Evaluation of Seed Germination of Six Rare Stipa Species following Low Temperature Stress (Cryopreservation)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Stipa Species Studied
2.2. Seed Cryopreservation
2.3. Seed Viability Testing
2.4. Seed Germination Testing
2.5. Indication of Dormancy Status
- DI (DormancyIndex) = 1—(GI/VI), where
- GI (Germination Index)—% of germinated seeds;
- VI (Viability Index)—% of viable stained seeds (TTC test)
2.6. Seed Germination after Cryopreservation
2.6.1. Experiment I (the Short-Term Effect of Cryopreservation)
2.6.2. Experiment II (the Effect of Stratification)
2.6.3. Experiment III (the Long-Term Effect of Cryopreservation and NaOH Treatment)
2.6.4. Experiment IV (the Germination Duration)
2.6.5. Experiment V (the Effect of Different Stimulators)
2.7. Seed Stratification
2.8. Seed Germination Stimulators
2.9. Statistics
3. Results
3.1. Seed Viability Testing
3.2. Seed Germination Testing
3.3. Indication of Dormancy Status
3.4. Seed Germination after Cryopreservation
3.4.1. Experiment I
3.4.2. Experiment II
3.4.3. Experiment III
3.4.4. Experiment IV
3.4.5. Experiment V
3.4.6. Summary: Seed Germination after Cryopreservation
4. Discussion
4.1. Cryopreservation of Stipa L.
4.2. Effect of Cryopreservation on Seed Germination
4.3. Effect of Dry Storage and Cold Stratification on Stipa Seed Germination
4.4. Effect of GA3 on Stipa Germination
4.5. Effect of KNO3 on Stipa Germination
4.6. Effect of NaOH on Stipa Germination
4.7. Effect of H2O2 on Stipa Germination
4.8. The Ability to Cryopreservation Is Species-Dependent
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakai, A. Survival of plant tissue at super-low temperature III. Relation between effective prefreezing temperatures and the degree of frost hardiness. Plant Physiol. 1965, 40, 882–887. [Google Scholar] [CrossRef]
- Reed, B.M. Plant cryopreservation: A continuing requirement for food and ecosystem security. Vitr. Cell. Dev. Biol. 2017, 53, 285–288. [Google Scholar] [CrossRef]
- Panis, B. Sixty Years of Plant Cryopreservation: From Freezing Hardy Mulberry Twigs to Establishing Reference Crop Collections for Future Generations. Acta Hortic. 2019, 1234, 1–8. [Google Scholar] [CrossRef]
- Streczynski, R.; Clark, H.; Whelehan, L.M.; Ang, S.-T.; Hardstaff, L.K.; Funnekotter, B.; Bunn, E.; Offord, C.A.; Sommerville, K.D.; Mancera, R.L. Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Aust. J. Bot. 2019, 67, 1–15. [Google Scholar] [CrossRef]
- Botanic Gardens Conservational International. Available online: https://www.bgci.org/our-work/saving-plants/seed-conservation/ (accessed on 20 August 2023).
- Kaczmarczyk, A.; Funnekotter, B.; Menon, A.; Phang, P.Y.; Al-Hanbali, A.; Bunn, E.; Mancera, R.L. Current issues in plant cryopreservation. In Current Frontiers in Cryobiology; Katkov, I.I., Ed.; IntechOpen Ltd.: Rijeka, Croatia; London, UK, 2012; pp. 417–438. [Google Scholar]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to −196 °C. J. Plant Physiol. 1991, 137, 465–470. [Google Scholar] [CrossRef]
- Matsumoto, T.; Mochida, K.; Itamura, H.; Sakai, A. Cryopreservation of persimmon (Diospyros kaki Thunb.) by vitrification of dormant shoot tips. Plant Cell Rep. 2001, 20, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Steponkus, P.L. Fundamental aspects of cryoinjury as related to cryopreservation of plant cells and organs. In Biotechnology in Plant Science; Zaitlin, M., Day, P., Hollander, A., Eds.; Academic Press: New York, NY, USA, 1985; pp. 145–159. [Google Scholar]
- Kim, H.-H.; Lee, Y.-G.; Shin, D.-J.; Ko, H.-C.; Gwag, J.-G.; Cho, E.-G.; Engelmann, F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. Cryo Lett. 2009, 30, 320–334. [Google Scholar] [CrossRef]
- Fabre, J.; Dereuddre, J. Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot-tips. Cryo Lett. 1990, 11, 413–426. [Google Scholar]
- Hirai, D.; Shirai, K.; Shirai, S.; Sakai, A. Cryopreservation of in vitro grown meristems of strawberry (Fragaria × ananassa Duch.) by encapsulation-vitrification. Euphytica 1998, 101, 109–115. [Google Scholar] [CrossRef]
- Hirai, D.; Sakai, A. Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res. 1999, 42, 153–160. [Google Scholar] [CrossRef]
- Volk, G.M.; Maness, N.; Rotindo, K. Cryopreservation of garlic (Allium sativum L.) using plant vitrification solution 2. Cryo Lett. 2004, 25, 219–226. [Google Scholar]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Yamamoto, S.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a cryopreservation procedure using aluminium cryo-plates. Cryo Lett. 2011, 32, 256–265. [Google Scholar]
- Yamamoto, S.; Rafique, T.; Fukui, K.; Sekizawa, K.; Niino, T. V-cryo-plate procedure as an effective protocol for cryobanks: Case study of mint cryopreservation. Cryo Lett. 2012, 33, 12–23. [Google Scholar]
- Nadarajan, J.; Pritchard, H.W. Biophysical characteristics of successful oilseed embryo cryoprotection and cryopreservation using vacuum infiltration vitrification: An innovation in plant cell preservation. PLoS ONE 2014, 9, e96169. [Google Scholar] [CrossRef] [PubMed]
- Funnekotter, B.; Whiteley, S.E.; Turner, S.R.; Bunn, E.; Mancera, R.L. Evaluation of the new vacuum infiltration vitrification (VIV) cryopreservation technique for native Australian plant shoot tips. Cryo Lett. 2015, 36, 104–113. [Google Scholar]
- Funnekotter, B.; Bunn, E.; Mancera, R.L. Cryo-mesh: A simple alternative cryopreservation protocol. Cryo Lett. 2017, 38, 155–159. [Google Scholar]
- Engelmann, F. Plant cryopreservation: Progress and prospects. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Burke, M.J.; Gusta, L.V.; Quamme, H.A.; Weiser, C.J.; Li, P.H. Freezing and injury in plants. Annu. Rev. Plant Physiol. 1976, 27, 507–528. [Google Scholar] [CrossRef]
- Steponkus, P.L. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 1984, 35, 543–584. [Google Scholar] [CrossRef]
- Gordon-Kamm, W.J.; Steponkus, P.L. Lamellar-to-hexagonal II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc. Natl. Acad. Sci. USA 1984, 81, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Helliot, B.; Swennen, R.; Poumay, Y.; Frison, E.; Lepoivre, P.; Panis, B. Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. Plant Cell Rep. 2003, 21, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Wesley-Smith, J.; Walters, C.; Pammenter, N.W.; Berjak, P. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum. Ann. Bot. 2015, 115, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Levitt, J. A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. Theor. Biol. 1962, 3, 355–391. [Google Scholar] [CrossRef]
- Benson, E.E. Free Radical Damage in Stored Plant Germplasm; IBPGR: Rome, Italy, 1990; p. 128. ISBN 92-9043-196-2. [Google Scholar]
- Barry, H.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Wise, R.R. Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 1995, 45, 79–97. [Google Scholar] [CrossRef]
- Skyba, M.; Urbanova, M.; Kapchina-Toteva, V.; Kosuth, J.; Harding, K.; Cellarova, E. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. Cryo Lett. 2010, 31, 249–260. [Google Scholar]
- Benson, E.E.; Bremner, D. Oxidative stress in the frozen plant: A free radical point of view. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 206–241. ISBN 0-415-24700-4. [Google Scholar]
- Reed, B.M. Antioxidants and cryopreservation, the new normal? Acta Hortic. 2014, 1039, 41–48. [Google Scholar] [CrossRef]
- Ren, L.; Wang, M.-R.; Wang, Q.-C. ROS-induced oxidative stress in plant cryopreservation: Occurrence and alleviation. Planta 2021, 254, 1–18. [Google Scholar] [CrossRef]
- Harding, K.; Johnston, J.W.; Benson, E.E. Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agric. Food Sci. 2009, 18, 103–116. [Google Scholar] [CrossRef]
- Jiang, X.; Ren, R.; Di, W.; Jia, M.; Li, Z.; Liu, Y.; Gao, R. Hydrogen peroxide and nitric oxide are involved in programmed cell death induced by cryopreservation in Dendrobium protocorm-like bodies. Plant Cell Tissue Organ. Cult. 2019, 137, 553–563. [Google Scholar] [CrossRef]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.W.; Nadarajan, J. Cryopreservation of orthodox (desiccation tolerant) seeds. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 485–501. [Google Scholar]
- Silva, R.L.; Souza, E.H.; Vieira, L.J.; Pelacany, C.R.; Souza, F.V.D. Cryopreservation of pollen of wild pineapple accessions. Sci. Hortic. 2017, 219, 326–334. [Google Scholar] [CrossRef]
- Stanwood, P.C.; Bass, L.N. Ultracold preservation of seed germplasm. In Plant Cold Hardiness and Freezing Stress; Li, P., Sakai, A., Eds.; Academic Press: New York, NY, USA, 1978; pp. 361–371. [Google Scholar]
- Walters, C.; Hill, L.M.; Wheeler, L.J. Dying while dry: Kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 2005, 45, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, D.; Walters, C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: Relevance to the physiology of dry biological systems. Plant J. 2011, 68, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Levitskaya, G.E. The influence of the storage temperature on the seeds of wild species. 3. Seeds with morphological and morphophysiological dormancy. Plant Resour. 2017, 53, 39–50. (In Russian) [Google Scholar]
- Joubert, D.C.; Small, J.G.C. Seed germination and dormancy of Stipa trichotoma (Nassella Tussock). Part 1. Effect of dehulling, constant temperatures, light, oxygen, activated charcoal and storage. S. Afr. J. Bot. 1982, 1, 142–146. [Google Scholar] [CrossRef]
- Gasque, M.; García-Fayos, P. Seed dormancy and longevity in Stipa tenacissima L. (Poaceae). Plant Ecol. 2003, 168, 279–290. [Google Scholar] [CrossRef]
- Mordkovich, V.G. Stepnye Jekosistemy; Akademicheskoe Izdatel’stvo «Geo»: Novosibirsk, Russia, 2014; p. 170. ISBN 978-5-906284-48-8. [Google Scholar]
- Xiaomin, L.V.; Guangsheng, Z.; Yuxui, W.; Song, X. Sensitive indicators of Stipa species to changiang temperature and precipitation in inner Mongolia grassland, China. Front. Plant Sci. 2016, 7, 1–13. [Google Scholar]
- Xiaomin, L.V.; Guangsheng, Z. Climatic suitability of the geographic distribution of Stipa breviflora in Chinese temperate grassland under climate change. Sustainability 2018, 10, 1–13. [Google Scholar]
- Tishkov, A.A.; Belonovskaya, E.A.; Zolotukhin, N.A.; Titova, S.V.; Tsarevskaya, N.G.; Chendev, Y.G. Preserved Sections of Steppes as the Basis for the Future Ecological Framework of Belgorod Oblast. Arid. Ecosyst. 2020, 10, 36–43. [Google Scholar] [CrossRef]
- Sprinchanou, E.K.; Antipin, M.I.; Vysotskaya, O.N. The germination of six needlegrass species (Stipa L.) before and after cryopreservation. In Proceedings of the XIth International Conference “The Biology of Plant Cells In Vitro and Biotechnology”, Minsk, Belarus, 23–27 September 2018. [Google Scholar]
- Potapova, N.A.; Nazyrova, R.I.; Elmanov, S.A.; Moshnyaga, O.V.; Ganitsky, I.V.; Mirutenko, M.V.; Vilyaeva, N.A.; Ripa, S.I.; Milyutina, M.L.; Fedotov, M.P.; et al. Regional and Local Protected Areas of the Russian Federation; Biznes-Inform: Simferopol, Russia, 2019; p. 516. ISBN 978-5-6042707-0-7. (In Russian) [Google Scholar]
- Botanic Garden of the Southern Federal University (Rostov-na-Donu). Available online: https://bg.sfedu.ru (accessed on 20 August 2023).
- Rubida, A.L. Determining Green Needlegrass (Stipa viridula Trin.) Seed Germination and Viability. Electronic Theses and Dissertations. 1987, p. 4472. Available online: https://openprairie.sdstate.edu/etd/4472 (accessed on 20 August 2023).
- Offord, C.A.; Mckensy, M.L.; Cuneo, P.V. Critical review of threatened species collections in the NSW Seedbank: Implications for ex situ conservation of biodiversity. Pac. Conserv. Biol. 2004, 10, 221–236. [Google Scholar] [CrossRef]
- Puchalski, J.; Kapler, A.; Niemczyk, M.; Walerowski, P.; Krzyżewski, A.; Nowak, A.; Podyma, W. Long-term seed cryopreservation of rare and endangered Polish Ponto-Panonian plant species. Opole Sci. Soc. Nat. J. 2014, 47, 1–8. [Google Scholar]
- Levitskaya, G.E. Rare species in experimental collection of cryobank wilding seeds in the Institute of Cell Biophysics of RAS. Tambov. Univ. Rep. Ser. Nat. Tech. Sci. 2017, 22, 940–944. [Google Scholar] [CrossRef]
- Shevchenko, N.; Shyriaieva, D.; Kovalenko, G. Germination of Stipa Capillata L. before and after low temperature storage. Cryo Lett. 2021, 103, 206. [Google Scholar] [CrossRef]
- Nikishina, T.V.; Popova, E.V.; Popovich, E.A.; Shumilov, V.Y.; Popov, A.S.; Vakhrameeva, M.G.; Varlygina, T.I.; Kolomeitseva, G.L.; Burov, A.V.; Shirokov, A.I. Cryopreservation of seeds and protocorms of rare temperate orchids. Russ. J. Plant Phys. 2007, 54, 121–127. [Google Scholar] [CrossRef]
- Levitskaya, G.E. The biological characteristics of seeds of some species of the flora of the southern of Moscow region and their response to cryoconservation. Plant Resour. 2009, 45, 9–30. (In Russian) [Google Scholar]
- Stribul, T.F. Effect of Low Temperatures on Initial Growth Intensity and Productive Properties of Maize and Vegetable Seeds. Ph.D. Thesis, Institute for Problemsof Cryobiologyand Cryomedicine of the NAS of the Ukrine, Kharkov, Ukraine, 1993. [Google Scholar]
- Levitskaya, G.E. The influence of the storage temperature on the seeds of wild species. 1. The not-dormant seeds and seeds with non-deep physiological dormancy. Plant Resour. 2014, 50, 534–548. (In Russian) [Google Scholar]
- Chmielarz, P. Cryopreservation of dormant orthodox seeds of forest trees: Mazzard cherry (Prunus avium L.). Ann. For. Sci. 2009, 66, 405. [Google Scholar] [CrossRef]
- Levitskaya, G.E. The influence of the storage temperature on the seeds of wild species. 2. seeds with physiological dormancy in the case of Campanula (Campanulaceae) species. Plant Resour. 2015, 51, 38–51. (In Russian) [Google Scholar]
- Villiers, T.A. Cytological study in dormancy. II. Pathological ageing changes during prolonged dormancy and recovery upon dormancy release. New Phytol. 1972, 71, 145–152. [Google Scholar] [CrossRef]
- Nikolaeva, M.G.; Razumova, M.V.; Gladkova, V.N. Reference Book on Dormant Seed Germination; Danilova, M.F., Ed.; Nauka: Leningrad, Russia, 1985; p. 348. (In Russian) [Google Scholar]
- Hu, X.W.; Wu, Y.P.; Ding, X.Y.; Zhang, R.; Wang, Y.R.; Baskin, J.M.; Baskin, C.C. Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the loess plateau of northwestern China. PLoS ONE 2014, 9, e112579. [Google Scholar] [CrossRef]
- Nikolaeva, M.G. Factors affecting the seed dormancy pattern. In The Physiology and Biochemistry of Seed Development, Dormancyand Germination; Khan, A.A., Ed.; Elsevier Biomedical Press: Amsterdam, The Netherlands, 1982; pp. 51–74. [Google Scholar]
- Baskin, C.; Baskin, J.M. Seed Ecology, Biogeography, and Evolution of Dormancy and Germination; Elsevier Academic Press: Amsterdam, The Netherlands, 2014; p. 1600. [Google Scholar]
- Nikolaeva, M.G.; Ljanguzova, I.V.; Pozdova, L.M. Biologija Semjan; NII Himii: Saint Petersburg, Russia, 1999; p. 232. (In Russian) [Google Scholar]
- Ronnenberg, K.; Wesche, K.; Hensen, I. Germination ecology of Central Asian Stipa spp.: Differences amongspecies, seed provenances, and the importance of field studies. Plant Ecol. 2008, 196, 269–280. [Google Scholar] [CrossRef]
- Zhang, R.; Baskin, J.M.; Baskin, C.C.; Mo, Q.; Chen, L.; Hu, X.; Wang, Y. Effect of population, collection year, after-ripening andincubation condition on seed germination of Stipa bungeana. Sci. Rep. 2017, 7, 13893. [Google Scholar] [CrossRef] [PubMed]
- Krichen, K.; Vilagrosa, A.; Chaieb, M. Environmental factors that limit Stipa tenacissima L. germination and establishment in mediterranean arid ecosystems in a climate variability context. Acta Physiol. Plant 2017, 39, 175. [Google Scholar] [CrossRef]
- Nozdrina, M.A.; Voldaeva, S.Y.; Volkova, E.M.; Rozova, I.V. The studying of seeding quality of steppe plant species. Izv. TulSU. Nat. Sci. 2021, 3, 35–44. (In Russian) [Google Scholar] [CrossRef]
- Hodgkin, T.; Hegarty, T.W. Genetically determined variation in seed germination and field emergence of Brassica oleracea. Ann. Appl. Biol. 1978, 88, 407–413. [Google Scholar] [CrossRef]
- Razumova, M.V.; Nikolaeva, M.G. Rol’ Temperatury i Fitogormonov v Narushenii Pokoja Semjan; Nauka: Leningrad, Russia, 1981; p. 160. (In Russian) [Google Scholar]
- Naylor, J.M.; Simpson, G.M. Dormancy studies in seed of avena fatua: 2. a gibberellin-sensitive inhibitory mechanism in the embryo. Canad. J. Bot. 1961, 39, 281–295. [Google Scholar] [CrossRef]
- Bilderback, D.E. A Simple Method to Differentiate between α- and β-Amylase. Plant Physiol. 1973, 51, 594–595. [Google Scholar] [CrossRef] [PubMed]
- Gubler, F.; Kalla, R.; Roberts, J.K.; Jacobsen, J.V. Gibberellin-regulated expression of amybgene in barleyaleurone cells: Evidence for Myb transactivation of a high-pIα-amylase gene promoter. Plant Cell 1995, 7, 1879–1891. [Google Scholar]
- Gubler, F.; Watts, R.J.; Kalla, R.; Matthews, P.; Keys, M.; Jacobsen, J.V. Cloning of a rice cDNA encoding a transcription factor homologous to barley GAMyb. Plant Cell Physiol. 1997, 38, 362–365. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Elsevier/Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- International Seed Testing Association. International Rules for Seed Testing. Seed Science and Technology 27 (Supplement). 2012. Available online: https://www.seedtest.org/en/ (accessed on 20 August 2023).
- Sano, N.; Marion-Poll, A. ABA Metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 2021, 22, 5069. [Google Scholar] [CrossRef] [PubMed]
- Gattward, J.N.; Almeida, A.A.F.; Souza, J.J.O.; Gomes, F.P.; Kronzucker, H.J. Sodium–potassium synergism in Theobroma Cacao: Stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol. Plant 2012, 1463, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.H.; Smith, R.D. Pentose phosphate pathway and germination. In The Physiology and Biochemistry of Seed Dormancy and Germination; Khan, A.A., Ed.; North Holland: Amsterdam, The Netherlands, 1977; pp. 385–411. [Google Scholar]
- Lavrenko, E.M.; Karamysheva, Z.V. Steppes of the former Soviet Union and Mongolia. In Ecosystems of the World; Coupland, R.T., Ed.; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1993; Volume 8b, pp. 3–59. [Google Scholar]
- Lavrenko, E.M. Stepi Evrazii; Nauka: Leningrad, Russia, 1991; p. 144. (In Russian) [Google Scholar]
- Tzvelev, N. Notes on the tribe Stipeae Dumort. (Poaceae). Novit. Syst. Plant. Vasc. 2012, 43, 20–29. [Google Scholar] [CrossRef]
№ | Species | Latitude | Longitude |
---|---|---|---|
1 | S. sareptana | 47°23′57.3″ | 39°65′23.9″ |
2 | S. ucrainica | 47°23′46.1″ | 39°65′61.0″ |
3 | S. tirsa | 47°23′78.2″ | 39°65′70.1″ |
4 | S. dasyphylla | 47°23′54.5″ | 39°65′71.5″ |
5 | S. adoxa | 47°23′47.7″ | 39°65′83.3″ |
6 | S. pulcherrima | 47°23′69.3″ | 39°66′00.6″ |
Species | Control Group Room t + Stratification 42 Days | Cryo Group N2 (−196 °C) 14 Days + Stratification 42 Days | ||
---|---|---|---|---|
Seed Germination, % | DI | Seed Germination, % | DI | |
S. sareptana | 57 | 0.43 | 84 | 0.16 |
S. ucrainica | 43 | 0.57 | 59 | 0.41 |
S. tirsa | 32 | 0.68 | 50 | 0.50 |
S. dasyphylla | 28 | 0.72 | 44 | 0.56 |
S. adoxa | 21 | 0.79 | 50 | 0.50 |
S. pulcherrima | 56 | 0.44 | 69 | 0.31 |
average, % | 40 | 0.60 | 59 | 0.41 |
Species | Seed Germination, % | |||
---|---|---|---|---|
Control Group | Cryo Group | |||
RT (8th Months) No Stratification | RT (7th Months) + Stratification 21 Days | N2 (−196 °C) 91 Days No Stratification | N2 (−196 °C) 70 Days + Stratification 21 Days | |
S. sareptana | 55 | 79 | 83 | 100 |
S. ucrainica | 8 | 8 | 12 | 13 |
S. tirsa | 10 | 10 | 11 | 17 |
S. dasyphylla | 13 | 22 | 19 | 27 |
S. adoxa | 0 | 0 | 10 | 10 |
S. pulcherrima | 0 | 20 | 9 | 50 |
average, % | 14 | 23 | 24 | 36 |
Species | Seed Germination, % | |
---|---|---|
No Pre-Treatment | NaOH | |
S. sareptana | 90 | - |
S. ucrainica | 0 | 17 |
S. tirsa | 0 | 57 |
S. dasyphylla | 0 | 29 |
S. adoxa | 0 | 0 |
S. pulcherrima | 0 | 29 |
average, % | 15 | 26 |
Species | Seed Germination, % | |||
---|---|---|---|---|
30 Days | 90 Days | 180 Days | 400 Days | |
S. sareptana | 35 | 59 | 61 | 61 |
S. ucrainica | 0 | 5 | 16 | 26 |
S. tirsa | 0 | 12 | 24 | 35 |
S. dasyphylla | 0 | 7 | 7 | 14 |
S. adoxa | 0 | 0 | 8 | 25 |
S. pulcherrima | 0 | 20 | 30 | 30 |
average, % | 6 | 17 | 24 | 32 |
Species | Seed Germination, % | ||||
---|---|---|---|---|---|
No Stimulator | GA3 | KNO3 | NaOH | H2O2 | |
S. sareptana | 35 | 70 | 63 | 56 | 90 |
S. ucrainica | 0 | 0 | 0 | 0 | 7 |
S. tirsa | - | - | - | - | - |
S. dasyphylla | 0 | 0 | 0 | 6 | 11 |
S. adoxa | 0 | 0 | 0 | 13 | 6 |
S. pulcherrima | 0 | 0 | 0 | 7 | 0 |
average, % | 7 | 14 | 13 | 16 | 23 |
Conditions and Duration of the Experiment | |||||||
---|---|---|---|---|---|---|---|
Cryopreservation N2 | Control | 14 Days | 70 Days | 415 Days | 1489 Days | 1951 Days | 1951 Days |
stimulator | - | - | - | NaOH | - | NaOH | H2O2 |
stratification | 42 days | 42 days | 21 days | - | 30 days | - | - |
germination | 30 days | 30 days | 30 days | 30 days | 400 days | 30 days | 30 days |
Species | Seed germination, % | ||||||
S. sareptana | 57 | 84 | 100 | 90 | 61 | 56 | 90 |
S. ucrainica | 43 | 59 | 13 | 17 | 26 | 0 | 7 |
S. tirsa | 32 | 50 | 17 | 57 | 35 | - | - |
S. dasyphylla | 28 | 44 | 27 | 29 | 14 | 6 | 11 |
S. adoxa | 21 | 50 | 10 | 0 | 25 | 13 | 6 |
S. pulcherrima | 56 | 69 | 50 | 29 | 30 | 7 | 0 |
average, % | 40 | 59 | 36 | 37 | 32 | 16 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipova, E.S.; Tereshonok, D.V.; Gladkov, E.A.; Evsyukov, S.V.; Stepanova, A.Y. Evaluation of Seed Germination of Six Rare Stipa Species following Low Temperature Stress (Cryopreservation). Life 2023, 13, 2296. https://doi.org/10.3390/life13122296
Osipova ES, Tereshonok DV, Gladkov EA, Evsyukov SV, Stepanova AY. Evaluation of Seed Germination of Six Rare Stipa Species following Low Temperature Stress (Cryopreservation). Life. 2023; 13(12):2296. https://doi.org/10.3390/life13122296
Chicago/Turabian StyleOsipova, Ekaterina Sergeevna, Dmitry Viktorovich Tereshonok, Evgeny Aleksandrovich Gladkov, Sergey Victorovich Evsyukov, and Anna Yurievna Stepanova. 2023. "Evaluation of Seed Germination of Six Rare Stipa Species following Low Temperature Stress (Cryopreservation)" Life 13, no. 12: 2296. https://doi.org/10.3390/life13122296
APA StyleOsipova, E. S., Tereshonok, D. V., Gladkov, E. A., Evsyukov, S. V., & Stepanova, A. Y. (2023). Evaluation of Seed Germination of Six Rare Stipa Species following Low Temperature Stress (Cryopreservation). Life, 13(12), 2296. https://doi.org/10.3390/life13122296