Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Biological Activity
2.2.1. Solid Media Assay
2.2.2. Submerged Fermentation
Active Metabolite Extraction
Liquid Medium Test—Agar Diffusion
Assessment of Micromorphology Changes
2.3. Chitinases Detection and Quantification
2.3.1. Chitin Production
2.3.2. Chitinase Assay
2.4. Molecular Identification
2.5. Assessment of Toxicity in a Plant Model (Allium cepa)
2.6. Assessment of Toxicity in an Alternative Model
2.7. Statistical Analysis
3. Results
3.1. Biological Activity
Solid Media Assay
3.2. Submerged Fermentation
3.2.1. Secondary Metabolite Extraction
3.2.2. Liquid Medium Test—Agar Diffusion
3.2.3. Assessment of Micromorphological Change
3.2.4. Chitinase Investigation
3.2.5. Molecular Identification
3.2.6. Assessment of Toxicity in a Plant Model (Allium cepa)
3.2.7. Assessment of Toxicity in an Alternative Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Oliveira Ornela, P.H.; Guimarães, L.H.S. Utilization of shrimp fishing industry waste in the production of chitinases by the fungus Aspergillus niveus in solid-state fermentation. Braz. J. Dev. 2022, 8, 33846–33862. [Google Scholar] [CrossRef]
- Joly, C.A.; Padgurschi, M.C.; Pires, A.P.; Agostinho, A.A.; Marques, A.C.; Amaral, A.G.; Cervone, C.D.; Adams, C.; Baccaro, F.B.; Sparovek, G.; et al. Apresentando o Diagnóstico Brasileiro de Biodiversidade e Serviços Ecossistêmicos; Embrapa Solos-Capítulo em Livro Científico (ALICE). 2019. Available online: https://www.ipbes.net/system/tdf/downloads/IPBES-4-INF-9_EN_0.pdf?file=1&type=node&id=13451 (accessed on 1 August 2023).
- Junior, A.F.; Chagas, L.F.; dos Santos, G.R.; Martins, A.L.; de Carvalho Filho, M.R.; de Oliveira Miller, L. Ação De Trichoderma spp. no Controle De Fusarium sp. Rhizoctonia Solani Sclerotiumrolfsii Agri-Environ. Sci. 2018, 4, 9–15. [Google Scholar] [CrossRef]
- Larran, S.; Simón, M.R.; Santamarina, M.P.; Caselles, J.R.; Consolo, V.F.; Perelló, A. Endophytic Trichoderma strains increase soya bean growth and promote charcoal rot control. J. Saudi Soc. Agric. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Spescha, A.; Weibel, J.; Wyser, L.; Brunner, M.; Hermida, M.H.; Moix, A.; Scheibler, F.; Guyer, A.; Campos-Herrera, R.; Grabenweger, G.; et al. Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agric. Ecosyst. Environ. 2023, 348, 108414. [Google Scholar] [CrossRef]
- Vaish, S.; Pathak, B. Mangrove synthesized bio-nanomaterial and its applications: A Review. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100866. [Google Scholar] [CrossRef]
- Farhat, T.; Al Disi, Z.; Ashfaq, M.Y.M.; Zouari, N. Study of diversity of mineral-forming bacteria in Sabkha mats and sediments of mangrove forest in Qatar. Biotechnol. Rep. 2023, 39, e00811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, M.; Qin, Y.; Lu, H.; Xu, X.; Gao, C.; Liu, Y.; Luo, W.; Luo, X. Anti-Vibrio potential of natural products from marine microorganisms. Eur. J. Med. Chem. 2023, 252, 115330. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.C.; Mazaro, S.; Godoy, C. Bioinsumos na Cultura de Soja; Embrapa Soja: Londrina, Brazil, 2022. [Google Scholar]
- Saravanakumar, K.; Kathiresan, K.; MubarakAli, D.; Kayalvizhi, K.; Rajendran, N.; Hemalatha, S.; Chen, J. Soil-microbial communities indexing from mangroves rhizosphere and barren sandy habitats. Physiol. Mol. Plant Pathol. 2018, 104, 58–68. [Google Scholar] [CrossRef]
- Lagarto, A.; Bueno, V.; Pérez, M.R.; Rodríguez, C.C.; Guevara, I.; Valdés, O.; Bellma, A.; Gabilondo, T.; Padrón, A.S. Safety evaluation of the venom from scorpion Rhopalurus junceus: Assessment of oral short term, subchronic toxicity and teratogenic effect. Toxicon 2020, 176, 59–66. [Google Scholar] [CrossRef]
- Mo, F.; Hu, X.; Ding, Y.; Li, R.; Long, Y.; Li, M. Using carboxymethyl cellulose and pectin to construct an enzyme-responsive magnolol-release film against plant pathogenic fungi. Ind. Crops Prod. 2023, 197, 116553. [Google Scholar] [CrossRef]
- Almeida, V.C.; Junior, C.C.; Feitosa, F.; Pastor, D.; Monte, G. Caracterização estrutural do manguezal do Rio Tabatinga, Suape, Pernambuco, Brasil. Trop. Oceanogr. 2014, 42, 37–47. [Google Scholar] [CrossRef]
- Blotta, K.D.; Quinones, E.M.; Giordano, F.; Rosendo, A.; Farraboti, E.; Ribeiro, R.B. Fitossociologia comparativa de dois manguezais: Canal de Bertioga/SP e do estuário da Barra do Rio Uma-Peruíbe-SP. Unisanta BioSci. 2016, 5, 271–282. [Google Scholar]
- Dias, L.R.L.; Bastos, D.K.L.; Lima, N.S.; Silva, M.R.C.; Miranda, R.D.C.M. Bioprospecção de microorganimos de interesse biotecnológico isolados em ecossistema de manguezal. Rev. Investig. Biomed. 2017, 9, 24–30. [Google Scholar] [CrossRef]
- Kumar, J.G.P.; Gomathi, A.; Vasconcelos, V.; Gothandam, K.M. Bioactivity assessment of Indian origin—Mangrove Actinobacteria against Candida albicans. Mar. Drugs 2018, 16, 60. [Google Scholar] [CrossRef]
- Evangelista-Martínez, Z.; Ríos-Muñiz, D.E.; Gómez-Cano, J.; Montoya-Hidalgo, A.C.; Ochoa-Solórzano, R.E. Antibacterial activity of Streptomyces sp. Y15 against pathogenic bacteria and evaluation of culture media for antibiotic production. TIP Rev. Espec. Cienc. Químico Biológicas 2022, 25, 1–12. [Google Scholar] [CrossRef]
- Maia, R.C. Manguezais do Ceará; Imprima: Recife, Brazil, 2016. [Google Scholar]
- Kieliszek, M.; Kot, A.M.; Bzducha-Wróbel, A.; BŁażejak, S.; Gientka, I.; Kurcz, A. Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biol. Rev. 2017, 31, 185–198. [Google Scholar] [CrossRef]
- Arumugam, T.; Kumar, P.S.; Kameshwar, R.; Prapanchana, K. Screening of novel Actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India. Microb. Pathog. 2017, 107, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Syrbe, R.; Schroer, M.; Grunewald, K.; Walz, U.; Burkhard, B. What to map? In Mapping Ecosystem Services; Maes, J., Burkhard, B., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 149–156. [Google Scholar]
- Becher, P.G.; Verschut, V.; Bibb, M.J.; Bush, M.J.; Molnár, B.P.; Barane, E.; Al-Bassam, M.M.; Chandra, G.; Song, L.; Challis, G.L.; et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 2020, 5, 821–829. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, Y.C.; Deng, J.J.; Mo, Z.Q.; Zhang, M.S.; Yang, Z.D.; Zhang, J.R.; Li, Y.W.; Dan, X.M.; Luo, X.C. Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol. Int. J. Biol. Macromol. 2023, 225, 987–996. [Google Scholar] [CrossRef]
- De Abreu, J.A.S.; Rovida, A.F.S.; Pamphile, J.A. Fungous de interesse: Aplicações biotecnológicas. Rev. Uningá 2015, 21, 55–59. [Google Scholar]
- Pereira, D.D.; da Silva, I.M.; Martins, W.S.; Muraishi, C.T.; dos Santos, G.R.; Dourado, D.P.; de Oliveira, A.G.; de Carvalho, L.C.; Mendes, W.D.; Sobrinho, C.A.M. Efeito do silício na redução da severidade da brusone na cultura do arroz: Uma revisão bibliográfica. Res. Soc. Dev. 2022, 11, e13111637730. [Google Scholar] [CrossRef]
- Narayana, K.J.; Vijayalakshmi, M. Chitinase production by Streptomyces sp. ANU 6277. Braz. J. Microbiol. 2009, 40, 725–733. [Google Scholar] [CrossRef]
- Ortiz-Ramírez, C.; Arevalo, E.D.; Xu, X.; Jackson, D.P.; Birnbaum, K.D. An efficient cell sorting protocol for maize protoplasts. Curr. Protoc. Plant Biol. 2018, 3, e20072. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Preedanon, S.; Phongpaichit, S.; Rungjindamai, N.; Sakayaroj, J. Epoxydons and a pyrone from the marine-derived fungus Nigrospora sp. PSU-F5. J. Nat. Prod. 2008, 71, 1323–1326. [Google Scholar] [CrossRef]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; Santos-Villalobos, S.D. El género Bacillus como agente de control biológico y sus implicacion e sem la bioseguridad agrícola. Rev. Mex. Fitopatol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Reissig, J.L.; Strominger, J.L.; Leloir, L.F. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Toloza-Moreno, D.L.; Lizarazo-Forero, L.M.; Uribe-Vélez, D. Antagonist capacity of bacteria isolated from cape gooseberry cultures (Physalis peruviana L.) for biocontrol of Fusarium oxysporum. Trop. Plant Pathol. 2020, 45, 1–12. [Google Scholar] [CrossRef]
- Ichikawa, T.; Date, M.; Ishikura, T.; Ozaki, A. Improvement of kasugamycin-producing strain by the agar piece method and the prototroph method. Folia Microbiol. 1971, 16, 218–224. [Google Scholar] [CrossRef]
- Mason, O.U.; Scott, N.M.; Gonzalez, A.; Robbins-Pianka, A.; Bælum, J.; Kimbrel, J.; Bouskill, N.J.; Prestat, E.; Borglin, S.; Joyner, D.C.; et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014, 8, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- M100-S21; Suggested Grouping of US-FDA, Approved Antimicrobial Agents That Should Be Considered for Routine Testing and Reporting on Nonfastidious Organisms by Clinical Laboratories. Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2011.
- Almeida, K.E.C.D.; Silva, J.G.S.D.; Gonçalves, J.F.; Barbosa, L.R.; Laia, M.L.D. Virulence and selection of Beauveria bassiana for the control of Thaumastocoris peregrinus. Floresta Ambiente 2020, 27, e20170718. [Google Scholar] [CrossRef]
- Nandhini, C.; Ganesh, P.S. Isolation, screening and identification of cellulolytic marine actinobacteria from the mangrove sediment of burmanallah, the itopat. Int. J. Curr. Res. Life Sci. 2018, 7, 1566–1571. [Google Scholar]
- Gleesen, A.S.; Grarup, C.; Dargis, R.; Andresen, K.; Christensen, J.J.; Kemp, M. PCR and DNA sequencing in establishing the aetiology of bacterial infections in children. Apmis 2008, 116, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.; de Souza, M.J. Como Observar Cromossomos: Um Guia de Técnicas em Citogenética Vegetal, Animal e Humana; FUNPEC: Ribeirão Prêto, Brazil, 2022; Volume 201. [Google Scholar]
- Pommer, V.; Rother, P.D.H.; Rasbold, L.M.; da Conceição Silva, J.L.; Maller, A.; Simão, R.D.C.G.; Kadowaki, M.K. A novel Thermothelomyces heterothallicus PA2S4T fungus isolated from the soil induces chitinase production using orange peel flour. Sci. Plena 2021, 17, 091501. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Lisboa, P.H.; de Andrade, P.H.; Vigna, B.B.; Nogueira, S.R.; Fávero, A.P.; Lacava, P.T. Endophytic bacteria associated with Paspalum vaginatum Swartz with potential for plant growth promotion and biocontrol. Braz. J. Anim. Environ. Res. 2023, 6, 1071–1089. [Google Scholar] [CrossRef]
- Wang, X.; Hao, Q.; Chen, Y.; Jiang, S.; Yang, Q.; Li, Q. The effect of chemical composition and bioactivity of several essential oils on Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Sci. 2015, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Amorim, E.A.; Castro, E.J.; Souza, S.V.; Alves, M.S.; Dias, L.R.; Melo, M.H.; da Silva, I.M.; Villis, P.C.; Bonfim, M.R.; Falcai, A.; et al. Antimicrobial potential of Streptomyces ansochromogenes (PB3) isolated from a plant native to the amazon against Pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 574693. [Google Scholar] [CrossRef]
- Silva, M.; Sreeja, S.J.; Thara, S.S.; Heera, G.; Anith, K.N. Endophytic Bacillus spp. suppress Rhizoctonia solani web blight of bush cowpea. Rhizosphere 2023, 25, 100682. [Google Scholar] [CrossRef]
- Da Silva Sousa, C.; de Jesus, A.D.N.; de Sousa Lima, F.; Cardoso, S.E.A. Actinobactérias no controle do mal das folhas em mudas de seringueira. Rev. Macambira 2020, 4, e041007. [Google Scholar] [CrossRef]
- Khadiri, M.; Boubaker, H.; Askarne, L.; Ezrari, S.; Radouane, N.; Farhaoui, A.; El Hamss, H.; Tahiri, A.; Barka, E.A.; Lahlali, R. Bacillus cereus B8W8 an effective bacterial antagonist against major postharvest fungal pathogens of fruit. Postharvest Biol. Technol. 2023, 200, 112315. [Google Scholar] [CrossRef]
- Arasu, M.V.; Al-Dhabi, N.A. Biological control of root rot disease-causing Rhizoctonia solani in tomato plant by an endophytic fungus and analysis of growth promoting activities in greenhouse and field. Physiol. Mol. Plant Pathol. 2023, 127, 102080. [Google Scholar] [CrossRef]
- Eckert, G.L.; Smaniotto, T.Â.; Dartora, N.; de Pelegrin, C.M.G.; Baroni, S. The chemical composition of different leaf extracts of Lantana fucata Lindl. influences its cytotoxic potential: A study using the Allium cepa model. J. Ethnopharmacol. 2022, 289, 115003. [Google Scholar] [CrossRef]
- Madić, V.; Stojanović-Radić, Z.; Jušković, M.; Jugović, D.; Popović, A.Ž.; Vasiljević, P. Genotoxic and antigenotoxic potential of herbal mixture and five medicinal plants used in ethnopharmacology. S. Afr. J. Bot. 2019, 125, 290–297. [Google Scholar] [CrossRef]
- Eski, A.; Gezgin, M.M. Susceptibility of different life stages of Tenebrio molitor (Coleoptera: Tenebrionidae) to indigenous entomopathogenic fungi. J. Stored Prod. Res. 2022, 98, 102008. [Google Scholar] [CrossRef]
- Walkowiak-Nowicka, K.; Mirek, J.; Chowański, S.; Sobkowiak, R.; Słocińska, M. Plant secondary metabolites as potential bioinsecticides? Study of the effects of plant-derived volatile organic compounds on the reproduction and behaviour of the pest beetle Tenebrio molitor. Ecotoxicol. Environ. Saf. 2023, 257, 114951. [Google Scholar] [CrossRef] [PubMed]
Isolate Code | Pathogen Name | Reported Disease |
---|---|---|
FP1 | Fusarium solani | dry root rot |
FP2 | Fusarium oxysporum | fusarium wilt |
FP3 | Macrophomina phaseolina | charcoal rot |
FP4 | Rhizoctonia solani | root rot |
FP5 | Sclerotium rolfsii | sclerotium wilt |
Isolate Code | F. solani | F. oxysporum | M. phaseolina | R. solani | S. rolfsii |
---|---|---|---|---|---|
B1 | 0 | 0 | 0 | 0 | 0 |
B2 | 0 | 0 | 0 | 0 | 0 |
B3 | 0 | 0 | 0 | 0 | 0 |
B4 | 0 | 0 | 0 | 0 | 0 |
B5 | 0 | 0 | 0 | 0 | 0 |
B6 | 19.3 ± 1.1 | 24 ± 1.7 | 30.6 ± 4.9 ** | 34 ± 1.0 | 37.6 ± 0.5 ** |
B7 | 0 | 0 | 0 | 0 | 0 |
B8 | 22.6 ± 2.0 | 32.6 ± 1.1 ** | 32.6 ± 2.0 ** | 35 ± 1.0 ** | 24 ± 1.0 |
B9 | 0 | 0 | 0 | 0 | 0 |
B10 | 0 | 0 | 0 | 0 | 0 |
B11 | 11.6 ± 2.8 | 34.6 ± 0.5 ** | 24.3 ± 1.1 | 30.3 ± 0.5 | 13.3 ± 2.8 |
B13 | 33.3 ± 2.8 ** | 36.6 ± 2.8 | 28.6 ± 1.1 | 32.3 ± 2.5 ** | 26 ± 1.7 |
B14 | 29 ± 1.0 | 22 ± 1.7 | 13.3 ± 2.8 | 18.3 ± 2.8 | 20.3 ± 0.5 |
B15 | 21 ± 1.0 | 17.3 ± 2.5 | 13.3 ± 2.8 | 20.3 ± 0.5 | 15.3 ± 0.5 |
B16 | 20.3 ± 0.5 | 17.3 ± 3.2 | 0 | 16.3 ± 1.1 | 0 |
B17 | 0 | 21 ± 1.0 | 17.6 ± 2.5 | 0 | 29.3 ± 1.1 |
Isolate Code | F. solani | F. oxysporum | M. phaseolina | R. solani | S. rolfsii |
---|---|---|---|---|---|
B06 | 0 | 21.3 ± 1.1 | 23.3 ± 2.8 | 27.6 ± 2.5 | 0 |
B8 | 0 | 22.3 ± 2.5 | 25.3 ± 0.5 | 27.6 ± 0.5 | 0 |
B11 | 0 | 21.3 ± 1.1 | 0 | 0 | 0 |
B13 | 31 ± 6.9 ** | 29.3 ± 1.1 ** | 24.6 ± 0.5 | 19.3 ± 1.1 | 23.3 ± 1.5 |
B14 | 26 ± 1.0 | 20.3 ± 0.5 | 0 | 17.3 ± 2.5 | 0 |
B15 | 0 | 0 | 0 | 13 ± 1.7 | 0 |
B16 | 0 | 0 | 0 | 13.6 ± 1.5 | 0 |
Isolate Code | F. solani | F. oxysporum | M. phaseolina | R. solani | S. rolfsii |
---|---|---|---|---|---|
Control | 18 ** | 15 ** | 10 ** | 12 ** | 8 * |
B6 | 0 | 0 | 1 | 0 | 0 |
B8 | 0 | 1 | 0 | 0 | 0 |
B11 | 0 | 2 | 0 | 0 | 0 |
B13 | 1 | 1 | 1 | 2 | 0 |
B14 | 3 | 2 | 0 | 2 | 0 |
B15 | 0 | 0 | 0 | 3 | 0 |
B16 | 0 | 0 | 0 | 0 | 0 |
Isolate Code | Gram | Similarity | Identification | NCBI Code |
---|---|---|---|---|
B1 | G− | 99.20% | Achromobacter xylosoxidans | D1454195 |
B3 | G− | 95.84% | Pseudomonas sp. | 1ABAAA38 |
B6 | G+ | 97.83% | Micrococcus yunnanensis | 6A934C15 |
B8 | G− | 99.3% | Serratia marcescens | 92C94ED7 |
B11 | G+ | 99.5% | Bacillus humi | 547CB45C |
B13 | G+ | 97% | Bacillus sp. | n/c |
B14 | G+ | 97% | Bacillus sp. | n/c |
B16 | G+ | 99.5% | Bacillus cereus | F292A36B |
Mitotic Phases | Positive Control | B8 | B13 |
---|---|---|---|
Interface | 1184.75 ± 636.17 | 456.75 ± 307.85 | 963.5 ± 581.45 |
Prophase | 8.25 ± 7.13 | 6.75 ± 5.46 | 7.25 ± 2.06 |
Anaphase | 0.0 ± 0.0 | 0.25 ± 0.05 | 0.75 ± 0.5 |
Metaphase | 0.0 ± 0.0 | 2 ± 1.41 | 2.75 ± 3.2 |
Telophase | 0.0 ± 0.0 | 0.25 ± 0.05 | 5.5 ± 2.8 |
MI | 27.1% | 2.85% | 2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, É.J.M.C.; Amorim, É.A.d.F.; Aragão, F.M.M.; Câmara, W.d.S.; Araújo, M.C.; Pereira, C.D.d.S.; Dias, L.R.L.; Gomes, W.C.; Aliança, A.S.d.S.; Souza, J.C.d.S.; et al. Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil. Life 2023, 13, 2036. https://doi.org/10.3390/life13102036
Pereira ÉJMC, Amorim ÉAdF, Aragão FMM, Câmara WdS, Araújo MC, Pereira CDdS, Dias LRL, Gomes WC, Aliança ASdS, Souza JCdS, et al. Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil. Life. 2023; 13(10):2036. https://doi.org/10.3390/life13102036
Chicago/Turabian StylePereira, Érima Jôyssielly Mendonça Castro, Érika Alves da Fonsêca Amorim, Felicia Maria Melo Aragão, Wallison de Souza Câmara, Maria Carvalho Araújo, Carlos Drielson da Silva Pereira, Leo Ruben Lopes Dias, Wolia Costa Gomes, Amanda Silva dos Santos Aliança, Joicy Cortez de Sá Souza, and et al. 2023. "Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil" Life 13, no. 10: 2036. https://doi.org/10.3390/life13102036
APA StylePereira, É. J. M. C., Amorim, É. A. d. F., Aragão, F. M. M., Câmara, W. d. S., Araújo, M. C., Pereira, C. D. d. S., Dias, L. R. L., Gomes, W. C., Aliança, A. S. d. S., Souza, J. C. d. S., da Silva, L. C. N., & Miranda, R. d. C. M. d. (2023). Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil. Life, 13(10), 2036. https://doi.org/10.3390/life13102036