An Ethnobotanical, Phytochemical Analysis, Antimicrobial and Biological Studies of Pulicaria crispa as a Graze Promising Shrub
Abstract
:1. Introduction
2. Materials and Methods
3. Results
The Antimicrobial Assay, MIC, and MBC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambavade, S.D.; Misar, A.V.; Ambavade, P.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: A review. Orient. Pharm. Exp. Med. 2014, 14, 193–211. [Google Scholar] [CrossRef]
- Lee, W.; Woo, E.-R.; Lee, D.G. Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radic. Res. 2016, 50, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Kojic, V.; Bogdanovic, G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res. 2014, 28, 2053–2056. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, S.; Plaza, M.; Jaime, L.; Ibañez, E.; Reglero, G.; Señorans, F.J. Pressurized Liquid Extraction as an Alternative Process To Obtain Antiviral Agents from the Edible Microalga Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 8522–8527. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.B.; Sarachine, M.J. Biological activities of lupeol. Int. J. Biomed. Pharm. Sci. 2009, 3, 46–66. [Google Scholar]
- Fuad, A.; Nidal, J.; Mohammad, Q.; Mohammed, H.; Nour, E. Free radicals and enzymes inhibitory potentials of the traditional medicinal plant Echium angustifolium. Eur. J. Integr. Med. 2020, 38, 101196. [Google Scholar] [CrossRef]
- Abdelhakim, B.; Inès, C.; Chadon, A.; Houda, M.; Ilhame, B.; Abdeslam, E.; Hajiba, F.; Abdelaziz, B.; Nadia, D.; Youssef, B. Could volatile compounds from leaves and fruits of Pistacia lentiscus constitute a novel source of anticancer, antioxidant, antiparasitic and antibacterial drugs? Ind. Crops Prod. 2019, 128, 62–69. [Google Scholar] [CrossRef]
- Luo, W.; Du, Z.; Zheng, Y.; Liang, X.; Huang, G.; Zhang, Q.; Liu, Z.; Zhang, K.; Zheng, X.; Lim, L.; et al. Phytochemical composition and bioactivities of essential oils from six Lamiaceae species. Ind. Crops Prod. 2019, 133, 357–364. [Google Scholar] [CrossRef]
- Kristina, L.; Jurgita, Š.; Algimantas, P.; Vita, R.; Oksana, S.; Anatoliy, K. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Fitoterapia 2018, 127, 20–24. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Isa, T.; Ibrahim, D.; Ayse, S. Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruits during stages of maturity. Ind. Crops Prod. 2009, 30, 126–130. [Google Scholar] [CrossRef]
- Saoussen, H.; Ridha, E.; Khaled, F.; Danilo, F.; Alessandra, P.; Silvia, P.; Zine, M.; Mohamed, H.E. Chemical composition and antioxidant activity of essential oil from aerial parts of Teucrium flavum L. subsp. flavum growing spontaneously in Tunisia. Nat. Prod. Res. 2015, 29, 2336–2340. [Google Scholar] [CrossRef]
- Daniele, N.; Gouveia, J.S.; Costa, M.; Almeida, O.; Thallita, K.R.; Ana, M.; Oliveira, S.; Adriana, A.C.; Rodrigo, M.; Sandra, L.; et al. α-Terpineol reduces cancer pain via modulation of oxidative stress and inhibition of iNOS. Biomed. Pharmacother. 2018, 105, 652–661. [Google Scholar] [CrossRef]
- Abo-Elghiet, F.; Rushdi, A.; Ibrahim, M.H.; Mahmoud, S.H.; Rabeh, M.A.; Alshehri, S.A.; El Menofy, N.G. Chemical Profile, Antibacterial, Antibiofilm, and Antiviral Activities of Pulicaria crispa Most Potent Fraction: An In Vitro and In Silico Study. Molecules 2023, 28, 4184. [Google Scholar] [CrossRef]
- Elshiekh, Y.H.; Mageed, M.A. Phytochemical screening, Anticancer and cytotoxicity of Pulicaria crispa. Int. J. Sci. Res. Chem. Sci. 2020, 7, 34–37. [Google Scholar]
- Kapadia, M.; Zhao, H.; Ma, D.; Hatkar, R.; Marchese, M.; Sakic, B. Zoopharmacognosy in diseased laboratory mice: Conflicting evidence. PLoS ONE 2014, 9, e100684. [Google Scholar] [CrossRef]
- Daradka, H.M.; Aldhilan, A.M.; Eskandrani, A.A.; Bataineh, Y.; Alzoubi, K.H. The effect of Pulicaria crispa ethanolic extract on haematological and biochemical parameters in alloxan-induced diabetic rats. Adv. Tradit. Med. (ADTM) 2021, 21, 65–72. [Google Scholar] [CrossRef]
- El-Desoukey, R.M.; Albarakaty, F.M.; Alzamel, N.M.; AlZain, M.N. Ethnobotanical, phytochemical and antimicrobial activity of Halexylon salicornicum (Ramth) as a graze and promising shrub against selected animal microbes. Saudi J. Biol. Sci. 2022, 29, 103328. [Google Scholar] [CrossRef]
- Chaudhary, S.A. Flora of the Kingdom of the Saudi Arabia; Ministry of Agriculture and Water Press: Riyadh, Saudi Arabia, 2001; Volume 1–3.
- Collenette, S. Wild Flowers of Saudi Arabia; National Commission for Wild Life Conservation and Development (VCWCD): Riyadh, Saudi Arabia, 1999; p. 799. [Google Scholar]
- Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. J. Ethnobiol. Ethnomed. 2019, 15, 1–9. [Google Scholar] [CrossRef]
- Thakur, R.; Jain, N.; Pathak, R.; Sandhu, S.S. Practices in Wound Healing Studies of Plants. Evid.-Based Complement. Altern. Med. 2011, 2011, 438056. [Google Scholar] [CrossRef]
- Noman, O.M.; Herqash, R.N.; Shahat, A.A.; Ahamad, S.R.; Mechchate, H.; Almoqbil, A.N.; Alqahtani, A.S. A Phytochemical Analysis, Microbial Evaluation and Molecular Interaction of Major Compounds of Centaurea bruguieriana Using HPLC-Spectrophotometric Analysis and Molecular Docking. Appl. Sci. 2022, 12, 3227. [Google Scholar] [CrossRef]
- Nasr, F.A.; Noman, O.M.; Alqahtani, A.S.; Qamar, W.; Ahamad, S.R.; Al-Mishari, A.A.; Alyhya, N.; Farooq, M. Phytochemical constituents and anticancer activities of Tarchonanthus camphoratus essential oils grown in Saudi Arabia. Saudi Pharm. J. 2020, 28, 1474–1480. [Google Scholar] [CrossRef]
- Adetitun, D.O.; Araoye, H.K.; Akinyanju, J.A.; Anibijuwon, I.I. The antimicrobial effects of the leaf extracts of Moringaoleifera on selected clinical Bacterial isolates. Agrosearch 2013, 13, 95–113. [Google Scholar] [CrossRef]
- Shawky, R.A.; Alzamel, N.M. Survey on medicinal plants in the flora of Al Riyadh Region, Saudi Arabia. Eurasia J. Biosci. 2020, 14, 3795–3800. [Google Scholar]
- El-Sheikh, M.A.; Al-Shehri, M.A.; Alfarhan, A.H.; Alatar, A.A.; Rajakrishnan, R.; Al-Rowaily, S.L. Threatened Prunus arabica in an ancient volcanic protected area of Saudi Arabia: Floristic diversity and plant associations. Saudi J. Biol. Sci. 2019, 26, 325–333. [Google Scholar] [CrossRef]
- Marjan, B.; Hamid, S. Essential oil variations among the natural populations of Francoeuria undulata. Prog. Biol. Sci. 2015, 5, 85–96. [Google Scholar]
- Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef]
- Ministry of Municipal Affairs and Agriculture Home. Bioland/Plants/Animals. 2001. Available online: www.mmaa.gov.qa (accessed on 14 May 2001).
- Aziz, W.M.; Hamed, M.A.; Abd-Alla, H.I.; Ahmed, S.A. Pulicaria crispa mitigates nephrotoxicity induced by carbon tetrachloride in rats via regulation oxidative, inflammatory, tubular and glomerular indices. Biomarkers 2021, 27, 35–43. [Google Scholar] [CrossRef]
- Morsy, B.M.; Hamed, M.A.; Abd-Alla, H.I.; Aziz, W.M.; Kamel, S.N. Downregulation of fibrosis and inflammatory signalling pathways in rats liver viaPulicaria crispa aerial parts ethanol extract. Biomarkers 2021, 26, 665–673. [Google Scholar] [CrossRef]
- Fahmi, A.A.; Abdur-Rahman, M.; Aboul Naser, A.F.; Hamed, M.A.; Abd-Alla, H.I.; Nasr, M.I. Pulicaria crispa mitigates gastric ulcer induced by ethanol in rats: Role of treatment and auto healing. Biomarkers 2019, 24, 286–294. [Google Scholar] [CrossRef]
- Foudah, A.I.; Alam, A.; Soliman, G.A.; Salkini, M.A.; Ibnouf Ahmed, E.O.; Yusufoglu, H.S. Pharmacognostical, Antioxidant and Antimicrobial Studies of Aerial Part of Pulicaria crispa (Family: Asteraceae). Bull. Environ. Pharmacol. Life Sci. 2015, 4, 19–27. [Google Scholar]
- Fahmi, A.A.; Abdur-Rahman, M.; Naser, A.F.A.; Hamed, M.A.; Abd-Alla, H.I.; Shalaby, N.M.; Nasr, M.I. Chemical composition and protective role of Pulicaria undulata (L.) C.A. Mey. subsp. undulata against gastric ulcer induced by ethanol in rats. Heliyon 2019, 5, e01359. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, A.; Bassey, E.; Ayo, R.; Bello, I.; Habila, J.; Ishaku, G. Anti-mycobacterial, antimicrobial and phytochemical evaluation of Pulicaria crispa and Scoparia dulcis plant extracts. J. Adv. Med. Pharm. Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Maghraby, A.S.; Shalaby, N.; Abd-Alla, H.I.; Ahmed, S.A.; Khaled, H.M.; Bahgat, M.M. Immunostimulatory effects of extract of Pulicaria crispa before and after Schistosoma mansoni infection. Acta Pol. Pharm. 2010, 67, 75–79. [Google Scholar]
- Al-Yahya, M.A.; El-Syed, A.M.; Mossa, J.S.; Kazlowsk, W.M.; Cassady, J.M.; Yahya, M.A. Potential cancer chemopreventative and cytotoxic agents from Pulicaria crispa. J. Nat. Prod. 1988, 51, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Mobarki, N.; Almerabi, B.; Hattan, A. Antibiotic resistance crisis. Int. J. Med. Dev. Ctries 2019, 40, 561–564. [Google Scholar] [CrossRef]
- Elshiekh, Y.H.; Mona, A.M. Gas chromatography–mass spectrometry analysis of Pulicaria crispa (whole plant) petroleum ether extracts. Am. J. Res. Commun. 2015, 3, 58–67. [Google Scholar]
- Al-Hajj, N.Q.M.; Wang, H.X.; Ma, C.; Lou, Z.; Bashari, M.; Thabit, M.R. Antimicrobial and antioxidant activities of the essential oils of some aromatic medicinal plants (Pulicaria inuloides- Asteraceae and Ocimum forskolei-Lamiaceae). Trop. J. Pharma Res. 2014, 13, 1287–1293. [Google Scholar] [CrossRef]
- Abdelmageed, E.; Bushara, H.O.; Babiker MY, A.; Abdelgadir, M. Pulicaria crispa (Asteraceae) extract affects survival and fecundity of Bulinus truncatus vector snails of Schistosomes. Adv. Biores. 2017, 8, 135–139. [Google Scholar] [CrossRef]
- Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.P.; Strynadka, N.C.J. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 2012, 287, 32096–32102. [Google Scholar] [CrossRef]
- Urvashi, J.B.S.K.; Das, P.; Tandon, V. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives. J. Med. Chem. 2022, 65, 6454–6495. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Adnan, M.; Iqbal, A.; Sadia, S.; Fan, Y.; Nazar, A.; Mussarat, S.; Ahmad, M.; Olatunji, O.A.; Begum, S.; et al. Ethnopharmacology and toxicology of Pakistani medicinal plants used to treat gynecological complaints and sexually transmitted infections. S. Afr. J. Bot. 2018, 114, 132–149. [Google Scholar] [CrossRef]
- Aziz, M.A.; Adnan, M.; Khan, A.H.; Shahat, A.A.; Al-Said, M.S.; Ullah, R. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA. Pak. J. Ethnobiol. Ethnomed. 2018, 14, 1–6. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Ibrahim, M.E. Chemical investigation and antimicrobial activity of Francoeuria crispa(Forssk) grown wild. Int. J. Mater. Environ. Sci. 2018, 9, 266–271. [Google Scholar] [CrossRef]
- Mohamed, E.A.A.; Muddathir, A.M.; Osman, M.A. Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci. Rep. 2020, 10, 17148. [Google Scholar] [CrossRef]
- Dekinash, M.F.; Beltagy, A.M.; ElNaggar, E.A.; Khattab, A.R.; El-Fiky, F.K. Compositional Analysis and Biological Evaluation of the Essential Oil of Cotula cinerea L. Growing in Western Egyptian Desert. Delta Univ. Sci. J. 2018, 1, 24–42. [Google Scholar]
Ethnobotanical Items | References | |
---|---|---|
Family name | Asteraceae family | [26] |
Species name | Pulicaria crispa | [26] |
Common name | Gethgath in Arabic: جثجاث | [26] |
Plant life form | Shrublets | [26] |
Favorable soil for plant | Sodium-rich soil, elevated terrain, and saline hollows. | [26,27] |
Traditional and folk medicinal uses for humans | This medicinal plant has been utilized for numerous years in conventional medicine as an herbal tea for the treatment of heart diseases, as well as for its gastroprotective, anti-inflammatory, and insect-repellent properties. It is also commonly employed for alleviating back pain, inflammation, menstrual cramps, intestinal disorders, dysentery, and diarrhea. Additionally, it is known to be effective in treating colds, coughs, colic, excessive sweating, and carminative disorders. The aerial parts of this plant contain an essential oil with a potent aroma, which has been employed since ancient times in the traditional medicine system for treating sinusitis and respiratory tract infections. | [17,27,28] |
Traditional and folk medicinal uses for animals | The plant is subject to grazing by domestic animals and camels. Additionally, these particular species are utilized in traditional Italian veterinary medicine as antiparasitics and repellents, and for the treatment of respiratory ailments. | [27,29,30] |
Studies on plant |
| [17,31,32,33,34,35,36,37,38] |
Plant | Total Phenol mg GAE/g of Dry Extract) | STD | Total Flavonoid mg QE/g of Dry Extract | STD |
---|---|---|---|---|
P. crispa | 93.7 | 0.012 | 10.4 | 0.016 |
Cell Lines | PC Fractions’ IC50 (µg/ml) | C+ve | ||||
---|---|---|---|---|---|---|
Crude | Hex | CHCl3 | EtoAc | ButOH | Doxorubicin | |
A549 | NA | 271.44 ± 3.3 | 278.95 ± 4.2 | 229.23 ± 2.72 | 241.68 ± 1.1 | 3.52 ± 0.05 |
MCF-7 | NA | 332.30 ± 0.5 | 273 ± 2.8 | 251.09 ± 1.94 | 488.97 ± 3.6 | 2.52 ± 0.03 |
Serotypes | G+ve | G-ve | Fungi | |||
---|---|---|---|---|---|---|
Extracts | S. aureus ATCC 29213 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | S. typhimurium ATCC 14028 | C. albicans ATCC 60193 | C. tropicalis ATCC 66029 |
Diameter of Inhibitory Zone in mm | ||||||
But | 15.16 ± 0.15 | 11.66 ± 0.21 | 13.23 ± 0.25 | 11.43 ± 0.21 | 21.33 ± 0.15 | 22.23 ± 0.25 |
EtOAC | 31.33 ± 0.21 | 18.26 ± 0.25 | 22.33 ± 0.21 | 19.67 ± 0.21 | 27.27 ± 0.25 | 24.13 ± 0.15 |
CHCL3 | 16.61 ± 0.30 | 17.61 ± 0.20 | 11.40 ± 0.20 | 15.56 ± 0.15 | 20.36 ± 0.15 | 21.72 ± 0.20 |
Hex | 18.43 ± 0.25 | 15.06 ± 0.12 | 20.30 ± 0.20 | 16.70 ± 0.20 | 17.23 ± 0.25 | 25.33 ± 0.25 |
CM | 20.70 ± 0.20 | 16.50 ± 0.10 | 21.50 ± 0.20 | 13.70 ± 0.20 | 24.40 ± 0.26 | 27.3 ± 0.26 |
E | 18.66 ± 0.15 | 12.10 ± 0.10 | 18.40 ± 0.10 | 13.76 ± 0.15 | 16.46 ± 0.21 | 15.66 ± 0.21 |
A | 15.26 ± 0.25 | 10.20 ± 0.20 | 12.30 ± 0.26 | 0 | 19.10 ± 0.10 | 21.16 ± 0.15 |
HA | 30.13 ± 0.15 | 15.4 ± 0.26 | 16.30 ± 0.10 | 16.23 ± 0.15 | 23.5 ± 0.1 | 22.20 ± 0.20 |
CA | 0 | 0 | 0 | 0 | 0 | 0 |
C-ve (D.W.) | 0 | 0 | 0 | 0 | 0 | 0 |
C+ve/Cipro | 22 | 18 | 20 | 18 | NU | NU |
C+ve/Ny | NU | NU | NU | NU | 18 | 20 |
Serotypes | Types of Extracts | C-ve | C+ve | C+ve | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aqueous Extract | Organic Extracts | D.W. | Cipro | Ny | ||||||||||
HA | CA | Hex | But | EtOAC | E | A | CHCL3 | CM | ||||||
G-ve | Ps. aerogens | Diameter of inhibitory zone in mm | 29.33 ± 0.35 | 0 | 18.3 ± 0.14 | 22.33 ± 0.49 | 31.57 ± 0.51 | 14.25 ± 0.35 | 10.3 ± 0.26 | 27.2 ± 0.28 | 13.23 ± 0.25 | 0 | 31 | NU |
E. coli | 15.23 ± 0.32 | 0 | 19.3 ± 0.2 | 12.37 ± 0.35 | 20.27 ± 0.25 | 17.23 ± 0.25 | 11.55 ± 0.54 | 10.33 ± 0.42 | 18.33 ± 0.35 | 0 | 20 | NU | ||
Enterococcus | 14.4 ± 0.10 | 0 | 13.2 ± 0.26 | 10.27 ± 0.25 | 17.43 ± 0.40 | 11.37 ± 0.21 | 0 | 16.2 ± 0.26 | 15.13 ± 0.15 | 0 | 35 | NU | ||
Salmonella | 15.37 ± 0.38 | 0 | 15.27 ± 0.21 | 10.16 ± 0.15 | 18.33 ± 0.21 | 12.3 ± 0.26 | 0 | 13.27 ± 0.21 | 12.33 ± 0.31 | 0 | 30 | NU | ||
G+ve | K. pneumonia | 24.27 ± 0.31 | 0 | 14.27 ± 0.23 | 18.1 ± 0.12 | 35.3 ± 0.36 | 12.2 ± 0.2 | 11.03 ± 0.1 | 30.3 ± 0.36 | 15.1 ± 0.10 | 0 | 34 | NU | |
Bacillus | 19.2 ± 0.2 | 0 | 20.26 ± 0.21 | 16.73 ± 0.15 | 24.1 ± 0.10 | 20.3 ± 0.30 | 16.27 ± 0.21 | 15.2 ± 0.20 | 22.4 ± 0.10 | 0 | 34 | NU | ||
S. pyogens | 24.37 ± 0.35 | 0 | 18.33 ± 0.25 | 27.4 ± 0.20 | 29.53 ± 0.21 | 17.23 ± 0.25 | 25.3 ± 0.36 | 24.4 ± 0.40 | 26.23 ± 0.25 | 0 | R | NU | ||
S. aureus | 29.4 ± 0.20 | 0 | 17.17 ± 0.15 | 14.37 ± 0.32 | 30.73 ± 0.21 | 17.37 ± 0.35 | 14.27 ± 0.25 | 15.47 ± 0.45 | 19.03 ± 0.15 | 0 | 25 | NU | ||
Fungi | C. albicans | 22.26 ± 0.25 | 0 | 16.53 ± 0.15 | 20.23 ± 0.25 | 26.8 ± 0.10 | 15.43 ± 0.25 | 18.4 ± 0.26 | 19.3 ± 0.30 | 25.2 ± 0.26 | 0 | NU | 16 |
Examined Strains | Concentrations of Ether Extract (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 100 | 150 | MIC | MBC/MFC | |
Ps. aerogensa | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
E. coli | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
Enterococcus | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Salmonella | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
K. pneumonia | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Bacillus | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
S. pyogens | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
S. aureus | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Candida albicans | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
Staph aureus ATCC 29213 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Enterococcus faecalis ATCC 29212 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
E. coli ATCC 25922 | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
S. typhimurium ATCC 14028 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
C. albicans ATCC 60193 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
C. tropicalis ATCC 6602 | + | _ | _ | _ | _ | _ | 25 mg/mL | 50 mg/mL |
Examined Strains | Concentrations of Ether Extract (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 100 | 150 | MIC | MBC/MFC | |
Ps. aerogensa | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
E. coli | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Enterococcus | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Salmonella | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
K. pneumonia | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Bacillus | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. pyogens | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. aureus | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Candida albicans | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Staph aureus ATCC 29213 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Enterococcus faecalis ATCC 29212 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
E. coli ATCC 25922 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. typhimurium ATCC 14028 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
C. albicans ATCC 60193 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
C. tropicalis ATCC 6602 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Examined Strains | Concentrations of Ether Extract (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 100 | 150 | MIC | MBC/MFC | |
Ps. aerogensa | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
E. coli | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Enterococcus | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
Salmonella | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
K. pneumonia | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Bacillus | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
S. pyogens | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
S. aureus | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Candida albicans | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Staph aureus ATCC 29213 | _ | _ | _ | _ | _ | _ | 5 mg/mL | 25 mg/mL |
Enterococcus faecalis ATCC 29212 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
E. coli ATCC 25922 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
S. typhimurium ATCC 14028 | ++ | ++ | + | _ | _ | _ | 75 mg/mL | 100 mg/mL |
C. albicans ATCC 60193 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
C. tropicalis ATCC 6602 | ++ | + | _ | _ | _ | _ | 50 mg/mL | 75 mg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlZain, M.N.; Albarakaty, F.M.; El-Desoukey, R.M.A. An Ethnobotanical, Phytochemical Analysis, Antimicrobial and Biological Studies of Pulicaria crispa as a Graze Promising Shrub. Life 2023, 13, 2197. https://doi.org/10.3390/life13112197
AlZain MN, Albarakaty FM, El-Desoukey RMA. An Ethnobotanical, Phytochemical Analysis, Antimicrobial and Biological Studies of Pulicaria crispa as a Graze Promising Shrub. Life. 2023; 13(11):2197. https://doi.org/10.3390/life13112197
Chicago/Turabian StyleAlZain, Mashail N., Fawziah M. Albarakaty, and Rehab M. A. El-Desoukey. 2023. "An Ethnobotanical, Phytochemical Analysis, Antimicrobial and Biological Studies of Pulicaria crispa as a Graze Promising Shrub" Life 13, no. 11: 2197. https://doi.org/10.3390/life13112197
APA StyleAlZain, M. N., Albarakaty, F. M., & El-Desoukey, R. M. A. (2023). An Ethnobotanical, Phytochemical Analysis, Antimicrobial and Biological Studies of Pulicaria crispa as a Graze Promising Shrub. Life, 13(11), 2197. https://doi.org/10.3390/life13112197