Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome
Abstract
:1. Introduction
2. Biomarkers of Myocardial Injury
2.1. Troponin and High-Sensitivity Troponin
2.2. Creatine Kinase MB (CK-MB)
3. Biomarkers of Neurohormonal Activation
3.1. B Type Natriuretic Peptide (BNP)
3.2. Copeptin
4. Inflammatory Biomarkers
4.1. C Reactive Protein (CRP)
4.2. Interleukin-6 (IL-6)
4.3. Myeloperoxidase (MPO)
5. Biomarkers Associated with Thrombosis-Fibrinolysis
5.1. D-Dimers
5.2. Fibrinogen
6. Additional Biomarkers
6.1. Cystatin C (CysC)
6.2. Heart-Type Fatty Acid Binding Protein (hFABP)
6.3. Endocan
6.4. Galectin
6.5. Soluble Suppression of Tumorigenicity (sST2)
6.6. Micro-RNA
6.7. F2 Isoprostanes
6.8. Soluble Oxidized Low-Density Lipoprotein Receptor-1 (sLOX-1)
6.9. Growth Differentiation Factor 15
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collaborators, G.B.D.C.o.D. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Libby, P. Acute Coronary Syndromes: The Way Forward From Mechanisms to Precision Treatment. Circulation 2017, 136, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, ehad191. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Anand, A.; E Strachan, F.; Ferry, A.V.; Lee, K.K.; Chapman, A.R.; Sandeman, D.; Stables, C.L.; Adamson, P.D.; Andrews, J.P.M.; et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: A stepped-wedge, cluster-randomised controlled trial. Lancet 2018, 392, 919–928. [Google Scholar] [CrossRef]
- Saenger, A.; Korpi-Steiner, N. Advances in Cardiac Biomarkers of Acute Coronary Syndrome. Adv. Clin. Chem. 2017, 78, 1–58. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Karády, J.; Mayrhofer, T.; Ferencik, M.; Nagurney, J.T.; Udelson, J.E.; Kammerlander, A.A.; Fleg, J.L.; Peacock, W.F.; Januzzi, J.L.; Koenig, W.; et al. Discordance of High-Sensitivity Troponin Assays in Patients With Suspected Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2021, 77, 1487–1499. [Google Scholar] [CrossRef]
- Gupta, V.; Paranzino, M.; Alnabelsi, T.; Ayoub, K.; Eason, J.; Mullis, A.; Kotter, J.R.; Parks, A.; May, L.; Nerusu, S.; et al. 5th generation vs 4th generation troponin T in predicting major adverse cardiovascular events and all-cause mortality in patients hospitalized for non-cardiac indications: A cohort study. PLoS ONE 2021, 16, e0246332. [Google Scholar] [CrossRef]
- Lipinski, M.J.; Baker, N.C.; Escárcega, R.O.; Torguson, R.; Chen, F.; Aldous, S.J.; Christ, M.; Collinson, P.O.; Goodacre, S.W.; Mair, J.; et al. Comparison of conventional and high-sensitivity troponin in patients with chest pain: A collaborative meta-analysis. Am. Hear. J. 2015, 169, 6–16.e6. [Google Scholar] [CrossRef]
- Mueller, C. Biomarkers and acute coronary syndromes: An update. Eur. Heart J. 2013, 35, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Huang, S.-S.; Yeo, Y.H.; Hou, Y.-T.; Park, J.Y.; Inoue, K.; Hsu, W.-T. High-sensitivity-cardiac troponin for accelerated diagnosis of acute myocardial infarction: A systematic review and meta-analysis. Am. J. Emerg. Med. 2020, 38, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, M.R.; Twerenbold, R.; Reichlin, T.; Wildi, K.; Haaf, P.; Schaefer, M.; Zellweger, C.; Moehring, B.; Stallone, F.; Sou, S.M.; et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur. Heart J. 2014, 35, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Artunc, F.; Mueller, C.; Breidthardt, T.; Twerenbold, R.; Peter, A.; Thamer, C.; Weyrich, P.; Haering, H.-U.; Friedrich, B. Sensitive Troponins–Which Suits Better for Hemodialysis Patients? Associated Factors and Prediction of Mortality. PLoS ONE 2012, 7, e47610. [Google Scholar] [CrossRef]
- Loria, V.; Leo, M.; Biasillo, G.; Dato, I.; Biasucci, L.M. Biomarkers in Acute Coronary Syndrome. Biomark Insights 2008, 3, 453–468. [Google Scholar] [CrossRef]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef]
- Pöyhönen, P.; Kylmälä, M.; Vesterinen, P.; Kivistö, S.; Holmström, M.; Lauerma, K.; Väänänen, H.; Toivonen, L.; Hänninen, H. Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural myocardial infarction—A prospective CMR study. BMC Cardiovasc. Disord. 2018, 18, 27. [Google Scholar] [CrossRef]
- Dohi, T.; Maehara, A.; Brener, S.J.; Généreux, P.; Gershlick, A.H.; Mehran, R.; Gibson, C.M.; Mintz, G.S.; Stone, G.W. Utility of Peak Creatine Kinase-MB Measurements in Predicting Myocardial Infarct Size, Left Ventricular Dysfunction, and Outcome After First Anterior Wall Acute Myocardial Infarction (from the INFUSE-AMI Trial). Am. J. Cardiol. 2015, 115, 563–570. [Google Scholar] [CrossRef]
- Hendriks, T.; Hartman, M.H.T.; Vlaar, P.J.J.; Prakken, N.H.J.; van der Ende, Y.M.Y.; Lexis, C.P.H.; van Veldhuisen, D.J.; van der Horst, I.C.C.; Lipsic, E.; Nijveldt, R.; et al. Predictors of left ventricular remodeling after ST-elevation myocardial infarction. Int. J. Cardiovasc. Imaging 2017, 33, 1415–1423. [Google Scholar] [CrossRef]
- Ndrepepa, G.; Colleran, R.; Braun, S.; Xhepa, E.; Hieber, J.; Cassese, S.; Fusaro, M.; Kufner, S.; Laugwitz, K.-L.; Schunkert, H.; et al. Comparative prognostic value of postprocedural creatine kinase myocardial band and high-sensitivity troponin T in patients with non-ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 2018, 91, 215–223. [Google Scholar] [CrossRef]
- Gho, J.M.I.H.; Postema, P.G.; Conijn, M.; Bruinsma, N.; de Jong, J.S.S.G.; Bezzina, C.R.; Wilde, A.A.M.; Asselbergs, F.W. Heart failure following STEMI: A contemporary cohort study of incidence and prognostic factors. Open Hear. 2017, 4, e000551. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, L.; Zhang, Y.; Tang, R.; Zhao, M.; Huang, Z.; Liu, J.; Xu, D.; He, Y.; Wang, B.; et al. Predictive value of creatine kinase MB for contrast-induced acute kidney injury among myocardial infarction patients. BMC Cardiovasc. Disord. 2021, 21, 337. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, Y.; Zhang, L.; Xu, W.; Zhou, X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad. Med. J. 2019, 95, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Yasue, H.; Yoshimura, M.; Ogawa, H.; Jougasaki, M.; Matsumura, T.; Mukoyama, M.; Nakao, K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993, 88, 82–91. [Google Scholar] [CrossRef] [PubMed]
- De Lemos, J.A.; Morrow, D.A.; Bentley, J.H. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl. J. Med. 2001, 345, 1014–1021. [Google Scholar] [CrossRef]
- Omland, T.; Aakvaag, A.; Bonarjee, V.V.S.; Caidahl, K.; Lie, R.T.; Nilsen, D.W.T.; Sundsfjord, J.A.; Dickstein, K. Plasma Brain Natriuretic Peptide as an Indicator of Left Ventricular Systolic Function and Long-term Survival After Acute Myocardial Infarction. Circulation 1996, 93, 1963–1969. [Google Scholar] [CrossRef]
- Mueller, T.; Gegenhuber, A.; Dieplinger, B.; Poelz, W.; Haltmayer, M. Long-term stability of endogenous B-type natriuretic peptide (BNP) and amino terminal proBNP (NT-proBNP) in frozen plasma samples. Clin. Chem. Lab. Med. 2004, 42, 942–944. [Google Scholar] [CrossRef]
- Omland, T.; A de Lemos, J.; A Morrow, D.; Antman, E.M.; Cannon, C.P.; Hall, C.; Braunwald, E. Prognostic value of N-terminal pro-atrial and pro-brain natriuretic peptide in patients with acute coronary syndromes. Am. J. Cardiol. 2002, 89, 463–465. [Google Scholar] [CrossRef]
- Salama, R.H.; El-Moniem, A.E.; El-Hefney, N.; Samor, T. N-TerminaL PRO-BNP in Acute Coronary Syndrome Patients with ST Elevation Versus Non ST Elevation in Qassim Region of Saudi Arabia. Int. J. Health Sci. 2011, 5, 136–145. [Google Scholar]
- Hermans, W.R.; Foley, D.P.; Rensing, B.J.; Rutsch, W.; Heyndrickx, G.R.; Danchin, N.; Mast, G.; Hanet, C.; Lablanche, J.-M.; Rafflenbeul, W.; et al. Usefulness of quantitative and qualitative angiographic lesion morphology, and clinical characteristics in predicting major adverse cardiac events during and after native coronary balloon angioplasty. CARPORT and MERCATOR Study Groups. Am. J. Cardiol. 1993, 72, 14–20. [Google Scholar] [CrossRef]
- Lindholm, D.; James, S.K.; Gabrysch, K.; Storey, R.F.; Himmelmann, A.; Cannon, C.P.; Wallentin, L. Faculty Opinions recommendation of Association of Multiple Biomarkers With Risk of All-Cause and Cause-Specific Mortality After Acute Coronary Syndromes: A Secondary Analysis of the PLATO Biomarker Study. J. AMA Cardiol. 2018, 3, 1160–1166. [Google Scholar] [CrossRef]
- Morrow, D.A.; de Lemos, J.A.; Sabatine, M.S.; Murphy, S.A.; Demopoulos, L.A.; DiBattiste, P.M.; McCabe, C.H.; Gibson, C.; Cannon, C.P.; Braunwald, E. Evaluation of B-type natriuretic peptide for risk assessment in unstable Angina/Non–ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J. Am. Coll. Cardiol. 2003, 41, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, T.; Lindahl, B.; Siegbahn, A.; Andren, B.; Frostfeldt, G.; Lagerqvist, B.; Stridsberg, M.; Venge, P.; Wallentin, L. N-terminal pro-brain natriuretic peptide in relation to inflammation, myocardial necrosis, and the effect of an invasive strategy in unstable coronary artery disease. J. Am. Coll. Cardiol. 2003, 42, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Struck, J.; Morgenthaler, N.G.; Bergmann, A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides 2005, 26, 2500–2504. [Google Scholar] [CrossRef]
- Refardt, J.; Winzeler, B.; Christ-Crain, M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin. Endocrinol. 2019, 91, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Roczek-Janowska, M.; Kacprzak, M.; Dzieciol, M.; Zielinska, M.; Chizynski, K. Prognostic value of copeptin in patients with acute myocardial infarction treated with percutaneous coronary intervention: A prospective cohort study. J. Thorac. Dis. 2021, 13, 4094–4103. [Google Scholar] [CrossRef]
- Smaradottir, M.I.; Andersen, K.; Gudnason, V.; Näsman, P.; Rydén, L.; Mellbin, L.G. Copeptin is associated with mortality in elderly people. Eur. J. Clin. Investig. 2021, 51, e13516. [Google Scholar] [CrossRef]
- Maisel, A.; Mueller, C.; Neath, S.X.; Christenson, R.H.; Morgenthaler, N.G.; McCord, J.; Peacock, W.F. Copeptin helps in the early detection of patients with acute myocardial infarction: Primary results of the CHOPIN trial (Copeptin Helps in the early detection Of Patients with acute myocardial INfarction). J. Am. Coll. Cardiol. 2013, 62, 150–160. [Google Scholar] [CrossRef]
- del Val Martin, D.; Sanmartín Fernández, M.; Zamorano Gómez, J.L. Biomarkers in acute coronary syndrome. IJC Metab. Endocr. 2015, 8, 20–23. [Google Scholar] [CrossRef]
- Khandkar, C.; Madhavan, M.V.; Weaver, J.C.; Celermajer, D.S.; Galougahi, K.K. Atherothrombosis in Acute Coronary Syndromes—From Mechanistic Insights to Targeted Therapies. Cells 2021, 10, 865. [Google Scholar] [CrossRef]
- Crea, F.; Liuzzo, G. Pathogenesis of Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2013, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P. Hennekens CH. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. C-Reactive Protein Levels and Outcomes after Statin Therapy. New Engl. J. Med. 2005, 352, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.M.; Liuzzo, G.; Grillo, R.L.; Caligiuri, G.; Rebuzzi, A.G.; Buffon, A.; Summaria, F.; Ginnetti, F.; Fadda, G.; Maseri, A. Elevated Levels of C-Reactive Protein at Discharge in Patients With Unstable Angina Predict Recurrent Instability. Circulation 1999, 99, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Buettner, H.J.; Hodgson, J.M.; Marsch, S.; Perruchoud, A.P.; Roskamm, H.; Neumann, F.-J. Inflammation and Long-Term Mortality After Non–ST Elevation Acute Coronary Syndrome Treated With a Very Early Invasive Strategy in 1042 Consecutive Patients. Circulation 2002, 105, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
- Liebetrau, C.; Hoffmann, J.; Dörr, O.; Gaede, L.; Blumenstein, J.; Biermann, H.; Pyttel, L.; Thiele, P.; Troidl, C.; Berkowitsch, A.; et al. Release Kinetics of Inflammatory Biomarkers in a Clinical Model of Acute Myocardial Infarction. Circ. Res. 2015, 116, 867–875. [Google Scholar] [CrossRef]
- Kamińska, J.; Koper, O.M.; Siedlecka-Czykier, E.; Matowicka-Karna, J.; Bychowski, J.; Kemona, H. The utility of inflammation and platelet biomarkers in patients with acute coronary syndromes. Saudi J. Biol. Sci. 2018, 25, 1263–1271. [Google Scholar] [CrossRef]
- Fanola, C.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Lukas, M.A.; Bode, C.; Hochman, J.S.; Goodrich, E.L.; Braunwald, E.; O’Donoghue, M.L.; et al. Interleukin-6 and the Risk of Adverse Outcomes in Patients After an Acute Coronary Syndrome: Observations From the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib—Thrombolysis in Myocardial Infarction 52) Trial. J. Am. Hear. Assoc. 2017, 6, e005637. [Google Scholar] [CrossRef]
- Kleveland, O.; Kunszt, G.; Bratlie, M.; Ueland, T.; Broch, K.; Holte, E.; Michelsen, A.E.; Bendz, B.; Amundsen, B.H.; Espevik, T.; et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: A double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 2016, 37, 2406–2413. [Google Scholar] [CrossRef]
- Frangie, C.; Daher, J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022, 16, 53. [Google Scholar] [CrossRef]
- Ramachandra, C.J.; Ja, K.M.M.; Chua, J.; Cong, S.; Shim, W.; Hausenloy, D.J. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxidants Redox Signal. 2020, 32, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Okada, Y.; Sukhova, G.K.; Virmani, R.; Heinecke, J.W.; Libby, P. Macrophage Myeloperoxidase Regulation by Granulocyte Macrophage Colony-Stimulating Factor in Human Atherosclerosis and Implications in Acute Coronary Syndromes. Am. J. Pathol. 2001, 158, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Calmarza, P.; Lapresta, C.; Martínez, M.; Lahoz, R.; Povar, J. Utility of myeloperoxidase in the differential diagnosis of acute coronary syndrome. Arch. Cardiol. Mex 2018, 88, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Loria, V.; Dato, I.; Graziani, F.; Biasucci, L.M. Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes. Mediat. Inflamm. 2008, 2008, 135625. [Google Scholar] [CrossRef]
- Baldus, S.; Heeschen, C.; Meinertz, T.; Zeiher, A.M.; Eiserich, J.P.; Münzel, T.; Hamm, C.W. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003, 108, 1440–1445. [Google Scholar] [CrossRef]
- Govindarajan, S.; Raghavan, V.M.; Rao, A.C.V. Plasma Myeloperoxidase and Total Sialic Acid as Prognostic Indicators in Acute Coronary Syndrome. J. Clin. Diagn. Res. 2016, 10, BC09-13. [Google Scholar] [CrossRef]
- Kolodziej, A.R.; Abo-Aly, M.; Elsawalhy, E.; Campbell, C.; Ziada, K.M.; Abdel-Latif, A. Prognostic Role of Elevated Myeloperoxidase in Patients with Acute Coronary Syndrome: A Systemic Review and Meta-Analysis. Mediat. Inflamm. 2019, 2019, 2872607. [Google Scholar] [CrossRef]
- Yiu, J.Y.T.; Hally, K.E.; Larsen, P.D.; Holley, A.S. Neutrophil-Enriched Biomarkers and Long-Term Prognosis in Acute Coronary Syndrome: A Systematic Review and Meta-analysis. J. Cardiovasc. Transl. Res. 2023, 1–22. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, J.-X.; Wu, X.-Y.; Cui, Y.; Zou, Z.-H.; Liu, Y.; Gao, J. Correlation Analysis of Plasma Myeloperoxidase Level With Global Registry of Acute Coronary Events Score and Prognosis in Patients With Acute Non-ST-Segment Elevation Myocardial Infarction. Front. Med. 2022, 9, 828174. [Google Scholar] [CrossRef]
- Reihani, H.; Shamloo, A.S.; Keshmiri, A. Diagnostic Value of D-Dimer in Acute Myocardial Infarction Among Patients With Suspected Acute Coronary Syndrome. Cardiol. Res. 2018, 9, 17–21. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Mateo, J.; Santaló, M.; Oliver, A.; Guindo, J.; Badimon, L.; Martínez-Rubio, A.; Fontcuberta, J.; Schwartz, R.S.; de Luna, A.B. D -Dimer is an early diagnostic marker of coronary ischemia in patients with chest pain. Am. Hear. J. 2000, 140, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Koch, V.; Booz, C.; Gruenewald, L.D.; Albrecht, M.H.; Gruber-RouhMD, T.; Eichler, K.; Yel, I.; Mahmoudi, S.; Scholtz, J.-E.; Martin, S.S.; et al. Diagnostic performance and predictive value of D-dimer testing in patients referred to the emergency department for suspected myocardial infarction. Clin. Biochem. 2022, 104, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Biccirè, F.G.; Farcomeni, A.; Gaudio, C.; Pignatelli, P.; Tanzilli, G.; Pastori, D. D-dimer for risk stratification and antithrombotic treatment management in acute coronary syndrome patients: A systematic review and metanalysis. Thromb. J. 2021, 19, 102. [Google Scholar] [CrossRef]
- Stătescu, C.; Anghel, L.; Tudurachi, B.-S.; Leonte, A.; Benchea, L.-C.; Sascău, R.-A. From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. Int. J. Mol. Sci. 2022, 23, 9168. [Google Scholar] [CrossRef]
- Çetin, M.; Erdoğan, T.; Kırış, T.; Özer, S.; Yılmaz, A.S.; Durak, H.; Aykan, A.; Şatıroğlu, Ö. Predictive value of fibrinogen-to-albumin ratio in acute coronary syndrome. Herz 2019, 45, 145–151. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Jiao, Y.; Yu, T.; Song, J.; Wen, Z.; Wu, J.; Duan, W.; Sun, N.; Sun, Z.; Sun, Z. Prognostic value of fibrinogen-to-albumin ratio in predicting 1-year clinical progression in patients with non-ST elevation acute coronary syndrome undergoing percutaneous coronary intervention. Exp. Ther. Med. 2020, 18, 2972–2978. [Google Scholar] [CrossRef] [PubMed]
- Brankovic, M.; Kardys, I.; Berg, V.v.D.; Oemrawsingh, R.; Asselbergs, F.W.; van der Harst, P.; Hoefer, I.E.; Liem, A.; Maas, A.; Ronner, E.; et al. Evolution of renal function and predictive value of serial renal assessments among patients with acute coronary syndrome: BIOMArCS study. Int. J. Cardiol. 2020, 299, 12–19. [Google Scholar] [CrossRef]
- Correa, S.; Morrow, D.A.; Braunwald, E.; Davies, R.Y.; Goodrich, E.L.; Murphy, S.A.; Cannon, C.P.; O’Donoghue, M.L. Cystatin C for Risk Stratification in Patients After an Acute Coronary Syndrome. J. Am. Hear. Assoc. 2018, 7, e009077. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, Q.; Cheng, B.; Tao, X. Prognostic value of cystatin C in patients with acute coronary syndrome: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13440. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Dai, C.; Wang, Y.; Zeng, R.; Liu, Q. Serum cystatin C is associated with the prognosis in acute myocardial infarction patients after coronary revascularization: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2022, 22, 156. [Google Scholar] [CrossRef]
- Young, J.M.; Pickering, J.W.; George, P.M.; Aldous, S.J.; Wallace, J.; Frampton, C.M.; Troughton, R.W.; Richards, M.A.; Greenslade, J.H.; Cullen, L.; et al. Heart Fatty Acid Binding Protein and cardiac troponin: Development of an optimal rule-out strategy for acute myocardial infarction. BMC Emerg. Med. 2016, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Van Hise, C.B.; Greenslade, J.H.; Parsonage, W.; Than, M.; Young, J.; Cullen, L. External validation of heart-type fatty acid binding protein, high-sensitivity cardiac troponin, and electrocardiography as rule-out for acute myocardial infarction. Clin. Biochem. 2018, 52, 161–163. [Google Scholar] [CrossRef]
- Collinson, P.; Gaze, D.; Thokala, P.; Goodacre, S. Randomised Assessment of Treatment using Panel Assay of Cardiac markers–Contemporary Biomarker Evaluation (RATPAC CBE). Heal. Technol. Assess. 2013, 17, v–vi, 1–122. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, A.M.; Cristol, J.P.; Kuster, N.; Reynier, R.; Lefebvre, S.; Badiou, S.; Jreige, R.; Sebbane, M. Performances of the heart fatty acid protein assay for the rapid diagnosis of acute myocardial infarction in ED patients. Am. J. Emerg. Med. 2015, 33, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, M.; Mashayekhi, S.; Ghaffari, S.; Mahmoudi, J.; Sarbakhsh, P.; Garjani, A. Predictive Value of Endocan Based on TIMI Risk Score on Major Adverse Cardiovascular Events After Acute Coronary Syndrome. Angiology 2019, 70, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Kundi, H.; Balun, A.; Cicekcioglu, H.; Karayigit, O.; Topcuoglu, C.; Kilinckaya, M.F.; Kiziltunc, E.; Cetin, M.; Ornek, E. Admission Endocan Level may be a Useful Predictor for In-Hospital Mortality and Coronary Severity Index in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2017, 68, 46–51. [Google Scholar] [CrossRef]
- Dogdus, M.; Yenercag, M.; Ozyasar, M.; Yilmaz, A.; Can, L.H.; Kultursay, H. Serum Endocan Levels Predict Angiographic No-Reflow Phenomenon in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Coronary Intervention. Angiology 2021, 72, 221–227. [Google Scholar] [CrossRef]
- Cimen, A.; Emet, S.; Elitok, A. Endocan: A biomarker predicting successful reperfusion after coronary artery by-pass surgery of acute coronary syndrome patients. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 338–342. [Google Scholar]
- Qiu, C.R.; Fu, Q.; Sui, J.; Zhang, Q.; Wei, P.; Wu, Y.; Zong, B. Serum Endothelial Cell–Specific Molecule 1 (Endocan) Levels in Patients With Acute Myocardial Infarction and Its Clinical Significance: A Pilot Study. Angiology 2017, 68, 354–359. [Google Scholar] [CrossRef]
- Tian, L.; Chen, K.; Han, Z. Correlation between Galectin-3 and Adverse Outcomes in Myocardial Infarction Patients: A Meta-Analysis. Cardiol. Res. Pr. 2020, 2020, 7614327. [Google Scholar] [CrossRef]
- Asleh, R.; Enriquez-Sarano, M.; Jaffe, A.S.; Manemann, S.M.; Weston, S.A.; Jiang, R.; Roger, V.L. Faculty Opinions recommendation of Galectin-3 Levels and Outcomes After Myocardial Infarction: A Population-Based Study. J. Am. Coll. Cardiol. 2019, 73, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Gagno, G.; Padoan, L.; Stenner, E.; Beleù, A.; Ziberna, F.; Hiche, C.; Paldino, A.; Barbati, G.; Biolo, G.; Fiotti, N.; et al. Galectin 3 and Galectin 3 Binding Protein Improve the Risk Stratification after Myocardial Infarction. J. Clin. Med. 2019, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Święcki, P.; Sawicki, R.; Knapp, M.; Kamiński, K.A.; Ptaszyńska-Kopczyńska, K.; Sobkowicz, B.; Lisowska, A. Galectin-3 as the Prognostic Factor of Adverse Cardiovascular Events in Long-Term Follow up in Patients after Myocardial Infarction—A Pilot Study. J. Clin. Med. 2020, 9, 1640. [Google Scholar] [CrossRef] [PubMed]
- Mitić, B.; Jovanović, A.; Nikolić, V.N.; Stokanović, D.; Andrejić, O.M.; Vučić, R.M.; Pavlović, M.; Ignjatović, A.; Momčilović, S. Trend of Galectin-3 Levels in Patients with Non-ST-Elevation and ST-Elevation Myocardial Infarction. Medicina 2022, 58, 286. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, W.S.; Roger, V.L.; Jaffe, A.S.; Weston, S.A.; AbouEzzeddine, O.F.; Jiang, R.; Manemann, S.M.; Enriquez-Sarano, M. Prognostic Value of Soluble ST2 After Myocardial Infarction: A Community Perspective. Am. J. Med. 2017, 130, 1112.e9–1112.e15. [Google Scholar] [CrossRef]
- Hartopo, A.B.; Sukmasari, I.; Puspitawati, I. The Utility of Point of Care Test for Soluble ST2 in Predicting Adverse Cardiac Events during Acute Care of ST-Segment Elevation Myocardial Infarction. Cardiol. Res. Pr. 2018, 2018, 3048941. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, C.; Zhao, R.; Cao, Z. Diagnostic Value of sST2 in Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 697837. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Morrow, D.A.; Braunwald, E.; Cannon, C.P.; Jiang, S.; Breher, S.; Wollert, K.C. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: Observations from PROVE IT-TIMI 22. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 203–210. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Ma, Y.; Liu, X.; Peng, Y. Circulating mir-483-5p as a novel diagnostic biomarker for acute coronary syndrome and its predictive value for the clinical outcome after PCI. BMC Cardiovasc. Disord. 2023, 23, 360. [Google Scholar] [CrossRef]
- Ferguson, T.W.; Komenda, P.; Tangri, N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 2015, 24, 295–300. [Google Scholar] [CrossRef]
- Saito, T.; Arashi, H.; Yamaguchi, J.; Mori, F.; Ogawa, H.; Hagiwara, N. Elevated Cystatin-C Levels Are Associated with Increased Mortality in Acute Coronary Syndrome Patients: An HIJ-PROPER Sub-Analysis. Cardiorenal Med. 2022, 12, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, X.-B.; Bi, S.-J.; Lu, Q.-H.; Zhang, J. Serum cystatin C levels relate to no-reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction. PLoS ONE 2019, 14, e0220654. [Google Scholar] [CrossRef]
- Shafranskaya, K.S.; Kashtalap, V.V.; Gruzdeva, O.V.; Kutikhin, A.G.; Barbarash, O.L.; Barbarash, L.S. The Role of Cystatin C in the Prognosis of Adverse Outcomes after the Coronary Artery Bypass Graft Surgery During Hospitalisation. Hear. Lung Circ. 2015, 24, 193–199. [Google Scholar] [CrossRef]
- Bivona, G.; Agnello, L.; Bellia, C.; Sasso, B.L.; Ciaccio, M. Diagnostic and prognostic value of H-FABP in acute coronary syndrome: Still evidence to bring. Clin. Biochem. 2018, 58, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Melot, J.; Krinock, M.D.; Kumar, A.; Nadar, S.K.; Lip, G.Y.H. Heart-type fatty acid-binding protein: An overlooked cardiac biomarker. Ann. Med. 2020, 52, 444–461. [Google Scholar] [CrossRef]
- Jones, J.D.; Chew, P.G.; Dobson, R.; Wootton, A.; Ashrafi, R.; Khand, A. The Prognostic Value of Heart Type Fatty Acid Binding Protein in Patients with Suspected Acute Coronary Syndrome: A Systematic Review. Curr. Cardiol. Rev. 2017, 13, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, L.; Yu, X.-H.; Hu, M.; Zhang, Y.-K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef]
- Kosir, G.; Jug, B.; Novakovic, M.; Mijovski, M.B.; Ksela, J. Endocan Is an Independent Predictor of Heart Failure-Related Mortality and Hospitalizations in Patients with Chronic Stable Heart Failure. Dis. Markers 2019, 2019, 9134096. [Google Scholar] [CrossRef]
- Behnoush, A.H.; Khalaji, A.; Bahiraie, P.; Alehossein, P.; Shobeiri, P.; Peisepar, M.; Cannavo, A. Endocan as a marker of endothelial dysfunction in hypertension: A systematic review and meta-analysis. Hypertens. Res. 2023, 46, 1–12. [Google Scholar] [CrossRef]
- Kundi, H.; Gok, M.; Kiziltunc, E.; Topcuoglu, C.; Cetin, M.; Cicekcioglu, H.; Ugurlu, B.; Ulusoy, F.V. The Relationship Between Serum Endocan Levels With the Presence of Slow Coronary Flow: A Cross-Sectional Study. Clin. Appl. Thromb. 2017, 23, 472–477. [Google Scholar] [CrossRef]
- Bessa, J.; Albino-Teixeira, A.; Reina-Couto, M.; Sousa, T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin. Chim. Acta 2020, 509, 310–335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Kecheng, Y.; Zhao, X.; Hu, X.; Zhu, J.; Wang, Y.; Ni, J. The higher serum endocan levels may be a risk factor for the onset of cardiovascular disease: A meta-analysis. Medicine 2018, 97, e13407. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yuan, Y.; Guo, K.; Lao, Y.; Huang, X.; Feng, L. Value of Galectin-3 in Acute Myocardial Infarction. Am. J. Cardiovasc. Drugs 2020, 20, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.C.; van der Velde, A.R.; Pascual-Figal, D.A.; de Boer, R.A. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur. J. Pharmacol. 2015, 763, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridonos, M.; McNeill, E.; de Bono, J.P.; Smith, A.; Burnand, K.G.; Channon, K.M.; Greaves, D.R. Galectin-3 Is an Amplifier of Inflammation in Atherosclerotic Plaque Progression Through Macrophage Activation And Monocyte Chemoattraction. Arter. Thromb. Vasc. Biol. 2008, 28, 433–440. [Google Scholar] [CrossRef]
- Kusaka, H.; Yamamoto, E.; Hirata, Y.; Fujisue, K.; Tokitsu, T.; Sugamura, K.; Sakamoto, K.; Tsujita, K.; Kaikita, K.; Hokimoto, S.; et al. Clinical significance of plasma galectin-3 in patients with coronary artery disease. Int. J. Cardiol. 2015, 201, 532–534. [Google Scholar] [CrossRef]
- Homsak, E.; Gruson, D. Soluble ST2: A complex and diverse role in several diseases. Clin. Chim. Acta 2020, 507, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Z.; Ma, M.; He, Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance. Front. Cardiovasc. Med. 2022, 9, 924461. [Google Scholar] [CrossRef]
- O’gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; De Lemos, J.A.; Zhao, D.X. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2013, 61, e78–e140. [Google Scholar] [CrossRef]
- Aleksova, A.; Paldino, A.; Beltrami, A.P.; Padoan, L.; Iacoviello, M.; Sinagra, G.; Emdin, M.; Maisel, A.S. Cardiac Biomarkers in the Emergency Department: The Role of Soluble ST2 (sST2) in Acute Heart Failure and Acute Coronary Syndrome—There is Meat on the Bone. J. Clin. Med. 2019, 8, 270. [Google Scholar] [CrossRef]
- Bai, S.; Liu, H.; Wu, H.; Wang, X.; Li, R.; Li, X.; Li, X.; Zhang, L.; Chen, T.; Du, R. Predictive value of soluble suppression of tumourigenicity 2 on myocardial reperfusion. Intern. Med. J. 2020, 50, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Somuncu, M.U.; Akgun, T.; Cakır, M.O.; Akgul, F.; Serbest, N.G.; Karakurt, H.; Can, M.; Demir, A.R. The Elevated Soluble ST2 Predicts No-Reflow Phenomenon in ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J. Atheroscler. Thromb. 2019, 26, 970–978. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Kansakar, U.; Varzideh, F.; Mone, P.; Jankauskas, S.S.; Santulli, G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022, 11, 983. [Google Scholar] [CrossRef]
- Widera, C.; Gupta, S.K.; Lorenzen, J.M.; Bang, C.; Bauersachs, J.; Bethmann, K.; Kempf, T.; Wollert, K.C.; Thum, T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J. Mol. Cell. Cardiol. 2011, 51, 872–875. [Google Scholar] [CrossRef]
- Dong, Y.-M.; Liu, X.-X.; Wei, G.-Q.; Da, Y.-N.; Cha, L.; Ma, C.-S. Prediction of long-term outcome after acute myocardial infarction using circulating miR-145. Scand. J. Clin. Lab. Investig. 2015, 75, 85–91. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Ouatu, A.; Badescu, M.C.; Dima, N.; Ganceanu-Rusu, A.R.; Popescu, D.; Floria, M.; Rezus, E.; Rezus, C. Current Knowledge of MicroRNAs (miRNAs) in Acute Coronary Syndrome (ACS): ST-Elevation Myocardial Infarction (STEMI). Life 2021, 11, 1057. [Google Scholar] [CrossRef]
- Maries, L.; Moatar, A.I.; Chis, A.R.; Marian, C.; Luca, C.T.; Sirbu, I.O.; Gaiță, D. Plasma hsa-miR-22-3p Might Serve as an Early Predictor of Ventricular Function Recovery after ST-Elevation Acute Myocardial Infarction. Biomedicines 2023, 11, 2289. [Google Scholar] [CrossRef]
- Varzideh, F.; Kansakar, U.; Donkor, K.; Wilson, S.; Jankauskas, S.S.; Mone, P.; Wang, X.; Lombardi, A.; Santulli, G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022, 9, 863238. [Google Scholar] [CrossRef]
- Carvalho, A.; Ji, Z.; Zhang, R.; Zuo, W.; Qu, Y.; Chen, X.; Tao, Z.; Ji, J.; Yao, Y.; Ma, G. Inhibition of miR-195-3p protects against cardiac dysfunction and fibrosis after myocardial infarction. Int. J. Cardiol. 2023, 387, 131128. [Google Scholar] [CrossRef]
- Kumar, S.; Shih, C.-M.; Tsai, L.-W.; Dubey, R.; Gupta, D.; Chakraborty, T.; Sharma, N.; Singh, A.V.; Swarup, V.; Singh, H.N. Transcriptomic Profiling Unravels Novel Deregulated Gene Signatures Associated with Acute Myocardial Infarction: A Bioinformatics Approach. Genes 2022, 13, 2321. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.D.; Kim, Y.; Choi, S.A.; Han, I.; Yadav, D.K. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- LeLeiko, R.M.; Vaccari, C.S.; Sola, S.; Merchant, N.; Nagamia, S.H.; Thoenes, M.; Khan, B.V. Usefulness of Elevations in Serum Choline and Free F2-Isoprostane to Predict 30-Day Cardiovascular Outcomes in Patients With Acute Coronary Syndrome. Am. J. Cardiol. 2009, 104, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997, 386, 73–77. [Google Scholar] [CrossRef]
- Kraler, S.; A Wenzl, F.; Georgiopoulos, G.; Obeid, S.; Liberale, L.; von Eckardstein, A.; Muller, O.; Mach, F.; Räber, L.; Losdat, S.; et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. Eur. Heart J. 2022, 43, 1849–1860. [Google Scholar] [CrossRef]
- Li, M.; Duan, L.; Cai, Y.-L.; Li, H.-Y.; Hao, B.-C.; Chen, J.-Q.; Liu, H.-B. Growth differentiation factor-15 is associated with cardiovascular outcomes in patients with coronary artery disease. Cardiovasc. Diabetol. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Ullah, A.; Sajid, S.; Qureshi, M.; Kamran, M.; Anwaar, M.A.; Naseem, M.A.; Zaman, M.U.; Mahmood, F.; Rehman, A.; Shehryar, A.; et al. Novel Biomarkers and the Multiple-Marker Approach in Early Detection, Prognosis, and Risk Stratification of Cardiac Diseases: A Narrative Review. Cureus 2023, 15, e42081. [Google Scholar] [CrossRef]
Biomarker | Mechanism of Action-Release | Clinical Application & Abilities |
---|---|---|
hs-Troponin | Regulates cardiac contraction. Released at myocardium necrosis. T & I isoforms cardiac specific | Modification above 99th URL diagnostic for MI hs-cTn has high sensitivity & NPV at cost of specificity. 5x URL increase→high PPV (>90%) for type 1 MI ‘Rule-out’ & ‘rule-in’ MI algorithms Differentiate NSTEMI & UA Rises in 3–12 h, peak at 24 h. Prognosis of all-cause mortality |
CK-MB | Released at myocardium necrosis. CK-MB isoenzyme mostly at cardiac muscle (low levels in skeletal muscle) | Diagnosis: Rises after 4–6 h & peaks at 24 h Normal at 48–72 h→detects reinfarction. NPV 97% & sensitivity 91% at first 6 h Prognostic for infarct size, wall motion abnormalities, mortality, HF, possibly LV remodeling, CI-AKI |
Cystatin C | Protease inhibitor secreted by nucleated cells. Filtered through glomerulus and catabolized in proximal tubule. Associated with Egfr | Prognostic/risk stratification for all-cause mortality, HF hospitalization, CVD after ACS Peaks at 3rd day after ACS (vs. 6th Creatinine) Prognostic for NRP, MACE & mortality after PCI |
H-FABP | Released from cytoplasm after cardiac injury and necrosis | High sensitivity at decreased cutoffs (4 μg/L) Early biomarker (<1 h), reinfarction detection Possible value in early ruling out MI |
Endocan | Endothelial dysfunction & activation Inflammation | Risk stratification and Prognosis of MACE, high SYNTAX score Possibly indicates reperfusion after PCI or CABG Possibly different levels in STEMI vs. NSTEMI/UA |
Galectin | Cardiac remodeling and fibrosis (fibroblasts→myofibroblasts & collagen synthesis) Plaque Destabilization in CVD | Prognosis of MI and HF Risk stratification (LVEF, MACE, mortality, HF, remodeling) Interrelated with atherosclerosis & inflammation. Possible therapeutic target |
sST2 | Decoy receptor for sST2/IL-33 interaction cardiac fibrosis, hypertrophy and remodeling | Prognostic factor ADHF (>35 ng/mL) Therapeutic guidance in Type 1 & 2 MI (>35 ng/mL likely adverse remodeling & >70 ng/mL aggressive treatment) Prognostic for ACS (mortality, HF, remodeling) Prognostic for reperfusion & NRP after PCI |
D-dimers | Breakdown of fibrin clot by plasmin at the site of coronary artery thrombosis | Possibly diagnostic for MI and differentiate from UA (>500 ng/mL) Prognostic for recurring MI, all-cause mortality, in hospital complications, NRP |
CRP | Acute-phase inflammation | Prognostic factor of future myocardial infarction and stroke, levels > 3 mg/L upon discharge: increased risk of readmission within 1 year for recurrent cardiovascular instability or myocardial infarction |
micro-RNA | Control of gene expression, oxidative stress, inflammation, apoptosis, fibrosis, and cardiac remodeling processes | Predictive factor for cardiovascular mortality and the development of heart failure |
GDF-15 | Increases in tissue damage and inflammation | Risk predictor |
Fibrinogen | Clot formation, platelet aggregation, fibrinolysis, inflammation | Induce coronary artery restenosis, baseline levels: increased risk of cardiovascular events within 2 years |
Biomarker | Study | Type | Population | Results | Concentrations |
---|---|---|---|---|---|
Cystatin C (CysC) | Brankovic et al., 2020 [67] | BIOMArCS prospective multicenter study | Case cohort of 844 patients after ACS for 1 year follow-up | CysC independent of GRACE score and associated with mortality, non-fatal MI & revascularization due to angina | CysC at any time associated with endpoint (HR [95% CI]: per 1SD increase of 2logCysC: 1.79 [1.21–2.63], p = 0.006) |
Correa et al., 2018 [68] | Double- blind clinical trial | 4965 random, hospitalized for ACS patients from SOLID-TIMI 52 trial | Strong correlation with Creatinine & eGFR Elevated CysC- 89% higher risk of CVD, HF hospitalization, 44% of MACE, 28% of MI Q4: x5 risk of CVD or HF, >x2 MACE | Quartiles of CysC: Q1 < 0.78, Q2 = 0.78–0.88, Q3 = 0.88–1.03, Q4 > 1.03 mg/mL | |
Sun et al., 2021 [69] | Meta-analysis | 10 studies | Significant correlation of high level CysC with all-cause mortality & MACE but not significant with recurrent MI | High Q4 and low Q1 quartiles from each study | |
Chen et al., 2022 [70] | Meta-analysis | 8 studies with 7394 patients after PCI or CABG | ↑cystatin significant relation with MACE & mortality after PCI Non-significant after CABG | - | |
hFABP | Young et al., 2016 [71] | Feasibility study | 1079 patients, 248 with MI | hFABP + hs-cTn can identify up to 40% patients as low risk at presentation | hFABP < 4.3 ng/mL + hs-cTn I < 10.0 ng/L + (-) ECG (>99% sensitivity) |
Van Hise et al., 2018 [72] | Cohort study | 1230 patients, 112 with MI | h-FABP, hs-cTn and ECG has high accuracy and can rule out more patients | hFABP + hs-cTn T (100% sensitivity + 32.4% specificity) hFABP and hs-cTn I (99.1% sensitivity + 43.4% specificity) hs-cTn I alone higher specificity 68.1% | |
Collinson et al., 2013 [73] | Randomized controlled trial | 850 patients with chest pain + (-) ECG sampled on admission + 90 min | Hs-cTn best single marker, further info on hFABP required | H-FABP + cTn T/ cTn I (sensitivity 0.78–0.92) at 2.5 μg/L cut-off (single troponin at 2 samples 0.78–0.95) | |
Dupuy et al., 2015 [74] | Prospective cohort study | 181 patients, 47 with MI (31 NSTEMI) within 12 h | HFABP + hs-cTn T increased sensitivity (+13%) and NPV (+3%) for NSTEMI hFABP lower diagnostic accuracy than hs-cTn T | 5.8 ng/mL cutoff (sensitivity of 97% + NPV of 99%) | |
Endocan | Ziaee et al., 2019 [75] | Cross- sectional and prospective | 320 patients with ACS: 160 with STEMI and 160 with UA/NSTEMI | Significant positive correlation between endocan levels and TIMI risk score and MACE. | Optimal cutoff values to predict clinical end points: 3.45 ng/mL in STEMI (80% sensitivity and 72% specificity) and 2.85 ng/mL in NSTEMI/UA (74% sensitivity and 67% specificity) |
Kundi et al., 2017 [76] | Cross- sectional | 133 patients: 88 patients with STEMI and 45 patients with normal coronary arteries | Elevated in STEMI and positively correlated with hs-CRP and SYNTAX score | Cutoff value to predict STEMI: 1.7 ng/mL (76.1% sensitivity 73.6% specificity) | |
Dogdus et al., 2021 [77] | Cross- sectional | 137 STEMI patients undergoing PCI: 45 NRP (+) & 92 NRP (-) | Endocan, initial troponin I, Triglyceride and high-grade thrombus burden were independent predictors of NRP | Cutoff value to predict NRP: >2.7 ng/mL (89.6% sensitivity and 74.2% specificity) | |
Cimen et al., 2019 [78] | Cross-sectional | 35 ACS patients undergoing CABG | Significant decrease in serum hs-CRP and endocan levels (372.8 ng/mL vs. 320.2) after CABG (p < 0.05) | - | |
Qiu et al., 2016 [79] | Cross-sectional | 216 patients with ACS and 60 controls | Endocan significantly increased in ACS group. STEMI vs NSTEMI: (38.2 [14.4, 78.5] vs 10.5 [2.7, 32.6] ng/mL) | - | |
Galectin | Tian et al., 2019 [80] | Meta-analysis | 2809 patients (10 studies) | Significant negative correlation between galectin & LVEF Non-significant correlation between gal-3 & infarct size Galectin associated with high mortality | - |
Asleh et al., 2019 [81] | Population based cohort study | 1342 patients at time of MI | Tertile 2 & 3: 1.3 & 2.4 increased risk of death 1.4 & 2.3 risk of HF | Gal-3 cut-offs in 3 tertiles: 1: <15.1 ng/mL 2: 15.1–22.4 ng/mL 3: >22.4 ng/ml | |
Gagno et al., 2019 [82] | Prospective cohort study | 469 patients with MI (60% STEMI) with 12 month follow up | Galectin associated with all-cause mortality. Gal-3bp correlated with risk of angina/MI | Median Gal-3bp: 9.1 μg/mL Median Galectin: 9.8 ng/mL | |
Święcki et al., 2020 [83] | Controlled pilot study | 110 MI patients (66 STEMI & 44 NSTEMI) vs control | Galectin↓ at follow up if endpoint occurrence. Galectin > 9.2 ng/mL at discharge→x9 increase of risk of endpoint occurrence | Galectin cut-off ≥9.2 ng/mL (91% specificity & 50% sensitivity) for MACE at follow-up | |
Mitić et al., 2022 [84] | Cohort study | 89 patients undergoing PCI | Early galectin correlates with atherosclerosis. Day 30 galectin correlates with diastolic dysfunction and LV remodeling. | - | |
sST2 | Jenkins et al., 2017 [85] | Prospective longitudinal cohort | 1401 subjects with MI | Mortality increases at 5 yrs: 11.8%, 25.5% & 52% HF at 5 yrs: 11.4%, 23.6% & 44.8% in respective tertiles | 3 tertiles: T1: <37, T2: 37–72.3, T3: <72.3 ng/mL ST2 |
Hartopo et al., 2018 [86] | Cohort study | 95 STEMI patients & 10 controls | Supramedian sST2 levels in STEMI patients 38.3% versus 12.5% higher incidence of MACE | STEMI vs controls: 152.1 ng/mL vs. 28.5 ng/mL, p < 0.01 | |
Zhang et al., 2020 [87] | Meta-analysis | 16 studies | 3 groups:1. ischemic heart disease, 2. MI & 3 HF → No statistical significance between control and groups 1 & 2, significant only in 3. | - | |
D-dimers | Reihani et al., 2018 [60] | Cross- sectional study | 75 patients (34 with MI, 41 with UA) | Differentiation of MI (>548) from UA | Cut-off: 548 ng/mL (91.2% sensitivity & 63.4% specificity, p < 0.001) |
Koch et al., 2022 [62] | Retrospective study | 435 patients with UA, 420 with NSTEMI, 22 NSTEMI, 2680 non coronary cause | PPV for final ACS diagnosis ↑ with d-dimer ↑ Unable to discriminate STEMI from non-coronary cause & UA. ↑d-dimer→↑risk of recurrent MI (esp. Q4) & all-cause mortality | D-dimer concentrations (mg/L): 0.19–0.50 (Q1), 0.51–1.00 (Q2), 1.01–5.00 (Q3), and 5.01–35.00 (Q4). | |
GDf-15 | Bonaca et al., 2010 [88] | Randomized control trial | 4162 patients with ACS, follow up for 2 years | significantly higher risk of death and MI | >1362 ng/L, higher rate of death or MI |
Fibrinogen | Cetin et al., 2020 [65] | Observational study | 261 patients treated with PCI for ACS | FAR predictive of MACE | - |
miR-483-5p | Zhao et al., 2023 [89] | Observational study | 118 patients with ACS and 75 healthy controls | Serum miR-483-5p levels were higher in ACS patients, high diagnostic value | Cut-off value of 1.292, demonstrated a feasible diagnostic value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsioupa, M.; Kourampi, I.; Oikonomou, E.; Tsigkou, V.; Theofilis, P.; Charalambous, G.; Marinos, G.; Gialamas, I.; Zisimos, K.; Anastasiou, A.; et al. Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome. Life 2023, 13, 1992. https://doi.org/10.3390/life13101992
Katsioupa M, Kourampi I, Oikonomou E, Tsigkou V, Theofilis P, Charalambous G, Marinos G, Gialamas I, Zisimos K, Anastasiou A, et al. Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome. Life. 2023; 13(10):1992. https://doi.org/10.3390/life13101992
Chicago/Turabian StyleKatsioupa, Maria, Islam Kourampi, Evangelos Oikonomou, Vasiliki Tsigkou, Panagiotis Theofilis, Georgios Charalambous, George Marinos, Ioannis Gialamas, Konstantinos Zisimos, Artemis Anastasiou, and et al. 2023. "Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome" Life 13, no. 10: 1992. https://doi.org/10.3390/life13101992
APA StyleKatsioupa, M., Kourampi, I., Oikonomou, E., Tsigkou, V., Theofilis, P., Charalambous, G., Marinos, G., Gialamas, I., Zisimos, K., Anastasiou, A., Katsianos, E., Kalogeras, K., Katsarou, O., Vavuranakis, M., Siasos, G., & Tousoulis, D. (2023). Novel Biomarkers and Their Role in the Diagnosis and Prognosis of Acute Coronary Syndrome. Life, 13(10), 1992. https://doi.org/10.3390/life13101992