Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = fenofibrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1390 KB  
Systematic Review
Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence
by Carla Handford, Laura Stirling-Barros, Mahboube Ganji-Arjenaki, Masliza Mahmod, Milad Nazarzadeh and Malgorzata Wamil
Biomedicines 2025, 13(9), 2080; https://doi.org/10.3390/biomedicines13092080 - 26 Aug 2025
Viewed by 530
Abstract
Background and objective: Heart failure (HF) is associated with high morbidity, mortality, and healthcare costs. Its prevalence continues to rise, particularly in the context of ageing populations and increasing rates of metabolic comorbidities such as type 2 diabetes and obesity. We aimed to [...] Read more.
Background and objective: Heart failure (HF) is associated with high morbidity, mortality, and healthcare costs. Its prevalence continues to rise, particularly in the context of ageing populations and increasing rates of metabolic comorbidities such as type 2 diabetes and obesity. We aimed to assess the therapeutic potential of repurposing PPARα agonists for the treatment of HF. Method: We conducted a comprehensive literature review to evaluate preclinical and clinical evidence investigating the potential of PPARα agonist drugs in reducing HF. We did not apply any restrictions on the study design. Results: The current body of evidence consists of preclinical mechanistic studies, emerging pharmacogenetic data, and post hoc analyses of large randomised clinical trials (RCTs) that included HF endpoints. No dedicated, HF-specific RCTs of PPARα agonists were identified. These studies support the hypothesis that PPARα agonists may link metabolic modulation with cardiac remodelling. Preclinical models demonstrate potential therapeutic benefits, such as enhanced myocardial energy metabolism and attenuation of fibrosis and inflammation, as well as context-dependent risks, including possible deleterious effects in advanced HF or off-target mechanisms. Prior failures of fibrates to improve cardiovascular outcomes in some trials and concerns in PPARα-deficient states underscore the complexity of metabolic therapies in HF. These findings support a more stratified, phenotype-driven approach to therapy. RCTs specifically designed to evaluate HF outcomes are essential to clarify whether PPARα agonists can complement established neurohormonal treatments, particularly in the context of the rising burden of HFpEF associated with obesity and type 2 diabetes. Conclusions: PPARα agonists represent a promising class within the emerging therapeutic framework of metabolic heart failure. They are inexpensive, generally well tolerated, and address several pathophysiological mechanisms of HF. Preliminary evidence suggests that fenofibrate may delay or prevent HF in high-risk diabetic populations. However, rigorous, dedicated trials are needed to establish their clinical utility. Full article
Show Figures

Figure 1

19 pages, 4083 KB  
Article
Fenofibrate Differently Affects the Heart’s Morphology and Metabolism in Young and Old Rats
by Agata Wrońska, Jacek Kieżun and Zbigniew Kmieć
Int. J. Mol. Sci. 2025, 26(16), 8038; https://doi.org/10.3390/ijms26168038 - 20 Aug 2025
Viewed by 405
Abstract
Fenofibrate (FF), a lipid-lowering drug, may decrease the risk of cardiovascular diseases in some pathological settings, yet data on its cardiac effects in physiological aging is scarce. To determine FF and age effects on the heart’s morphology and expression of metabolism-related genes, we [...] Read more.
Fenofibrate (FF), a lipid-lowering drug, may decrease the risk of cardiovascular diseases in some pathological settings, yet data on its cardiac effects in physiological aging is scarce. To determine FF and age effects on the heart’s morphology and expression of metabolism-related genes, we treated young and old male rats for 30 days with 0.1% or 0.5% FF. FF did not affect serum activities of LDH and creatine kinase in both age groups. Upon FF treatment the structure of the heart muscle did not change in young rats; however, 0.5% FF increased the abundance of collagen fibers in old rats, and lipid accumulation in cardiomyocytes in young and old animals. FF increased immunoreactivity of the hypertrophy marker NPPA that was more pronounced in old than in young rats, while VEGFB immunoreactivity did not change. FF upregulated phospho-AMPK and PGC1α protein levels only in the cardiac muscle of old rats, while in both age groups it mildly increased the expression of selected fatty acid oxidation genes. We conclude that the cardiac muscle response to FF is dose-dependent and influenced by age. The observed negative impact of high-dose FF in the hearts of aged rats underscores the importance of dose optimization in the elderly. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 1158 KB  
Article
Ten-Year Trend in the Potentially Inappropriate Prescribing of Renally-Dependent Medicines in Australian General Practice Patients with Dementia
by Saad Alhumaid, Woldesellassie M. Bezabhe, Mackenzie Williams and Gregory M. Peterson
J. Clin. Med. 2025, 14(13), 4734; https://doi.org/10.3390/jcm14134734 - 4 Jul 2025
Viewed by 528
Abstract
Background: There is limited published evidence on the prevalence of potentially inappropriate prescribing of medicines in relation to kidney function in older Australians, particularly those with dementia. Objectives: To examine the prevalence, temporal trends and factors associated with potentially inappropriate prescribing of renally-dependent [...] Read more.
Background: There is limited published evidence on the prevalence of potentially inappropriate prescribing of medicines in relation to kidney function in older Australians, particularly those with dementia. Objectives: To examine the prevalence, temporal trends and factors associated with potentially inappropriate prescribing of renally-dependent medicines in patients with dementia, using Australian general practice data. Methods: This comparative study was reported in accordance with the STROBE guidelines for cohort studies. Retrospective analyses of the National Prescribing Service (NPS) MedicineInsight dataset were performed to determine the proportion of patients aged ≥ 65 years with a recorded diagnosis of dementia, along with matched controls, who had potentially inappropriate prescribing based on their estimated glomerular filtration rate (eGFR) during the study period (2011–2020). Each patient was included only once throughout the study. Potentially inappropriate prescribing was evaluated for 33 commonly used medicines, using the Cockcroft-Gault equation for estimated creatinine clearance or eGFR, in accordance with the guidelines from the Australian Medicines Handbook (AMH). Each patient’s medicines were included if they were prescribed within 180 days after the most recent recorded lowest eGFR value for the patient. Medicines having prescribed doses exceeding those recommended for an individual’s renal function were classified as ‘inappropriate dosage’, while those whose use was advised against were labelled ‘contraindicated’. Both categories were regarded as inappropriate prescriptions. Descriptive statistics were used to summarise patient characteristics and medication use. Temporal trends were displayed in graphs, with statistical significance determined using the Cochran-Armitage test. Binary logistic regression models were used to examine the associations between sociodemographic and clinical factors and the prescribing of medicines inconsistent with AMH guidelines. Results: The unmatched cohorts included 33,101 patients, comprising 4092 with dementia and 29,009 without. Among them, 58.4% were female, and the overall median age was 82 years [interquartile range (IQR): 77–87]. After propensity score matching, there were 4041 patients with dementia and 8031 without dementia. Over the study period, potentially inappropriate prescribing increased slightly, but insignificantly, in both groups of patients; the prevalence of inappropriate use of at least one of the 33 drugs of interest rose from 6.5% (95% CI 4.5–9.1%) in 2011 to 8.9% (95% CI 6.0–12.7%; p for trend: 0.966) in 2020 in the dementia group, and 9.2% (95% CI 8.0–10.5%) to 11.1% (95% CI 10.3–12.0%; p for trend: 0.224) in the matched controls. Over the ten-year period, approximately 9.3% (377) of patients with dementia in the matched cohort received at least one potentially inappropriate prescription. Among these, 154 (40.8%) were for contraindicated medicines, and 223 (59.1%) were for inappropriate doses based on renal function. Among patients with dementia in the matched cohort, fenofibrate, nitrofurantoin, and moxonidine were the most frequently prescribed medicines at doses inconsistent with AMH guidelines. In the unmatched dementia cohort, potentially inappropriate prescribing was not significantly associated with demographic characteristics or most comorbidities; however, it occurred more frequently in patients with an eGFR below 30 mL/min/1.73 m2 or those with concomitant diabetes. Conclusions: Positively, the prevalence of potentially inappropriate prescribing of renally-dependent medicines in primary care patients with dementia in Australia was similar to their matched controls. However, there was room for improvement in the prescribing of these drugs in both patients with and without dementia. Full article
(This article belongs to the Special Issue Clinical Epidemiology in Chronic Kidney Disease)
Show Figures

Figure 1

14 pages, 616 KB  
Communication
Application of Solvent Evaporation to Generate Supersaturated Lipid-Based Formulations: Investigation of Drug Load and Formulation Quality
by Felix Paulus, Jef Stappaerts, Annette Bauer-Brandl, Dirk Lauwers, Liesbet Smet, Eline Hermans and René Holm
Pharmaceutics 2025, 17(6), 702; https://doi.org/10.3390/pharmaceutics17060702 - 27 May 2025
Viewed by 568
Abstract
Background/Objectives: Lipid-based formulations (LBFs) are enabling formulations for poorly water-soluble, mostly lipophilic drugs. In LBFs, the drug is pre-dissolved in the formulation which can consist of lipids, surfactants, and/or cosolvents. In cases where the administration of high amounts of a drug is required, [...] Read more.
Background/Objectives: Lipid-based formulations (LBFs) are enabling formulations for poorly water-soluble, mostly lipophilic drugs. In LBFs, the drug is pre-dissolved in the formulation which can consist of lipids, surfactants, and/or cosolvents. In cases where the administration of high amounts of a drug is required, exceeding the drug solubility in the lipidic vehicle at the administration temperature, supersaturated LBFs are an option. The standard method described in the literature for inducing supersaturation in LBFs is to dissolve the drug substance in the lipidic vehicle at an elevated temperature, e.g., at 60 °C, and then subsequently let the formulation cool to ambient temperature before administration (heat-based approach). In this work, an alternative approach to induce supersaturation in LBFs was investigated in order to evaluate if higher drug loads, i.e., the concentration of drug dissolved in the vehicle, could be reached compared to the loading obtainable via heating. Methods: A volatile solvent that is miscible with the lipid matrix and in which the compound has a high solubility is added to the lipid matrix, after which the solvent is evaporated. Both approaches were compared in this work investigating two different LBFs loaded with the BCS-class II drugs celecoxib and fenofibrate. Results: When inducing supersaturation by heat, drug loads of 238% for celecoxib and 278% for fenofibrate could be achieved relative to the solubility at ambient temperature. Using the solvent-based approach, drug loads of up to 475% for celecoxib and 557% for fenofibrate could be prepared in the LBFs using dichloromethane (DCM) as the volatile solvent. However, those highly supersaturated preparations showed suboptimal physical stability and quickly led to precipitation when the LBFs were stored at ambient temperature. In addition, selected formulations were analyzed with GC-headspace to determine the residual DCM after solvent evaporation using a vacuum evaporator. This analysis revealed that the DCM content exceeded regulatory requirements, with up to 21,883 ppm DCM in the formulations. Conclusions: Overall, the relatively high residual DCM concentration and the suboptimal physical stability do not make the approach easily usable for generating supersaturated lipid-based formulations. Full article
(This article belongs to the Special Issue Physical and Chemical Stability of Drug Formulation)
Show Figures

Figure 1

12 pages, 2921 KB  
Article
Fenofibrate Treatment Inhibits Very-Low-Density Lipoprotein Transport Vesicle Formation by Reducing Sar1b Protein Expression
by Kayli Winterfeldt, Fahim Rejanur Tasin, Vandana Sekhar and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(10), 4720; https://doi.org/10.3390/ijms26104720 - 15 May 2025
Viewed by 1048
Abstract
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an [...] Read more.
Dyslipidemia is a well-known risk factor in the development and progression of atherosclerosis. VLDL plays a crucial role in maintaining lipid homeostasis; however, even minor fluctuations in its production, intracellular trafficking, and secretion can contribute to the progression of atherosclerosis. Fenofibrate is an FDA-approved drug that effectively lowers plasma triglycerides and VLDL-associated cholesterol while simultaneously increasing HDL levels. Although fenofibrate is a known PPARα agonist with several proposed mechanisms for its lipid-altering effects, its impact on the intracellular trafficking of VLDL has not yet been investigated. We observed that treatment of HepG2 cells with 50 µM of fenofibrate resulted in a significant reduction in VLDL secretion, as evidenced by a significant decrease in the secretion of 3H-labeled TAG, fluorescent TAG, and ApoB100 protein into the media. Using confocal microscopy to monitor VLDL intracellular trafficking, we observed a distinct change in VLDL triglyceride localization, suggesting delayed transport through the endoplasmic reticulum and Golgi. An immunoblot analysis revealed a decrease in Sar1B protein expression, a key regulator of COPII protein recruitment, which is essential for VTV formation and intracellular VLDL trafficking, the rate-limiting step in VLDL secretion. Our data reveal a novel mechanism by which fenofibrate alters the lipid profile by interfering with intracellular VLDL trafficking in hepatocytes. Full article
(This article belongs to the Special Issue The Role of Lipids in Human Health)
Show Figures

Figure 1

15 pages, 1506 KB  
Review
Efficacy and Safety of Novel Oral Anti-Cholestatic Agents for Primary Biliary Cholangitis: Meta-Analyses and Systematic Review
by Eyad Gadour, Bogdan Miutescu, Hiba Bashir, Abubaker Ali, Salem Alanzi, Abdullah A. Al-Shahrani, Aymen Almuhaidb, Shahed Mohamed, Faisal Abaalkhail, Hadi Kuriry and Mohammed Saad AlQahtani
Pharmaceuticals 2025, 18(5), 697; https://doi.org/10.3390/ph18050697 - 8 May 2025
Viewed by 1271
Abstract
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by progressive bile duct damage and cholestasis. While ursodeoxycholic acid (UDCA) is the first-line therapy, approximately 40% of patients have incomplete responses, necessitating alternative treatments. This systematic review and meta-analysis evaluate [...] Read more.
Background: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease characterized by progressive bile duct damage and cholestasis. While ursodeoxycholic acid (UDCA) is the first-line therapy, approximately 40% of patients have incomplete responses, necessitating alternative treatments. This systematic review and meta-analysis evaluate the efficacy and safety of novel oral anti-cholestatic agents for PBC. Methods: A systematic literature search was conducted in electronic databases up to September 2024. Randomized controlled trials, cohort studies, and case-control studies evaluating novel oral anti-cholestatic agents in adult PBC patients were included. The primary outcome was a change in alkaline phosphatase (ALP) levels. Safety was assessed by the incidence of serious adverse events. Random-effect meta-analyses were performed. Results: Ten studies involving 878 patients were analyzed. Novel agents included seladelpar, fenofibrate, saroglitazar, bezafibrate, elafibranor, and budesonide. The meta-analysis showed significant reductions in ALP levels with novel agents compared to the controls (SMD −2.80; 95% CI −3.56, −2.03; p < 0.00001), with high heterogeneity (I2 = 93%). Saroglitazar achieved the largest effect size. There was no significant difference in serious adverse events between novel agents and controls (OR 1.21; 95% CI 0.81, 1.83; p = 0.35). Conclusions: Novel oral anti-cholestatic agents show promise in improving biochemical markers in PBC patients with suboptimal UDCA responses, with a safety profile comparable to controls. However, study heterogeneity and limited long-term data restrict direct comparisons. Larger standardized trials with extended follow-up are needed to confirm long-term efficacy and safety. Full article
(This article belongs to the Special Issue Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances)
Show Figures

Figure 1

19 pages, 6085 KB  
Article
The Removal of Acidic Drugs from Domestic Wastewater Using an Innovative System of Constructed Wetlands/Stabilization Ponds in Series
by Elvia Gallegos-Castro, Cristina E. Almeida-Naranjo, Armando Rivas, Nancy Figueroa, Leticia Montellano and Cristina Alejandra Villamar-Ayala
Water 2025, 17(8), 1192; https://doi.org/10.3390/w17081192 - 16 Apr 2025
Cited by 1 | Viewed by 1084
Abstract
Nature-based solutions represent a decentralized wastewater treatment proposal, offering diverse mechanisms for effectively removing emerging contaminants, particularly acidic pharmaceuticals. This study evaluated the performance of acidic-drug (diclofenac, fenofibrate, ibuprofen, gemfibrozil, fenoprofen, naproxen, and indomethacin) removal from wastewater using a surface-flow constructed wetland with [...] Read more.
Nature-based solutions represent a decentralized wastewater treatment proposal, offering diverse mechanisms for effectively removing emerging contaminants, particularly acidic pharmaceuticals. This study evaluated the performance of acidic-drug (diclofenac, fenofibrate, ibuprofen, gemfibrozil, fenoprofen, naproxen, and indomethacin) removal from wastewater using a surface-flow constructed wetland with an organic bed (Eichhornia crassipes (Mart.) Solms, 18 ind/m2), and a horizontal subsurface-flow constructed wetland, divided into three sections. The process was complemented by two stabilization ponds and other horizontal subsurface-flow wetlands using papyrus (Cyperus papyrus L., 8–13 ind/m2) and tezontle as support media. The industrial-scale system (67.8 m2) was fed with wastewater at a rate of 1.33 m3/d with a hydraulic time retention of about 5.8 days. Drugs were quantified by gas chromatography. The results showed that gemfibrozil and indomethacin were completely removed (100%), while diclofenac (73%) and naproxen (94%) showed significant removals. Fenoprofen was not removed. Ibuprofen and fenofibrate showed increased concentrations, resulting in negative removals due to anoxic conditions (ibuprofen) and a slightly neutral pH (fenofibrate). These findings underscore the system’s ability to improve water quality by removing most acidic drugs, suggesting that the hybrid design is particularly effective in treating specific wastewater contaminants. Full article
(This article belongs to the Special Issue Constructed Wetlands and Emerging Pollutants)
Show Figures

Figure 1

15 pages, 66786 KB  
Article
Preparation and Characterization of Fenofibrate-Loaded Fibers Based on 2-Hydroxylpropyl-β-Cyclodextrin
by Enikő Bitay, Zoltán-István Szabó and Attila Levente Gergely
Polymers 2025, 17(8), 1037; https://doi.org/10.3390/polym17081037 - 11 Apr 2025
Viewed by 672
Abstract
Fenofibrate is used to treat dyslipidemia, a health condition that could lead to cardiovascular diseases. Fenofibrate is classified as a class II drug by the Biopharmaceutical Classification System due to its high lipophilicity and low solubility in water. The purpose of this work [...] Read more.
Fenofibrate is used to treat dyslipidemia, a health condition that could lead to cardiovascular diseases. Fenofibrate is classified as a class II drug by the Biopharmaceutical Classification System due to its high lipophilicity and low solubility in water. The purpose of this work was to enhance the dissolution characteristics of fenofibrate by incorporating it into 2-hydroxylpropyl-β-cyclodextrin fibers for the first time. Single-needle electrospinning was used to prepare the fenofibrate-loaded cyclodextrin fibers. The drug loading was optimized to fulfill the electrospinning conditions and was determined to be a 1:4 drug:cyclodextrin molar ratio. We found dimethylformamide a suitable solvent and were able to prepare bead-free fenofibrate-loaded 2-hydroxylpropyl-β-cyclodextrin fibers with an average diameter of 2.65 ± 0.82 μm. Drug loading was determined to be close to the theoretical value, 97.2%, with the aid of ultraviolet spectroscopy. Differential scanning calorimetry and Fourier transform infrared spectroscopy were used to track the crystalline to amorphous transition of fenofibrate through fiber formation. The dissolution results indicated a 60-fold increase in fenofibrate from the prepared fibers with respect to the micronized active ingredient. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

10 pages, 1609 KB  
Brief Report
Enhancing Mitochondrial Function Through Pharmacological Modification: A Novel Approach to Mitochondrial Transplantation in a Sepsis Model
by Bomi Kim, Yun-Seok Kim and Kyuseok Kim
Biomedicines 2025, 13(4), 934; https://doi.org/10.3390/biomedicines13040934 - 10 Apr 2025
Viewed by 818
Abstract
Background/Objectives: Sepsis continues to be a significant global health issue, with current treatments primarily focused on antibiotics, fluid resuscitation, vasopressors, or steroids. Recent studies have started to explore mitochondrial transplantation as a potential treatment for sepsis. This study aims to evaluate the effects [...] Read more.
Background/Objectives: Sepsis continues to be a significant global health issue, with current treatments primarily focused on antibiotics, fluid resuscitation, vasopressors, or steroids. Recent studies have started to explore mitochondrial transplantation as a potential treatment for sepsis. This study aims to evaluate the effects of enhanced mitochondrial transplantation on sepsis. Methods: We examined various mitochondrial-targeting drugs (formoterol, metformin, CoQ10, pioglitazone, fenofibrate, and elamipretide) to improve mitochondrial function prior to transplantation. Mitochondrial function was assessed by measuring the oxygen consumption rate (OCR) and analyzing the expression of genes related to mitochondrial biogenesis. Additionally, the effects of enhanced mitochondrial transplantation on inflammation were investigated using an in vitro sepsis model with THP-1 cells. Results: Formoterol significantly increased mitochondrial biogenesis, as evidenced by enhanced oxygen consumption rates and the upregulation of mitochondrial-associated genes, including those related to biogenesis (PGC-1α: 1.56-fold, p < 0.01) and electron transport (mt-Nd6: 1.13-fold, p = 0.16; mt-Cytb: 1.57-fold, p < 0.001; and mt-Co2: 1.44-fold, p < 0.05). Furthermore, formoterol-enhanced mitochondrial transplantation demonstrated a substantial reduction in TNF-α levels in LPS-induced hyperinflammatory THP-1 cells (untreated: 915.91 ± 12.03 vs. formoterol-treated: 529.29 ± 78.23 pg/mL, p < 0.05), suggesting its potential to modulate immune responses. Conclusions: Mitochondrial transplantation using drug-enhancing mitochondrial function might be a promising strategy in sepsis. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 4933 KB  
Article
Evaluating Swellable Cross-Linked Biopolymer Impact on Ink Rheology and Mechanical Properties of Drug-Contained 3D-Printed Thin Film
by Farzana Khan Rony, Jonathan Appiah, Asmaa Alawbali, Distinee Clay, Shamsuddin Ilias and Mohammad A. Azad
Pharmaceutics 2025, 17(2), 183; https://doi.org/10.3390/pharmaceutics17020183 - 1 Feb 2025
Cited by 1 | Viewed by 3563
Abstract
Background/Objectives: Interest in 3D printing oral thin films (OTFs) has increased substantially. The challenge of 3D printing is film printability, which is strongly affected by the rheological properties of the ink and having suitable mechanical properties. This research assesses the suitability of sodium [...] Read more.
Background/Objectives: Interest in 3D printing oral thin films (OTFs) has increased substantially. The challenge of 3D printing is film printability, which is strongly affected by the rheological properties of the ink and having suitable mechanical properties. This research assesses the suitability of sodium starch glycolate (SSG), a swellable cross-linked biopolymer, on ink rheology and the film’s mechanical properties. Methods: A water-based ink comprising sodium alginate (SA), the drug fenofibrate (FNB), SSG, glycerin, and polyvinylpyrrolidone (PVP) was formulated, and its rheology was assessed through flow, amplitude sweeps, and thixotropy tests. Films (10 mm × 15 mm × 0.35 mm) were 3D-printed using a 410 µm nozzle, 50% infill density, 60 kPa pressure, and 10 mm/s speed, with mechanical properties (Young’s modulus, tensile strength, and elongation at break) analyzed using a TA-XT Plus C texture analyzer. Results: The rheology showed SSG-based ink has suitable properties (shear-thinning behavior, high viscosity, higher modulus, and quick recovery) for 3D printing. SSG enhanced the rheology (viscosity and modulus) of ink but not the mechanical properties of film. XRD and DSC confirmed preserved FNB crystallinity without polymorphic changes. SEM images showed surface morphology and particle distribution across the film. The film demonstrated a drug loading of 44.28% (RSD 5.62%) and a dissolution rate of ~77% within 30 min. Conclusions: SSG improves ink rheology, makes it compatible with 3D printing, and enhances drug dissolution (formulation F-5). Plasticizer glycerin is essential with SSG to achieve the film’s required mechanical properties. The study confirms SSG’s suitability for 3D printing of OTFs. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Graphical abstract

17 pages, 5094 KB  
Article
Extrusion-Based 3D Printing of Pharmaceuticals—Evaluating Polymer (Sodium Alginate, HPC, HPMC)-Based Ink’s Suitability by Investigating Rheology
by Farzana Khan Rony, Georgia Kimbell, Toby R. Serrano, Destinee Clay, Shamsuddin Ilias and Mohammad A. Azad
Micromachines 2025, 16(2), 163; https://doi.org/10.3390/mi16020163 - 30 Jan 2025
Cited by 1 | Viewed by 2152
Abstract
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the [...] Read more.
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology. The formulations included the model drug Fenofibrate, functional excipients (e.g., mannitol, polyethylene glycol, etc.), and water or water–ethanol mixtures. Pills and thin films as an oral dosage were printed using a 410 μm nozzle, a 10 mm/s speed, a 50% infill density, and a 60 kPa pressure. Among the various formulated inks, only the ink containing 0.8% SA achieved successful prints with the desired shape fidelity, linked to its rheological properties, which were assessed using flow, amplitude sweep, and thixotropy tests. This study concludes that (i) an ink’s rheological properties—viscosity, shear thinning, viscoelasticity, modulus, flow point, recovery, etc.—have to be considered to determine whether it will print well; (ii) printability is independent of the dosage form; and (iii) the optimal inks are viscoelastic solids with specific rheological traits. This research provides insights for developing polymer-based inks for effective PAM 3D printing in pharmaceuticals. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

21 pages, 1869 KB  
Article
Beneficial Effect of Fenofibrate in Combination with Silymarin on Parameters of Hereditary Hypertriglyceridemia-Induced Disorders in an Animal Model of Metabolic Syndrome
by Jan Soukop, Ludmila Kazdová, Martina Hüttl, Hana Malínská, Irena Marková, Olena Oliyarnyk, Denisa Miklánková, Soňa Gurská, Zuzana Rácová, Martin Poruba and Rostislav Večeřa
Biomedicines 2025, 13(1), 212; https://doi.org/10.3390/biomedicines13010212 - 16 Jan 2025
Viewed by 1635
Abstract
Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for [...] Read more.
Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg). Results: Fenofibrate treatment (100 mg/kg BW/day for four weeks) significantly decreased serum levels of triglyceride, (−77%) and free fatty acids (−29%), the hepatic accumulation of triglycerides, and the expression of genes encoding transcription factors involved in lipid metabolism (Srebf2, Nr1h4. Rxrα, and Slco1a1). In contrast, the hypertriglyceridemia-induced ectopic storage of lipids in muscles, the heart, and kidneys reduced glucose utilization in muscles and was not affected. In addition, fenofibrate reduced the activity of the antioxidant system, including Nrf2 expression (−35%) and increased lipoperoxidation in the liver and, to a lesser extent, in the kidneys and heart. Adding silymarin (micronized form, 600 mg/kg BW/day) to fenofibrate therapy increased the synthesis of glycogen in muscles, (+36%) and reduced hyperinsulinemia (−34%). In the liver, it increased the activity of the antioxidant system, including PON-1 activity and Nrf2 expression, and reduced the formation of lipoperoxides. The beneficial effect of combination therapy on the parameters of oxidative stress and lipoperoxidation was also observed, to a lesser extent, in the heart and kidneys. Conclusions: Our results suggest the potential beneficial use of the combination of FF with SLM in the treatment of hypertriglyceridemia-induced metabolic disorders. Full article
Show Figures

Figure 1

15 pages, 3342 KB  
Article
Holy Basil (Ocimum sanctum L.) Flower and Fenofibrate Improve Lipid Profiles in Rats with Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD): The Role of Choline Metabolism
by Siraphat Taesuwan, Jakkapong Inchai, Konpong Boonyingsathit, Chanika Chimkerd, Kunchit Judprasong, Pornchai Rachtanapun, Chatchai Muanprasat and Chutima S. Vaddhanaphuti
Plants 2025, 14(1), 13; https://doi.org/10.3390/plants14010013 - 24 Dec 2024
Viewed by 1552
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil (Ocimum sanctum L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism. Rats with high-fat diet (HFD)-induced MASLD [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil (Ocimum sanctum L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism. Rats with high-fat diet (HFD)-induced MASLD received 250–1000 mg/kg bw of OSLY, fenofibrate, or fenofibrate + 1000 mg/kg OSLY combination. Biochemical parameters, choline metabolites, and one-carbon gene transcription were analyzed. OSLY and fenofibrate independently reduced serum LDL cholesterol (p < 0.02), liver cholesterol (p < 0.001), and liver triglyceride levels (p < 0.001) in HFD-fed rats. Only OSLY reduced signs of liver injury and increased serum HDL. Fenofibrate influenced choline metabolism by decreasing liver glycerophosphocholine (GPC; p = 0.04), as well as increasing betaine (p < 0.001) and the betaine:choline ratio (p = 0.02) in HFD-fed rats. Fenofibrate (vs. HFD) increased the expression of one-carbon metabolism genes Mthfd1l, Pemt, Smpd3, and Chka (p < 0.04). The OSLY treatment decreased liver GPC (500 mg dose; p = 0.03) and increased Smpd3 expression (1000 mg dose; p = 0.04). OSLY and fenofibrate showed weak synergistic effects on lipid and choline metabolism. Collectively, OSLY and fenofibrate independently improve lipid profiles in MASLD rats. The benefits of fenofibrate are partially mediated by choline/one-carbon metabolism, while those of OSLY are not mediated by this pathway. Holy basil flower extract merits further development as an alternative medicine for MASLD. Full article
Show Figures

Figure 1

21 pages, 5599 KB  
Article
Effects of Cynara scolymus L. Bract Extract on Lipid Metabolism Disorders Through Modulation of HMG-CoA Reductase, Apo A-1, PCSK-9, p-AMPK, SREBP-2, and CYP2E1 Expression
by Imane Mokhtari, Abdelaaty A. Shahat, Omar M. Noman, Dragan Milenkovic, Souliman Amrani and Hicham Harnafi
Metabolites 2024, 14(12), 728; https://doi.org/10.3390/metabo14120728 - 23 Dec 2024
Cited by 1 | Viewed by 1604
Abstract
Background/Objectives: Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver [...] Read more.
Background/Objectives: Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. Methods: An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate. Plasma, liver, fecal, and biliary lipids, as well as blood glucose, were analyzed enzymatically. The liver antioxidative defense was assessed by measuring reduced glutathione, malondialdehyde (MDA), and antioxidant enzyme activities, while liver steatosis was evaluated through transaminase and alkaline phosphatase activities and histological monitoring of lipid droplets. Polyphenol profiling and quantification were performed using HPLC–DAD, and potential mechanisms were predicted by molecular docking and confirmed in HepG2 cells. Results: At 200 mg/kg, AE significantly improved plasma lipid profiles by reducing total cholesterol, triglycerides, and LDL–cholesterol while increasing HDL–cholesterol. It facilitated cholesterol reduction in the liver and its excretion, indicating activation of reverse cholesterol transport, which led to reduced body weight and liver steatosis. AE lowered MDA levels and enhanced antioxidant enzyme activities. AE was found to be safe (LD50 > 5000 mg/kg) and modulated gene expression in HepG2 cells. Conclusions: Based on our results, the artichoke bract extract could be considered a natural resource of bioactive compounds to treat hyperlipidemia and related cardiometabolic diseases. Full article
Show Figures

Figure 1

13 pages, 1531 KB  
Article
Sustained-Release Solid Dispersions of Fenofibrate for Simultaneous Enhancement of the Extent and Duration of Drug Exposure
by Seong-Jin Park, Gyu Lin Kim and Hyo-Kyung Han
Pharmaceutics 2024, 16(12), 1617; https://doi.org/10.3390/pharmaceutics16121617 - 20 Dec 2024
Viewed by 1638
Abstract
Background/Objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and [...] Read more.
Background/Objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure. Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit® RSPO at varied ratios via solvent evaporation. In vitro/in vivo characteristics of FNSDs were examined in comparison with untreated drugs. Results: Based on dissolution profiles of FNSDs in aqueous media, the weight ratio of fenofibrate: poloxamer 407: Eudragit® RSPO at 1:1:4 (FNSD2) was selected as the optimal composition for achieving sustained drug release while maximizing the drug dissolution. The enhanced and sustained drug release of FNSD2 was also confirmed in a buffer transition system mimicking the pH change in the gastrointestinal tract. FNSD2 achieved approximately 66% drug release over 12 h, while pure drug exhibited only 12%. Furthermore, FNSD2 maintained similar release rates under fed and fasted conditions, while the entire drug dissolution slightly increased in the fed state. Structural analysis by x-ray diffraction showed that fenofibrate remained crystalline in FNSD2. Pharmacokinetic studies in rats revealed that orally administered FNSD2 significantly improved the extent and duration of systemic drug exposure. Compared to pure drugs, the FNSD2 formulation increased the oral bioavailability of fenofibrate by 22 folds with the delayed Tmax of 4 h in rats. Conclusion: FNSD2 formulation is effective in improving the extent and duration of drug exposure simultaneously. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Korea)
Show Figures

Figure 1

Back to TopTop