Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Substances
2.3. De Novo KYNA Production in Rat Kidneys In Vitro
2.4. KAT I and KAT II Activity Analyses in Rat Kidneys
2.5. Statistical Analysis
3. Results
3.1. Evaluation of KYNA Formation in Rat Kidneys In Vitro in the Presence of Fibrates
3.2. Evaluation of KAT I Activity in Rat Kidneys In Vitro in the Presence of Fibrates
3.3. Evaluation of KAT II Activity in Rat Kidneys In Vitro in the Presence of Fibrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathew, R.O.; Rosenson, R.S.; Lyubarova, R.; Chaudhry, R.; Costa, S.P.; Bangalore, S.; Sidhu, M.S. Concepts and Controversies: Lipid Management in Patients with Chronic Kidney Disease. Cardiovasc. Drugs Ther. 2021, 35, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; Massy, Z.; Argiles, A.; Spasovski, G.; Verbeke, F.; Lameire, N. Chronic Kidney Disease as Cause of Cardiovascular Morbidity and Mortality. Nephrol. Dial. Transplant. 2005, 20, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Ferro, C.J.; Mark, P.B.; Kanbay, M.; Sarafidis, P.; Heine, G.H.; Rossignol, P.; Massy, Z.A.; Mallamaci, F.; Valdivielso, J.M.; Malyszko, J.; et al. Lipid Management in Patients with Chronic Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 727–749. [Google Scholar] [CrossRef]
- Florens, N.; Calzada, C.; Lyasko, E.; Juillard, L.; Soulage, C.O. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins. Toxins 2016, 8, 376. [Google Scholar] [CrossRef] [PubMed]
- Gyebi, L.; Soltani, Z.; Reisin, E. Lipid Nephrotoxicity: New Concept for an Old Disease. Curr. Hypertens. Rep. 2012, 14, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Kostapanos, M.S.; Florentin, M.; Elisaf, M.S. Fenofibrate and the Kidney: An Overview. Eur. J. Clin. Invest. 2013, 43, 522–531. [Google Scholar] [CrossRef]
- Zhao, X.; Li, L.-Y. PPAR-Alpha Agonist Fenofibrate Induces Renal CYP Enzymes and Reduces Blood Pressure and Glomerular Hypertrophy in Zucker Diabetic Fatty Rats. Am. J. Nephrol. 2008, 28, 598–606. [Google Scholar] [CrossRef]
- Hakimizadeh, E.; Tadayon, S.; Zamanian, M.Y.; Soltani, A.; Giménez-Llort, L.; Hassanipour, M.; Fatemi, I. Gemfibrozil, a Lipid-lowering Drug, Improves Hepatorenal Damages in a Mouse Model of Aging. Fundam. Clin. Pharmacol. 2023, 37, 599–605. [Google Scholar] [CrossRef]
- Davidson, M.; Rashidi, N.; Nurgali, K.; Apostolopoulos, V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 9968. [Google Scholar] [CrossRef]
- Schefold, J.C.; Zeden, J.P.; Fotopoulou, C.; Von Haehling, S.; Pschowski, R.; Hasper, D.; Volk, H.D.; Schuett, C.; Reinke, P. Increased Indoleamine 2,3-Dioxygenase (IDO) Activity and Elevated Serum Levels of Tryptophan Catabolites in Patients with Chronic Kidney Disease: A Possible Link between Chronic Inflammation and Uraemic Symptoms. Nephrol. Dial. Transplant. 2009, 24, 1901–1908. [Google Scholar] [CrossRef]
- Mor, A.; Kalaska, B.; Pawlak, D. Kynurenine Pathway in Chronic Kidney Disease: What’s Old, What’s New, and What’s Next? Int. J. Tryptophan Res. 2020, 13, 117864692095488. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.D.; Güner, O.F.; Iradukunda, E.C.; Phillips, R.S.; Bowen, J.P. The Kynurenine Pathway and Kynurenine 3-Monooxygenase Inhibitors. Molecules 2022, 27, 273. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, B.C.; Murray, I.A.; Schroeder, J.C.; Flaveny, C.A.; Lahoti, T.S.; Laurenzana, E.M.; Omiecinski, C.J.; Perdew, G.H. Kynurenic Acid Is a Potent Endogenous Aryl Hydrocarbon Receptor Ligand That Synergistically Induces Interleukin-6 in the Presence of Inflammatory Signaling. Toxicol. Sci. 2010, 115, 89–97. [Google Scholar] [CrossRef]
- Curran, C.S.; Kopp, J.B. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front. Pharmacol. 2022, 13, 782199. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-C.; Huang, M.-F.; Liang, S.-S.; Hwang, S.-J.; Tsai, J.-C.; Liu, T.-L.; Wu, P.-H.; Yang, Y.-H.; Kuo, K.-C.; Kuo, M.-C.; et al. Indoxyl Sulfate, Not p-Cresyl Sulfate, Is Associated with Cognitive Impairment in Early-Stage Chronic Kidney Disease. Neurotoxicology 2016, 53, 148–152. [Google Scholar] [CrossRef]
- Lin, C.S.; Hung, S.F.; Huang, H.S.; Ma, M.C. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency. PLoS ONE 2015, 10, e0132204. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Sallée, M.; Cerini, C.; Poitevin, S.; Gondouin, B.; Jourde-Chiche, N.; Fallague, K.; Brunet, P.; Calaf, R.; Dussol, B.; et al. The Cardiovascular Effect of the Uremic Solute Indole-3 Acetic Acid. J. Am. Soc. Nephrol. 2015, 26, 876–887. [Google Scholar] [CrossRef]
- Ostapiuk, A.; Urbanska, E.M. Kynurenic Acid in Neurodegenerative Disorders—Unique Neuroprotection or Double-edged Sword? CNS Neurosci. Ther. 2022, 28, 19–35. [Google Scholar] [CrossRef]
- Bądzyńska, B.; Zakrocka, I.; Sadowski, J.; Turski, W.A.; Kompanowska-Jezierska, E. Effects of Systemic Administration of Kynurenic Acid and Glycine on Renal Haemodynamics and Excretion in Normotensive and Spontaneously Hypertensive Rats. Eur. J. Pharmacol. 2014, 743, 37–41. [Google Scholar] [CrossRef]
- Bądzyńska, B.; Zakrocka, I.; Turski, W.A.; Olszyński, K.H.; Sadowski, J.; Kompanowska-Jezierska, E. Kynurenic Acid Selectively Reduces Heart Rate in Spontaneously Hypertensive Rats. Naunyn. Schmiedebergs. Arch. Pharmacol. 2020, 393, 673–679. [Google Scholar] [CrossRef]
- Vanholder, R.; Nigam, S.K.; Burtey, S.; Glorieux, G. What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins 2022, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zelnick, L.R.; Wang, K.; Katz, R.; Hoofnagle, A.N.; Becker, J.O.; Hsu, C.-Y.; Go, A.S.; Feldman, H.I.; Mehta, R.C.; et al. Association of Tubular Solute Clearances with the Glomerular Filtration Rate and Complications of Chronic Kidney Disease: The Chronic Renal Insufficiency Cohort Study. Nephrol. Dial. Transplant. 2021, 36, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Myśliwiec, M.; Pawlak, D. Kynurenine Pathway—A New Link between Endothelial Dysfunction and Carotid Atherosclerosis in Chronic Kidney Disease Patients. Adv. Med. Sci. 2010, 55, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Hariri, A.; Matinfar, M.; Nematbakhsh, M. Fenofibrate-Induced Renal Dysfunction, Yes or No? J. Res. Med. Sci. 2020, 25, 39. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, T.; Tulidowicz-Bielak, M.; Zarnowska, I.; Mitosek-Szewczyk, K.; Wnorowski, A.; Jozwiak, K.; Gasior, M.; Turski, W.A. Kynurenic Acid and Neuroprotective Activity of the Ketogenic Diet in the Eye. Curr. Med. Chem. 2017, 24, 3547–3558. [Google Scholar] [CrossRef]
- Żarnowska, I.; Wróbel-Dudzińska, D.; Tulidowicz-Bielak, M.; Kocki, T.; Mitosek-Szewczyk, K.; Gasior, M.; Turski, W.A. Changes in Tryptophan and Kynurenine Pathway Metabolites in the Blood of Children Treated with Ketogenic Diet for Refractory Epilepsy. Seizure 2019, 69, 265–272. [Google Scholar] [CrossRef]
- Clause, B.T. The Wistar Rat as a Right Choice: Establishing Mammalian Standards and the Ideal of a Standardized Mammal. J. Hist. Biol. 1993, 26, 329–349. [Google Scholar] [CrossRef]
- Rocha, N.N. Are Wistar Rats the Most Suitable Normotensive Controls for Spontaneously Hypertensive Rats to Assess Blood Pressure and Cardiac Structure and Function? Int. J. Cardiovasc. Sci. 2022, 35, 172–173. [Google Scholar] [CrossRef]
- Gramsbergen, J.B.P.; Schmidt, W.; Turski, W.A.; Schwarcz, R. Age-Related Changes in Kynurenic Acid Production in Rat Brain. Brain Res. 1992, 588, 1–5. [Google Scholar] [CrossRef]
- Zakrocka, I.; Załuska, W. Kynurenine Pathway in Kidney Diseases. Pharmacol. Reports 2022, 74, 27–39. [Google Scholar] [CrossRef]
- Debnath, S.; Velagapudi, C.; Redus, L.; Thameem, F.; Kasinath, B.; Hura, C.E.; Lorenzo, C.; Abboud, H.E.; O’Connor, J.C. Tryptophan Metabolism in Patients with Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int. J. Tryptophan Res. 2017, 10, 1178646917694600. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Jackson, M.J.; Smith, P.H.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Cadnapaphornchai, M.A.; Christians, U.; Klawitter, J. Kynurenines in Polycystic Kidney Disease. J. Nephrol. 2022, 36, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.S.; Gupta, S.; Barton, S.A.; Vander Wall, R.; Tan, V.; Heng, B.; Phillips, J.K.; Guillemin, G.J. Temporal Profile of Kynurenine Pathway Metabolites in a Rodent Model of Autosomal Recessive Polycystic Kidney Disease. Int. J. Tryptophan Res. 2022, 15, 117864692211260. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Lu, Z.; Wang, L.; Ji, C.; Zou, C.; Liu, X. The Aryl Hydrocarbon Receptor in Chronic Kidney Disease: Friend or Foe? Front. Cell Dev. Biol. 2020, 8, 589752. [Google Scholar] [CrossRef]
- Hu, D.; Liu, J.; Yu, W.; Li, C.; Huang, L.; Mao, W.; Lu, Z. Tryptophan Intake, Not Always the More the Better. Front. Nutr. 2023, 10, 1140054. [Google Scholar] [CrossRef]
- Cader, A.; Stępniewska, J.; Różański, J. Lipid Disorders—The Comparison between General Population and Haemodialyzed Patients. Will the Oral Fat Tolerance Test Improve the Diagnostic? Acta Biochim. Pol. 2022, 69, 691–696. [Google Scholar] [CrossRef]
- Rizk, J.G.; Hsiung, J.-T.; Arif, Y.; Hashemi, L.; Sumida, K.; Kovesdy, C.P.; Kalantar-Zadeh, K.; Streja, E. Triglycerides and Renal Outcomes According to Albuminuria and in Consideration of Other Metabolic Syndrome Components in Diabetic US Veterans. Am. J. Nephrol. 2023, 54, 14–24. [Google Scholar] [CrossRef]
- Liu, S.; Lu, Z.; Fu, Z.; Li, H.; Gui, C.; Deng, Y. Clinicopathological Characteristics and Outcomes of Immunoglobulin A Nephropathy with Different Types of Dyslipidemia: A Retrospective Single-Center Study. Kidney Blood Press. Res. 2023, 48, 186–193. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.; Sun, Y.; Shao, L. Role of Abnormal Energy Metabolism in the Progression of Chronic Kidney Disease and Drug Intervention. Ren. Fail. 2022, 44, 790–805. [Google Scholar] [CrossRef]
- Chakkarwar, V.; Kawtikwar, P. Fenofibrate Prevents Nicotine-Induced Acute Kidney Injury: Possible Involvement of Endothelial Nitric Oxide Synthase. Indian J. Nephrol. 2021, 31, 435. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, T.; Sharma, A.K.; Kaur, J.; Yadav, H.N.; Pathak, D.; Singh, A.P. Fenofibrate Attenuates Ischemia Reperfusion-induced Acute Kidney Injury and Associated Liver Dysfunction in Rats. Drug Dev. Res. 2021, 82, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-S.; Li, S.; Zhang, X.-X.; Qi, J.-Z.; Li, G.-Y. A Study on the Role and Mechanism of Fenofibrate in Mice Renal Fibrosis Induced by Unilateral Ureteral Obstruction. Sichuan Da Xue Xue Bao. Yi Xue Ban 2020, 51, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Shaban, Z.; El-Shazly, S.; Ishizuka, M.; Kimura, K.; Kazusaka, A.; Fujita, S. PPAR?-Dependent Modulation of Hepatic CYP1A by Clofibric Acid in Rats. Arch. Toxicol. 2004, 78, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.A.; Poudel, B.; McPherson, K.C.; Brown, A.K.; Ekperikpe, U.S.; Browning, E.; Sutton, L.; Cornelius, D.C.; Williams, J.M. Treatment With Gemfibrozil Prevents the Progression of Chronic Kidney Disease in Obese Dahl Salt-Sensitive Rats. Front. Physiol. 2020, 11, 566403. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Goudarzi, M.; Fatemi, I.; Khodayar, M.J.; Mehrzadi, S.; Khalili, H.R.; Karimi, M.A. Gemfibrozil Attenuates Doxorubicin Induced Toxicity in Renal Tissues of Male Rats by Reducing the Oxidative Insult and Inflammation. Biotech. Histochem. 2020, 95, 532–539. [Google Scholar] [CrossRef]
- Miglio, G.; Rosa, A.C.; Rattazzi, L.; Grange, C.; Camussi, G.; Fantozzi, R. Protective Effects of Peroxisome Proliferator-Activated Receptor Agonists on Human Podocytes: Proposed Mechanisms of Action. Br. J. Pharmacol. 2012, 167, 641–653. [Google Scholar] [CrossRef]
- Yen, C.-L.; Fan, P.-C.; Lin, M.-S.; Lee, C.-C.; Tu, K.-H.; Chen, C.-Y.; Hsiao, C.-C.; Hsu, H.-H.; Tian, Y.-C.; Chang, C.-H. Fenofibrate Delays the Need for Dialysis and Reduces Cardiovascular Risk Among Patients With Advanced CKD. J. Clin. Endocrinol. Metab. 2021, 106, 1594–1605. [Google Scholar] [CrossRef]
- Khurana, N.; James, S.; Coughlan, M.T.; MacIsaac, R.J.; Ekinci, E.I. Novel Therapies for Kidney Disease in People With Diabetes. J. Clin. Endocrinol. Metab. 2022, 107, e1–e24. [Google Scholar] [CrossRef]
- Ananthakrishnan, S.; Kaysen, G.A. Treatment of Hyperlipidemia Changes With Level of Kidney Function—Rationale. Adv. Chronic Kidney Dis. 2016, 23, 247–254. [Google Scholar] [CrossRef]
- Song, C.; Clark, S.M.; Vaughn, C.N.; Nicholson, J.D.; Murphy, K.J.; Mou, T.C.M.; Schwarcz, R.; Hoffman, G.E.; Tonelli, L.H. Quantitative Analysis of Kynurenine Aminotransferase II in the Adult Rat Brain Reveals High Expression in Proliferative Zones and Corpus Callosum. Neuroscience 2018, 369, 1–14. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Chen, R.F.; Yeh, Y.S.; Lin, M.T.; Hsieh, J.H.; Chen, S.H. Kynurenic Acid Attenuates Multiorgan Dysfunction in Rats after Heatstroke. Acta Pharmacol. Sin. 2011, 32, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kaur, T.; Kaur, A.; Singh, A.P. Glycine Aggravates Ischemia Reperfusion-Induced Acute Kidney Injury through N-Methyl-D-Aspartate Receptor Activation in Rats. Mol. Cell. Biochem. 2014, 393, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zakrocka, I.; Targowska-Duda, K.M.; Wnorowski, A.; Kocki, T.; Jóźwiak, K.; Turski, W.A. Angiotensin II Type 1 Receptor Blockers Decrease Kynurenic Acid Production in Rat Kidney in Vitro. Naunyn. Schmiedebergs. Arch. Pharmacol. 2019, 392, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Zakrocka, I.; Kocki, T.; Turski, W.A. The Effect of Three Angiotensin-Converting Enzyme Inhibitors on Kynurenic Acid Production in Rat Kidney in Vitro. Pharmacol. Rep. 2017, 69, 536–541. [Google Scholar] [CrossRef]
- Cernaro, V.; Loddo, S.; Macaione, V.; Ferlazzo, V.T.; Cigala, R.M.; Crea, F.; De Stefano, C.; Genovese, A.R.R.; Gembillo, G.; Bolignano, D.; et al. RAS Inhibition Modulates Kynurenine Levels in a CKD Population with and without Type 2 Diabetes Mellitus. Int. Urol. Nephrol. 2020, 52, 1125–1133. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lin, C.-N.; Chiu, D.T.-Y.; Chen, S.-T. Kynurenine/Tryptophan Ratio Predicts Angiotensin Receptor Blocker Responsiveness in Patients with Diabetic Kidney Disease. Diagnostics 2020, 10, 207. [Google Scholar] [CrossRef]
- Balfour, J.A.; McTavish, D.; Heel, R.C. Fenofibrate. Drugs 1990, 40, 260–290. [Google Scholar] [CrossRef]
- Liu, A.; Yang, J.; Huang, X.; Xiong, J.; Wong, A.H.-H.; Chang, L.; Dai, R. Relaxation of Rat Thoracic Aorta by Fibrate Drugs Correlates with Their Potency to Disturb Intracellular Calcium of VSMCs. Vascul. Pharmacol. 2012, 56, 168–175. [Google Scholar] [CrossRef]
Name of Reagent | Catalogue Number | Manufacturer | |
---|---|---|---|
1. | L-kynurenine sulfate salt | K3750 | Sigma-Aldrich (St. Louis, MO, USA) |
2. | fenofibrate | F6020 | Sigma-Aldrich (St. Louis, MO, USA) |
3. | gemfibrozil | G9518 | Sigma-Aldrich (St. Louis, MO, USA) |
4. | dimethyl sulfoxide (DMSO) | D1435 | Sigma-Aldrich (St. Louis, MO, USA) |
5. | sodium chloride | S7653 | Sigma-Aldrich (St. Louis, MO, USA) |
6. | potassium chloride | P9333 | Sigma-Aldrich (St. Louis, MO, USA) |
7. | magnesium sulfate heptahydrate | M7506 | Sigma-Aldrich (St. Louis, MO, USA) |
8. | calcium chloride anhydrous | C1016 | Sigma-Aldrich (St. Louis, MO, USA) |
9. | sodium phosphate dibasic dodecahydrate | 04273 | Sigma-Aldrich (St. Louis, MO, USA) |
10. | sodium phosphate mono-basic dihydrate | 1.06345 | Sigma-Aldrich (St. Louis, MO, USA) |
11. | glucose | G8270 | Sigma-Aldrich (St. Louis, MO, USA) |
12. | Trizma base | T1503 | Sigma-Aldrich (St. Louis, MO, USA) |
13. | acetic acid | A6283 | Sigma-Aldrich (St. Louis, MO, USA) |
14. | pyridoxal 5′-phosphate hydrate | P9255 | Sigma-Aldrich (St. Louis, MO, USA) |
15. | 2-mercaptoethanol | M3148 | Sigma-Aldrich (St. Louis, MO, USA) |
16. | pyruvate | P2256 | Sigma-Aldrich (St. Louis, MO, USA) |
17. | glutamine | D9003 | Sigma-Aldrich (St. Louis, MO, USA) |
18. | water for HPLC | JTB-4218.2500 | J.T. Baker Chemicals (Phillipsburg, NJ, USA) |
19. | acetonitrile | 34851 | Sigma-Aldrich (St. Louis, MO, USA) |
20. | zinc acetate dehydrate | 1088021000 | Sigma-Aldrich (St. Louis, MO, USA) |
21. | sodium acetate trihydrate | 1062671000 | Sigma-Aldrich (St. Louis, MO, USA) |
22. | acetic acid | A6283 | Sigma-Aldrich (St. Louis, MO, USA) |
Fenofibrate (mM) | Gemfibrozil (mM) | |||||
---|---|---|---|---|---|---|
0.1 mM | 0.5 mM | 1 mM | 0.1 mM | 0.5 mM | 1 mM | |
KYNA production | 72% * | 60% *** | 51% *** | 66% *** | 58% *** | 41% *** |
KAT I activity | NS | 68% * | 59% * | 68% * | 56% ** | 52% ** |
KAT II activity | 78% * | 63% ** | 64% * | NS | 47% *** | 26% *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakrocka, I.; Kocki, T.; Urbańska, E.; Załuska, W. Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties. Life 2023, 13, 2154. https://doi.org/10.3390/life13112154
Zakrocka I, Kocki T, Urbańska E, Załuska W. Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties. Life. 2023; 13(11):2154. https://doi.org/10.3390/life13112154
Chicago/Turabian StyleZakrocka, Izabela, Tomasz Kocki, Ewa Urbańska, and Wojciech Załuska. 2023. "Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties" Life 13, no. 11: 2154. https://doi.org/10.3390/life13112154
APA StyleZakrocka, I., Kocki, T., Urbańska, E., & Załuska, W. (2023). Effects of Fenofibrate and Gemfibrozil on Kynurenic Acid Production in Rat Kidneys In Vitro: Old Drugs, New Properties. Life, 13(11), 2154. https://doi.org/10.3390/life13112154