Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling
Abstract
:1. Introduction
Cardiac Patch Materials and Patch Design
2. Methods
3. Results
3.1. Aorta
3.2. Pulmonary Arteries
3.3. Right Ventricle
3.4. Atrial Septal Defects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Martin, J.A.; Kung, H.-C.; Mathews, T.; Hoyert, D.L.; Strobino, D.M.; Guyer, B.; Sutton, S.R. Annual Summary of Vital Statistics: 2006. Pediatrics 2008, 121, 788–801. [Google Scholar] [CrossRef]
- Kung, H.C.; Hoyert, D.L.; Xu, J.; Murphy, S.L. Deaths: Final data for 2005. Natl. Vital Stat. Rep. 2008, 56, 1–124. [Google Scholar]
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, M.; Lu, L.; Zheng, Y.; Zhang, P. Congenital Heart Disease: Causes, Diagnosis, Symptoms, and Treatments. Cell Biochem. Biophys. 2015, 72, 857–860. [Google Scholar] [CrossRef]
- Pok, S.; Jacot, J.G. Biomaterials Advances in Patches for Congenital Heart Defect Repair. J. Cardiovasc. Transl. Res. 2011, 4, 646–654. [Google Scholar] [CrossRef] [PubMed]
- DeSanto, A.; Bills, R.G.; King, H.; Waller, B.; Brown, J.W. Pathogenesis of aneurysm formation opposite prosthetic patches used for coarctation repair. J. Thorac. Cardiovasc. Surg. 1984, 94, 720–723. [Google Scholar] [CrossRef]
- Ylitalo, P.; Nieminen, H.; Pitkänen, O.M.; Jokinen, E.; Sairanen, H. Need of transannular patch in tetralogy of Fallot surgery carries a higher risk of reoperation but has no impact on late survival: Results of Fallot repair in Finland. Eur. J. Cardio-Thorac. Surg. 2015, 48, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Sun, Y.; Huang, J.; Zou, P.; Rao, J.; Xu, W.; Liu, Q. The V-shaped double-layer patch technique for complete atrioventricular septal defect: A novel surgical technique. J. Thorac. Cardiovasc. Surg. 2022, 165, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mu, W.; Zhang, Y.; He, X.; Wang, Y.; Ma, H.; Zhu, T.; Li, A.; Hou, Q.; Yang, W.; et al. Recent Advances in Cardiac Patches: Materials, Preparations, and Properties. ACS Biomater. Sci. Eng. 2022, 8, 3659–3675. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, X. Bioelectricity-coupling patches for repairing impaired myocardium. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1787. [Google Scholar] [CrossRef]
- Peivandi, A.D.; Martens, S.; Asfour, B.; Martens, S. Grafts and Patches: Optimized but Not Optimal Materials for Congenital Heart Surgery. Pediatr. Cardiol. 2023, 44, 996–1002. [Google Scholar] [CrossRef]
- Cohen, S.; Magal, S.; Yakov, I.; Sirabella, E.; Bitman, A.; Groisman, G.; Lotan, C. Tissue processing techniques for fabrication of covered stents for small-diameter vascular intervention. Acta Biomater. 2018, 65, 248–258. [Google Scholar] [CrossRef]
- Kaplan, S.; McKinivan, C.E.; Helmsworth, J.; Benzing, G.; Schwartz, D.; Schreiber, J.T. Complications Following Homograft Re-placement of the Right Ventricular Outflow Tract. Ann. Thorac. Surg. 1974, 18, 250–259. [Google Scholar] [CrossRef]
- Urso, S.; Rega, F.; Meuris, B.; Gewillig, M.; Eyskens, B.; Daenen, W.; Heying, R.; Meyns, B. The Contegra conduit in the right ventricular outflow tract is an independent risk factor for graft replacement. Eur. J. Cardio-Thorac. Surg. 2011, 40, 603–609. [Google Scholar] [CrossRef]
- Blan, N.R.; Birla, R.K. Design and fabrication of heart muscle using scaffold-based tissue engineering. J. Biomed. Mater. Res. Part A 2008, 86A, 195–208. [Google Scholar] [CrossRef]
- Chen, S.A.; Ong, C.S.; Malguria, N.; Vricella, L.A.; Garcia, J.R.; Hibino, N. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Belitsis, G.; Aynetdinova, R.; Dent, C.; Kostolny, M. Ductal arch decoded: The use of its spatial fingerprint to design a Norwood type of patch. Multimed. Man. Cardio-Thorac. Surg. 2022, 2022. [Google Scholar] [CrossRef]
- Lashkarinia, S.S.; Piskin, S.; Bozkaya, T.A.; Salihoglu, E.; Yerebakan, C.; Pekkan, K. Computational Pre-surgical Planning of Arterial Patch Reconstruction: Parametric Limits and In Vitro Validation. Ann. Biomed. Eng. 2018, 46, 1292–1308. [Google Scholar] [CrossRef]
- Lashkarinia, S.S.; Coban, G.; Kose, B.; Salihoglu, E.; Pekkan, K. Computational modeling of vascular growth in patient-specific pulmonary arterial patch reconstructions. J. Biomech. 2021, 117, 110274. [Google Scholar] [CrossRef]
- Tang, D.; Yang, C.; Geva, T.; del Nido, P.J. Patient-Specific MRI-Based 3D FSI RV/LV/Patch Models for Pulmonary Valve Replacement Surgery and Patch Optimization. J. Biomech. Eng. 2008, 130, 041010. [Google Scholar] [CrossRef]
- Miyazaki, T.; Yamagishi, M.; Yamamoto, Y.; Itatani, K.; Asada, S.; Fujita, S.; Hongu, H.; Maeda, Y.; Yaku, H. Use of an expanded polytetrafluoroethylene valved patch with a sinus in right ventricular outflow tract reconstruction. Eur. J. Cardio-Thorac. Surg. 2019, 56, 671–678. [Google Scholar] [CrossRef]
- Giannopoulos, A.A.; Chepelev, L.; Sheikh, A.; Wang, A.; Dang, W.; Akyuz, E.; Hong, C.; Wake, N.; Pietila, T.; Dydynski, P.B.; et al. 3D printed ventricular septal defect patch: A primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. 3D Print. Med. 2015, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Miyaji, K.; Miyazaki, S.; Itatani, K.; Oka, N.; Kitamura, T.; Horai, T. Novel surgical strategy for complicated pulmonary stenosis using haemodynamic analysis based on a virtual operation with numerical flow analysis. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Romans, C.; Ashwath, R. Patient-Specific Patch for an Intra-Atrial Rerouting Procedure Developed Through Surgical Simulation. World J. Pediatr. Congenit. Heart Surg. 2021, 12, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, B.; Zhao, X.; Wang, J.; Zhao, D.; Zhang, G.; Zhu, B.; Ma, Q.; Pan, G.; Li, D. Feasibility analyses of virtual models and 3D printing for surgical simulation of the double-outlet right ventricle. Med. Biol. Eng. Comput. 2022, 60, 3029–3040. [Google Scholar] [CrossRef]
- Mayoral, I.; Bevilacqua, E.; Gómez, G.; Hmadcha, A.; González-Loscertales, I.; Reina, E.; Sotelo, J.; Domínguez, A.; Pérez-Alcántara, P.; Smani, Y.; et al. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Mater. Today Bio 2022, 14, 100252. [Google Scholar] [CrossRef]
- Ma, X.J.; Tao, L.; Chen, X.; Li, W.; Peng, Z.Y.; Chen, Y.; Jin, J.; Zhang, X.L.; Xiong, Q.F.; Zhong, Z.L.; et al. Clinical application of three-dimensional reconstruction and rapid proto-typing technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot. Genet. Mol. Res. 2015, 14, 1301–1309. [Google Scholar] [CrossRef]
- Mendez, A.; Gomez-Ciriza, G.; Raboisson, M.-J.; Rivas, J.; Ordoñez, A.; Poirier, N.; Valverde, I. Apical Muscular Ventricular Septal Defects: Surgical Strategy Using Three-Dimensional Printed Model. Semin. Thorac. Cardiovasc. Surg. 2018, 30, 450–453. [Google Scholar] [CrossRef]
- Viceconti, M.; Pappalardo, F.; Rodriguez, B.; Horner, M.; Bischoff, J.; Tshinanu, F.M. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 2021, 185, 120–127. [Google Scholar] [CrossRef]
- Bruse, J.L.; Khushnood, A.; McLeod, K.; Biglino, G.; Sermesant, M.; Pennec, X.; Taylor, A.M.; Hsia, T.-Y.; Schievano, S.; Khambadkone, S.; et al. How successful is successful? Aortic arch shape after successful aortic coarctation repair correlates with left ventricular function. J. Thorac. Cardiovasc. Surg. 2017, 153, 418–427. [Google Scholar] [CrossRef]
- Ashcraft, T.M.; Jones, K.; Border, W.L.; Eghtesady, P.; Pearl, J.M.; Khoury, P.R.; Manning, P.B. Factors Affecting Long-Term Risk of Aortic Arch Recoarctation After the Norwood Procedure. Ann. Thorac. Surg. 2008, 85, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.J.; Ramgren, J.J.; Hallbergson, A.; Liuba, P.; Sjöberg, G.; Malm, T. Long-term results of aortic arch reconstruction with branch pulmonary artery homograft patches. J. Card. Surg. 2020, 35, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, Y.; Ziegler, K.R.; Model, L.S.; Eghbalieh, S.D.; Brenes, R.A.; Kim, S.T.; Shu, C.; Dardik, A. Current Usage and Future Directions for the Bovine Pericardial Patch. Ann. Vasc. Surg. 2011, 25, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Talwar, S.; Das, A.; Siddarth, B.; Choudhary, S.K.; Airan, B. Patch materials for right ventricular outflow reconstruction: Past, present, and future. Indian J. Thorac. Cardiovasc. Surg. 2019, 35, 41–50. [Google Scholar] [CrossRef] [PubMed]
- E Drury, N.; Herd, C.P.; Biglino, G.; Brown, K.L.; Coats, L.; Cumper, M.J.; Guerrero, R.R.; Miskin, A.; Murray, S.; Pender, F.; et al. Research priorities in children and adults with congenital heart disease: A James Lind Alliance Priority Setting Partnership. Open Heart 2022, 9, e002147. [Google Scholar] [CrossRef] [PubMed]
- Welch-Phillips, A.; Gibbons, D.; Ahern, D.P.; Butler, J.S. What Is Finite Element Analysis? Clin. Spine Surg. 2020, 33, 323–324. [Google Scholar] [CrossRef]
- Maas, S.A.; Ellis, B.J.; Ateshian, G.A.; Weiss, J.A. FEBio: Finite Elements for Biomechanics. J. Biomech. Eng. 2012, 134, 011005. [Google Scholar] [CrossRef]
- Maas, S.A.; LaBelle, S.A.; Ateshian, G.A.; Weiss, J.A. A Plugin Framework for Extending the Simulation Capabilities of FEBio. Biophys. J. 2018, 115, 1630–1637. [Google Scholar] [CrossRef]
- Updegrove, A.; Wilson, N.M.; Merkow, J.; Lan, H.; Marsden, A.L.; Shadden, S.C. SimVascular: An Open Source Pipeline for Cardio-vascular Simulation. Ann. Biomed. Eng. 2017, 45, 525–541. [Google Scholar] [CrossRef]
- Schiavazzi, D.E.; Arbia, G.; Baker, C.; Hlavacek, A.M.; Hsia, T.Y.; Marsden, A.L.; Vignon-Clementel, I.E. Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Uncertainty Quantification in Virtual Surgery Hemodynamics Predictions for Single Ven-tricle Palliation. Int. J. Numer. Methods Biomed. Eng. 2016, 32, e02737. [Google Scholar] [CrossRef] [PubMed]
- Sophocleous, F.; Bône, A.; Shearn, A.I.U.; Forte, M.N.V.; Bruse, J.L.; Caputo, M.; Biglino, G. Feasibility of a Longitudinal Statistical Atlas Model to Study Aortic Growth in Congenital Heart Disease. Comput. Biol. Med. 2022, 144, 105326. [Google Scholar] [CrossRef] [PubMed]
- Shearn, A.I.; Ordoñez, M.V.; Rapetto, F.; Caputo, M.; Biglino, G. Rapid Prototyping Flexible Aortic Models Aids Sizing of Valve Leaflets and Planning the Ozaki Repair. JACC Case Rep. 2020, 2, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019, 6, 1900344. [Google Scholar] [CrossRef] [PubMed]
Author | Paper Title | Year | Method | CHD/Anatomy |
---|---|---|---|---|
Chen et al. [16] | Digital design and 3D printing of aortic arch reconstruction in HLHS for surgical simulation and training | 2018 | CT, 3-matic and Mehsmixer, 3D Printing, Surgical Simulation | HLHS/aorta |
Belitsis et al. [17] | Ductal arch decoded: the use of its spatial fingerprint to design a Norwood type of patch | 2022 | 3D Printing, Surgical Simulation | HLHS/aorta |
Lashkarinia et al. [18] | Computational pre-surgical planning of arterial patch reconstruction: parametric limits and in vitro validation | 2018 | Finite Elements Model | Pulmonary artery |
Lashkarinia et al. [19] | Computational modelling of vascular growth in patient-specific pulmonary arterial patch reconstructions | 2021 | Computational Fluid Dynamics | Pulmonary artery |
Tang et al. [20] | Patient-specific MRI-based 3D FSI RV/LV/Patch models for pulmonary valve replacement surgery and patch optimization | 2018 | Fluid Structure Interactions | RVOT |
Miyazaki et al. [21] | Use of an expanded polytetrafluoroethylene valved patch with a sinus in right ventricular outflow tract reconstruction | 2019 | Patch Design | RVOT |
Nakumara et al. [22] | Patient-specific patch for an intra-atrial rerouting procedure developed through surgical simulation | 2021 | 3D Printing, Surface Modelling, Surgical Simulation | Atrial septal defect |
Miyaji et al. [23] | Novel surgical strategy for complicated pulmonary stenosis using haemodynamic analysis based on a virtual operation with numerical flow analysis | 2019 | Computational fluid dynamics, Virtual surgery | Pulmonary artery |
Giannopolous et al. [24] | 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing | 2015 | CAD, 3D Printing | Ventricular septal defect |
Liang et al. [25] | Feasibility analyses of virtual models and 3D printing for surgical simulation of the double-outlet right ventricle | 2022 | 3D Printing, Surgical Simulation | Ventricular septal defect |
Mayoral et al. [26] | Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning | 2022 | 3D Printing, Computational Fluid Dynamics | Aorta |
Ma et al. [27] | Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot | 2015 | 3D Printing, Presurgical Planning | Ventricular septal defect |
Mendez et al. [28] | Apical muscular ventricular septal defects: surgical strategy using three-dimensional printed model | 2018 | 3D Printing, Presurgical Planning | Ventricular Septal Defects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljassam, Y.; Caputo, M.; Biglino, G. Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling. Life 2023, 13, 2295. https://doi.org/10.3390/life13122295
Aljassam Y, Caputo M, Biglino G. Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling. Life. 2023; 13(12):2295. https://doi.org/10.3390/life13122295
Chicago/Turabian StyleAljassam, Yousef, Massimo Caputo, and Giovanni Biglino. 2023. "Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling" Life 13, no. 12: 2295. https://doi.org/10.3390/life13122295
APA StyleAljassam, Y., Caputo, M., & Biglino, G. (2023). Surgical Patching in Congenital Heart Disease: The Role of Imaging and Modelling. Life, 13(12), 2295. https://doi.org/10.3390/life13122295