis, Treatment and Vaccination. Viruses 2023, 15, 616. [Google Scholar] [CrossRef]
- Català, A.; Clavo-Escribano, P.; Riera-Monroig, J.; Martín-Ezquerra, G.; Fernandez-Gonzalez, P.; Revelles-Peñas, L.; Simon-Gozalbo, A.; Rodríguez-Cuadrado, F.J.; Castells, V.G.; de la Torre Gomar, F.J. Monkeypox outbreak in Spain: Clinical and epidemiological findings in a prospective cross-sectional study of 185 cases. Br. J. Dermatol. 2022, 187, 765–772. [Google Scholar] [CrossRef]
- Rasizadeh, R.; Shamekh, A.; Shiri Aghbash, P.; Bannazadeh Baghi, H. Comparison of human monkeypox, chickenpox and smallpox: A comprehensive review of pathology and dermatological manifestations. Curr. Med. Res. Opin. 2023, 39, 751–760. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Kong, J.D.; Mahroum, N.; Tsigalou, C.; Khamisy-Farah, R.; Converti, M.; Wu, J. Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review. J. Med. Virol. 2023, 95, e27931. [Google Scholar] [CrossRef]
- Saxena, S.K.; Ansari, S.; Maurya, V.K.; Kumar, S.; Jain, A.; Paweska, J.T.; Tripathi, A.K.; Abdel-Moneim, A.S. Re-emerging human monkeypox: A major public-health debacle. J. Med. Virol. 2023, 95, e27902. [Google Scholar] [CrossRef]
- Vivancos-Gallego, M.J.; Sánchez-Conde, M.; Rodríguez-Domínguez, M.; Fernandez-Gonzalez, P.; Martínez-García, L.; Garcia-Mouronte, E.; Martínez-Sanz, J.; Moreno-Zamora, A.M.; Casado, J.L.; Ron, R. Human monkeypox in people with HIV: Transmission, clinical features, and outcome. Open Forum Infect. Dis. 2022, 9, ofac557. [Google Scholar] [CrossRef]
- Dashraath, P.; Nielsen-Saines, K.; Rimoin, A.; Mattar, C.N.Z.; Panchaud, A.; Baud, D. Monkeypox in pregnancy: Virology, clinical presentation, and obstetric management. Am. J. Obstet. Gynecol. 2022, 227, 849.e7–861.e7. [Google Scholar] [CrossRef] [PubMed]
- Panag, D.S.; Jain, N.; Katagi, D.; De Jesus Cipriano Flores, G.; Silva Dutra Macedo, G.D.; Rodrigo Díaz Villa, G.; Yèche, M.; Velázquez Mérida, S.Y.; Kapparath, S.; Sert, Z.; et al. Variations in national surveillance reporting for Mpox virus: A comparative analysis in 32 countries. Front. Public Health 2023, 11, 1178654. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, A.; Tombuloglu, H.; Alsaeed, M.; Tombuloglu, G.; AlRubaish, A.A.; Mahmoud, A.; Smajlović, S.; Ćordić, S.; Rabaan, A.A.; Alsuhaimi, E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J. Infect. Public Health 2023, 16, 531–541. [Google Scholar] [CrossRef]
- Jezek, Z.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M.; Grab, B. Human monkeypox: Confusion with chickenpox. Acta Trop. 1988, 45, 297–307. [Google Scholar]
- Jezek, Z.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M. Human monkeypox: Clinical features of 282 patients. J. Infect. Dis. 1987, 156, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Khani, E.; Afsharirad, B.; Entezari-Maleki, T. Monkeypox treatment: Current evidence and future perspectives. J. Med. Virol. 2023, 95, e28229. [Google Scholar] [CrossRef] [PubMed]
- Zahmatyar, M.; Fazlollahi, A.; Motamedi, A.; Zolfi, M.; Seyedi, F.; Nejadghaderi, S.A.; Sullman, M.J.M.; Mohammadinasab, R.; Kolahi, A.A.; Arshi, S.; et al. Human monkeypox: History, presentations, transmission, epidemiology, diagnosis, treatment, and prevention. Front. Med. 2023, 10, 1157670. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Mohamed, M.G.; Dabou, E.A.; Abuijlan, I.; Chandran, D.; El-Shall, N.A.; Chopra, H.; Dhama, K. Monkeypox (mpox) in immunosuppressed patients. F1000Research 2023, 12, 127. [Google Scholar] [CrossRef]
- Ezat, A.A.; Abduljalil, J.M.; Elghareib, A.M.; Samir, A.; Elfiky, A.A. The discovery of novel antivirals for the treatment of mpox: Is drug repurposing the answer? Expert Opin. Drug Discov. 2023, 18, 551–561. [Google Scholar] [CrossRef]
- Chiem, K.; Nogales, A.; Lorenzo, M.; Morales Vasquez, D.; Xiang, Y.; Gupta, Y.K.; Blasco, R.; de la Torre, J.C.; Martínez-Sobrido, L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol. Spectr. 2023, 11, e0474522. [Google Scholar] [CrossRef]
- Siegrist, E.A.; Sassine, J. Antivirals with Activity Against Mpox: A Clinically Oriented Review. Clin. Infect. Dis. 2023, 76, 155–164. [Google Scholar] [CrossRef]
- Russo, A.T.; Grosenbach, D.W.; Chinsangaram, J.; Honeychurch, K.M.; Long, P.G.; Lovejoy, C.; Maiti, B.; Meara, I.; Hruby, D.E. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev. Anti-Infect. Ther. 2021, 19, 331–344. [Google Scholar] [CrossRef]
- DeLaurentis, C.E.; Kiser, J.; Zucker, J. New Perspectives on Antimicrobial Agents: Tecovirimat for Treatment of Human Monkeypox Virus. Antimicrob. Agents Chemother. 2022, 66, e0122622. [Google Scholar] [CrossRef] [PubMed]
- Grosenbach, D.W.; Jordan, R.; Hruby, D.E. Development of the small-molecule antiviral ST-246 as a smallpox therapeutic. Future Virol. 2011, 6, 653–671. [Google Scholar] [CrossRef] [PubMed]
- Grosenbach, D.W.; Honeychurch, K.; Rose, E.A.; Chinsangaram, J.; Frimm, A.; Maiti, B.; Lovejoy, C.; Meara, I.; Long, P.; Hruby, D.E. Oral Tecovirimat for the Treatment of Smallpox. N. Engl. J. Med. 2018, 379, 44–53. [Google Scholar] [CrossRef]
- Berhanu, A.; Prigge, J.T.; Silvera, P.M.; Honeychurch, K.M.; Hruby, D.E.; Grosenbach, D.W. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection. Antimicrob. Agents Chemother. 2015, 59, 4296–4300. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, E.; Jordan, R.; Hruby, D.E.; Mateo, R.I.; Xiao, S.Y.; Siirin, M.; Newman, P.C.; Travassos Da Rosa, A.P.A.; Tesh, R.B. Efficacy of the antipoxvirus compound ST-246 for treatment of severe orthopoxvirus infection. Am. J. Trop. Med. Hyg. 2007, 76, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.; Goff, A.; Frimm, A.; Corrado, M.L.; Hensley, L.E.; Byrd, C.M.; Mucker, E.; Shamblin, J.; Bolken, T.C.; Wlazlowski, C.; et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: Determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 2009, 53, 1817–1822. [Google Scholar] [CrossRef]
- Sudarmaji, N.; Kifli, N.; Hermansyah, A.; Yeoh, S.F.; Goh, B.-H.; Ming, L.C. Prevention and Treatment of Monkeypox: A Systematic Review of Preclinical Studies. Viruses 2022, 14, 2496. [Google Scholar] [CrossRef]
- FDA Approves First Smallpox-Indicated Treatment, SIGA’s TPOXX. Available online: https://www.genengnews.com/topics/drug-discovery/fda-approves-first-smallpox-indicated-treatment-sigas-tpoxx/ (accessed on 30 August 2023).
- Centers for Disease Control and Prevention. Guidance for Tecovirimat Use: Expanded Access Investigational New Drug Protocol during 2022 US Monkeypox Outbreak. 2023. Available online: https://www.cdc.gov/poxvirus/monkeypox/clinicians/Tecovirimat (accessed on 25 August 2023).
- Lindholm, D.A.; Kalil, A.C. Déjà vu all over again? Monkeypox and the urgent need for randomised controlled trials. Lancet Infect. Dis. 2023, 23, e56–e58. [Google Scholar] [CrossRef]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; et al. Monkeypox virus infection in humans across 16 countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Hermanussen, L.; Brehm, T.T.; Wolf, T.; Boesecke, C.; Schlabe, S.; Borgans, F.; Monin, M.B.; Jensen, B.O.; Windhaber, S.; Scholten, S.; et al. Tecovirimat for the treatment of severe Mpox in Germany. Infection 2023. [Google Scholar] [CrossRef] [PubMed]
- Raccagni, A.R.; Leoni, D.; Ciccullo, A.; Verdenelli, S.; Cattelan, A.M.; Di Giambenedetto, S.; Falcone, M.; Mileto, D.; Castagna, A.; Nozza, S. Rapid improvement of severe Mpox lesions with oral tecovirimat. J. Med. Virol. 2023, 95, e28825. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.N.; Thompson, G.R., 3rd; Neumeister, S.M.; Arutyunova, A.M.; Trigg, K.; Cohen, S.H. Compassionate Use of Tecovirimat for the Treatment of Monkeypox Infection. JAMA 2022, 328, 1348–1350. [Google Scholar] [CrossRef] [PubMed]
- Matias, W.R.; Koshy, J.M.; Nagami, E.H.; Kovac, V.; Moeng, L.R.; Shenoy, E.S.; Hooper, D.C.; Madoff, L.C.; Barshak, M.B.; Johnson, J.A.; et al. Tecovirimat for the Treatment of Human Monkeypox: An Initial Series from Massachusetts, United States. Open Forum Infect. Dis. 2022, 9, ofac377. [Google Scholar] [CrossRef]
- Mazzotta, V.; Cozzi-Lepri, A.; Lanini, S.; Mondi, A.; Carletti, F.; Tavelli, A.; Gagliardini, R.; Vita, S.; Pinnetti, C.; Aguglia, C.; et al. Effect of tecovirimat on healing time and viral clearance by emulation of a target trial in patients hospitalized for mpox. J. Med. Virol. 2023, 95, e28868. [Google Scholar] [CrossRef]
- McLean, J.; Stoeckle, K.; Huang, S.; Berardi, J.; Gray, B.; Glesby, M.J.; Zucker, J. Tecovirimat Treatment of People with HIV During the 2022 Mpox Outbreak: A Retrospective Cohort Study. Ann. Intern. Med. 2023, 176, 642–648. [Google Scholar] [CrossRef]
- Mitjà, O.; Alemany, A.; Marks, M.; Lezama Mora, J.I.; Rodríguez-Aldama, J.C.; Torres Silva, M.S.; Corral Herrera, E.A.; Crabtree-Ramirez, B.; Blanco, J.L.; Girometti, N.; et al. Mpox in people with advanced HIV infection: A global case series. Lancet 2023, 401, 939–949, Erratum in Lancet 2023, 401, 1158. [Google Scholar] [CrossRef]
- Garrigues, J.M.; Hemarajata, P.; Karan, A.; Shah, N.K.; Alarcón, J.; Marutani, A.N.; Finn, L.; Smith, T.G.; Gigante, C.M.; Davidson, W.; et al. Identification of Tecovirimat Resistance-Associated Mutations in Human Monkeypox Virus—Los Angeles County. Antimicrob. Agents Chemother. 2023, 67, e0056823. [Google Scholar] [CrossRef]
- Mertes, H.; Rezende, A.M.; Brosius, I.; Naesens, R.; Michiels, J.; Deblock, T.; Coppens, J.; Van Dijck, C.; Bomans, P.; Bottieau, E.; et al. Tecovirimat Resistance in an Immunocompromised Patient with Mpox and Prolonged Viral Shedding. Ann. Intern. Med. 2023, 176, 1141–1143. [Google Scholar] [CrossRef]
- Higgins, E.; Ranganath, N.; Mehkri, O.; Majeed, A.; Walker, J.; Spivack, S.; Bhaimia, E.; Benamu, E.; Hand, J.; Keswani, S.; et al. Clinical features, treatment, and outcomes of mpox in solid organ transplant recipients: A multicenter case series and literature review. Am. J. Transplant. 2023, S1600-6135(23)00593-2. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.; Gould, S.; Princy, N.; Rowland, T.; Lutje, V.; Kuehn, R. Therapeutics for treating mpox in humans. Cochrane Database Syst. Rev. 2023, 3, CD015769. [Google Scholar] [PubMed]
- Imran, M.; Alshammari, M.K.; Arora, M.K.; Dubey, A.K.; Das, S.S.; Kamal, M.; Alqahtani, A.S.A.; Sahloly, M.A.Y.; Alshammari, A.H.; Alhomam, H.M.; et al. Oral Brincidofovir Therapy for Monkeypox Outbreak: A Focused Review on the Therapeutic Potential, Clinical Studies, Patent Literature, and Prospects. Biomedicines 2023, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Olson, V.A.; Smith, S.K.; Foster, S.; Li, Y.; Lanier, E.R.; Gates, I.; Trost, L.C.; Damon, I.K. In vitro efficacy of brincidofovir against variola virus. Antimicrob. Agents Chemother. 2014, 58, 5570–5571. [Google Scholar] [CrossRef]
- Bidanset, D.J.; Beadle, J.R.; Wan, W.B.; Hostetler, K.Y.; Kern, E.R. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. J. Infect. Dis. 2004, 190, 499–503. [Google Scholar] [CrossRef]
- Delaune, D.; Iseni, F. Drug development against smallpox: Present and future. Antimicrob. Agents Chemother. 2020, 64, e01683-19. [Google Scholar] [CrossRef]
- Alvarez-Cardona, J.J.; Whited, L.K.; Chemaly, R.F. Brincidofovir: Understanding its unique profile and potential role against adenovirus and other viral infections. Future Microbiol. 2020, 15, 389–400. [Google Scholar] [CrossRef]
- Chan-Tack, K.; Harrington, P.; Bensman, T.; Choi, S.Y.; Donaldson, E.; O’Rear, J.; McMillan, D.; Myers, L.; Seaton, M.; Ghantous, H.; et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. Food and Drug Administration’s Evaluation. Antivir. Res. 2021, 195, 105182. [Google Scholar] [CrossRef]
- De Clercq, E.; Jiang, Y.; Li, G. Therapeutic strategies for human poxvirus infections: Monkeypox (mpox), smallpox, molluscipox, and orf. Travel Med. Infect. Dis. 2023, 52, 102528. [Google Scholar] [CrossRef]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.; Duncan, C.J.; et al. NHS England High Consequence Infectious Diseases (Airborne) Network. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef]
- Rao, A.K.; Schrodt, C.A.; Minhaj, F.S.; Waltenburg, M.A.; Cash-Goldwasser, S.; Yu, Y.; Petersen, B.W.; Hutson, C.; Damon, I.K. Interim Clinical Treatment Considerations for Severe Manifestations of Mpox—United States, February 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 232–243. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Cidofovir in the treatment of poxvirus infections. Antivir. Res. 2002, 55, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, R.; De Clercq, E. Role of cidofovir in the treatment of DNA virus infections, other than CMV infections, in immunocompromised patients. Curr. Opin. Investig. Drugs 2002, 3, 1561–1566. [Google Scholar]
- Wold, W.S.; Toth, K. New drug on the horizon for treating adenovirus. Expert Opin. Pharmacother. 2015, 16, 2095–2099. [Google Scholar] [CrossRef] [PubMed]
- Lalezari, J.P. Cidofovir: A new therapy for cytomegalovirus retinitis. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 14 (Suppl. 1), S22–S26. [Google Scholar] [CrossRef]
- Kern, E.R. In vitro activity of potential anti-poxvirus agents. Antiv. Res. 2003, 57, 35–40. [Google Scholar] [CrossRef]
- Mondi, A.; Gagliardini, R.; Mazzotta, V.; Vita, S.; Carletti, F.; Pinnetti, C.; Giancola, M.L.; Specchiarello, E.; Lanini, S.; Faraglia, F.; et al. Clinical experience with use of oral Tecovirimat or Intravenous Cidofovir for the treatment of Monkeypox in an Italian reference hospital. J. Infect. 2023, 86, 66–117. [Google Scholar] [CrossRef]
- Raccagni, A.R.; Candela, C.; Bruzzesi, E.; Mileto, D.; Canetti, D.; Rizzo, A.; Castagna, A.; Nozza, S. Real-life use of cidofovir for the treatment of severe monkeypox cases. J. Med. Virol. 2023, 95, e28218. [Google Scholar] [CrossRef]
- Fabrizio, C.; Bruno, G.; Cristiano, L.; Buccoliero, G.B. Cidofovir for treating complicated monkeypox in a man with acquired immune deficiency syndrome. Infection 2023, 51, 519–522. [Google Scholar] [CrossRef]
- Stafford, A.; Rimmer, S.; Gilchrist, M.; Sun, K.; Davies, E.P.; Waddington, C.S.; Chiu, C.; Armstrong-James, D.; Swaine, T.; Davies, F.; et al. Use of cidofovir in a patient with severe mpox and uncontrolled HIV infection. Lancet Infect. Dis. 2023, 23, e218–e226. [Google Scholar] [CrossRef]
- Moschese, D.; Giacomelli, A.; Beltrami, M.; Pozza, G.; Mileto, D.; Reato, S.; Zacheo, M.; Corbellino, M.; Rizzardini, G.; Antinori, S. Hospitalisation for monkeypox in Milan, Italy. Travel Med. Infect. Dis. 2022, 49, 102417. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Muniz, C.A.; Montero-Menárguez, J.; López-Valle, A.; Agud-Dios, M.; Arroyo-Andrés, J.; Rodriguez-Peralto, J.L.; Palencia-Pérez, S.I.; Tarín-Vicente, E.J. Monkeypox: Is topical cidofovir a good idea? Clin. Exp. Dermatol. 2023, 48, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Patel, S.K.; Agrawal, A.; Channabasappa, N.K.; Niranjan, A.K.; Chandra Das, B.; Pandey, M.K.; Tiwari, S.P.; Gaihre, M. Mpox vaccination in global perspective: Priorities and challenges. Ann. Med. Surg. 2023, 85, 2243–2246. [Google Scholar]
- Reeves, P.M.; Bommarius, B.; Lebeis, S.; McNulty, S.; Christensen, J.; Swimm, A.; Chahroudi, A.; Chavan, R.; Feinberg, M.B.; Veach, D.; et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med. 2005, 11, 731–739, Erratum in Nat. Med. 2005, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
- Prichard, M.N.; Kern, E.R. Orthopoxvirus targets for the development of new antiviral agents. Antiv. Res. 2012, 94, 111–125. [Google Scholar] [CrossRef]
- Lam, H.Y.I.; Guan, J.S.; Mu, Y. In Silico repurposed drugs against mpoxvirus. Molecules 2022, 27, 5277. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Abas, A.H.; Tallei, T.E.; Al-Zaher, M.A.; Al-Sheef, N.M.; Fatimawali; Al-Nass, E.Z.; Al-Ebrahim, E.A.; Effendi, Y.; Idroes, R.; et al. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J. Med. Virol. 2023, 95, e28306. [Google Scholar] [CrossRef]
- Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.; Hussain, S. A preliminary assessment of silver nanoparticle inhibition of mpox virus plaque formation. Nanoscale Res. Lett. 2008, 3, 129–133. [Google Scholar] [CrossRef]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef]
- Alkhalil, A.; Strand, S.; Mucker, E.; Huggins, J.W.; Jahrling, P.B.; Ibrahim, S.M. Inhibition of Mpox virus replication by RNA interference. Virol. J. 2009, 6, 188. [Google Scholar] [CrossRef]
- Byrareddy, S.N.; Sharma, K.; Sachdev, S.; Reddy, A.S.; Acharya, A.; Klaustermeier, K.M.; Lorson, C.L.; Singh, K. Potential therapeutic targets for Mpox: The evidence to date. Expert Opin. Ther. Targets 2023, 27, 419–431. [Google Scholar] [CrossRef] [PubMed]
Tecovirimat | Brincidofovir | Cidofovir | |
---|---|---|---|
MPX EC50 | 0.07–0.16 µM | 0.07–1.2 µM | 27–78 µM |
Mechanism of action | inhibits viral protein p37, which is involved in the final steps of maturation of the virus, thus reducing the production of extracellular virus | DNA polymerase inhibitor | DNA polymerase inhibitor |
T 1/2 | 18–26 h | 19.3 h (CDV diphosphate 113 h) | 3.2–4.4 h (intracellular t1/2 significantly longer) |
Protein binding | 77–82% | >99.9% | <6% |
Elimination | 73% urine (predominantly as metabolites); 23% feces (predominantly as parent drug) | Excreted in urine and bile as metabolites | The primary route of elimination is renal, with approximately 90% of the total dose cleared by the kidneys |
Pharmaceutical preparation | 200 mg capsules | 100 mg tablets; 10 mg/mL oral suspension | Injection |
Injection (10 mg/mL) | |||
Mode of administration | Oral or IV | PO only | IV |
Dosage | Oral (take within 30 min of full meal): 13–24 kg: 200 mg Q12h; 25–39 kg: 400 mg Q12h; 40–119 kg: 600 mg Q12h; 120 kg or above: 600 mg Q8h | <10 kg: 6 mg/kg (suspension) once weekly × 2 doses (day 1 and 8); 10 kg to <48 kg: 4 mg/kg (suspension) once weekly × 2 doses (day 1 and 8); 48 kg and above: 200 mg (20 mL or 1 tablet) once weekly × 2 doses (day 1 and 8); Tablets: ≥48 kg: 200 mg on days 1 and 8 (no food required) | 5 mg/kg IV once a week × 2 weeks (may repeat 5 mg/kg every other week thereafter); no definitive dosing data for poxviruses. Properly timed IV prehydratation with normal saline and probenecid: 2 g po 3 h before each dose and further 1 g doses 2 and 8 h after the cidofovir infusion. |
Injection: 3–34 kg: 6 mg/kg Q12h over 6 h; 35–119 kg: 200 mg Q12h over 6 h; 120 kg and above: 300 mg Q12h over 6 h | |||
Duration of treatment | 14 days | 2 doses (day 1 and 8) | Data limited; Mpox model gave 5 mg/kg as a single dose |
FDA approval | Adults and children weighing at least 3 kg for treatment of human smallpox | Adult, pediatric, and neonates for treatment of human smallpox | Treatment of CMV retinitis in patients with AIDS |
Renal dose adjustment | No dosage adjustment required for capsules; contraindicated as injection if CrCl < 30 mL/min | No dosage adjustment required | Contraindicated if CrCl ≤ 55 mL/min |
Hepatic dose adjustment | No dose adjustment | No dosage adjustment required | No data |
Use in Pregnancy | No human data; safe in animals | May cause fetal harm based on animal data. No human data available | Not recommended in pregnancy |
Most common adverse events | Headache, nausea, abdominal pain, and vomiting | Diarrhea, increased transaminases (2–7%) or bilirubin, vomiting. May irreversibly impair fertility in animal studies | Neutropenia, decreased ocular pressure, nephrotoxicity, and dose-dependent tubular injury (Fanconi-like syndrome); probenecid: hypersensitivity reactions, rash, nausea, and vomiting |
Author Study, Year and Reference | n. | Type of Study | n. of PLWH | n. Treated with Brincidofovir | Control Group | Clinical Setting | Outcome | Notes |
---|---|---|---|---|---|---|---|---|
Mitjà, 2023 [62] | 382 | Retrospective study | All | 7 subjects (2%) treated with brincidofovir or cidofovir | No | PLWH with advanced HIV infection | Overall, 107 (28%) of 382 were hospitalized of whom 27 (25%) died. | Severe complications were more common in people with a CD4 cell count of less than 100 cells per mm³. |
Adler, 2022 [74] | 7 | Retrospective study | None | 3 | No | Hospitalized | All subjects underwent full recovery. | All subjects experienced a reversible elevation of transaminases. |
Author Study, Year and Reference | n. | Type of Study | n. of PLWH | n. Treated with Cidofovir | Control Group | Clinical Setting | Outcome | Notes |
---|---|---|---|---|---|---|---|---|
Mitjà, 2023 [62] | 382 | Retrospective study | All | 2% (brincidofovir or cidofovir) | No | PLWH with advanced HIV infection | Overall, 107 (28%) of 382 were hospitalized, of whom 27 (25%) died. | Severe complications were more common in people with a CD4 cell count of less than 100 cells per mm³ |
Mondi, 2023 [81] | 19 | Case series | 7 | 4 | No | Hospitalized | Complete recovery was observed in all patients with a median of 15 days from treatment start. | Cidofovir was well tolerated. |
No significative alterations of blood tests were observed, apart | ||||||||
from a transient increase in alanine aminotransferase after cidofovir. | ||||||||
Raccagni, 2023 [82] | 4 | Case series | 2 | 4 | No | Hospitalized | The authors reported a rapid improvement within days in all cases, evidenced by a decrease in numbers and crusting of Mpox lesions, and resolution of presenting symptoms. | Further administrations of cidofovir were not required. No reported adverse events or any new symptoms were observed after cidofovir administration. |
Fabrizio, 2023 [83] | 1 | Case report | 1 | 1 | No | Hospitalized | The patient underwent full recovery, despite his immune system showing limited signs of recovery due to a recent diagnosis of AIDS. | This individual was successfully treated by administering two doses of cidofovir with a one-week interval between them. |
Stafford, 2023 [84] | 1 | Case report | 1 | 1 | No | Hospitalized | He was discharged 52 days after his second admission and is well on follow-up. | Subject with prolonged and severe illness. A clinical response to cidofovir was evidenced, despite a previous full course of tecovirimat; he received two further doses of cidofovir, one at day seven and another at day 21 after the first dose. |
Moschese, 2022 [85] | 4 | Case series | 1 | 1 (a subject who was HIV negative) | No | Hospitalized | Full recovery and discharge after 8 days. | The subject received two doses of cidofovir 5 mg/kg at days 1 and 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, G.; Buccoliero, G.B. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life 2023, 13, 1969. https://doi.org/10.3390/life13101969
Bruno G, Buccoliero GB. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life. 2023; 13(10):1969. https://doi.org/10.3390/life13101969
Chicago/Turabian StyleBruno, Giuseppe, and Giovanni Battista Buccoliero. 2023. "Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review" Life 13, no. 10: 1969. https://doi.org/10.3390/life13101969
APA StyleBruno, G., & Buccoliero, G. B. (2023). Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life, 13(10), 1969. https://doi.org/10.3390/life13101969