Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy
Abstract
:1. Introduction
2. Cardiovascular Risk Factors in RA and Their Relationship with Atherosclerosis
2.1. Arterial Hypertension
2.2. Dyslipidemia
2.3. Obesity and Insulin Resistance
Adipokine | Functions | Source | Effects in RA Patients | Reference |
---|---|---|---|---|
Adiponectin | Anti-inflammatory effect Anti-atherogenic effect | Adipocytes | Pro-inflammatory effect Correlated with disease activity, disease progression, and inflammatory markers | [44,45] |
Leptin | Pro-inflammatory effect Appetite and weight regulator | Adipocytes | Pro-inflammatory effect Correlated with disease activity and progression, as well as with IL-6 levels | [44,46,47] |
Visfatin | Pro-inflammatory effect Promotion of B-cell differentiation | Adipose tissue, liver, bone marrow, muscle | Pro-inflammatory effect Correlated with inflammatory markers and disease activity Expression of visfatin seems to be linked to decreased cardiometabolic risk | [44,48,49] |
Resistin | Pro-inflammatory effect Promotion of immune cell recruitment and immune cell activation | Macrophages, adipocytes | Pro-inflammatory effect Systemic levels may depend on RA disease duration or severity Synovial levels seem to be correlated with inflammatory markers and disease activity | [44,50] |
Omentin | Anti-inflammatory effect Anti-atherogenic effect | Stromal vascular cells, adipocytes | Systemic levels were associated with inflammatory markers, while tissue concentrations were neutral | [44,51] |
Progranulin | Anti-inflammatory effect (by competitive binding to tumor necrosis factor (TNF)) | Adipocytes, macrophages, chondrocytes | Pro-inflammatory marker Correlated with disease activity and progression Is a key player in the preservation of cartilage integrity | [44,46,52] |
2.4. Homocysteine
3. Inflammation and Atherosclerosis
4. Assessing Cardiovascular Risk in RA
4.1. Biomarkers Predictive of Cardiovascular Risk in RA
4.1.1. Lipid Profile
4.1.2. Homocysteinemia and ADMA
4.1.3. MicroRNAs
4.1.4. Anti-β2-Glycoprotein-1 (anti-β2GPI) IgA Antibodies
4.2. Predictive Imaging Markers of Cardiovascular Risk in RA
4.2.1. cIMT
4.2.2. CAC Scores
5. The Effects of Biological Therapy on Cardiovascular Risk Factors in RA
5.1. Anti-IL-6
5.2. Anti-TNF-α
5.3. Anti-CD20
5.4. Anti-CD80/86
6. Conclusions
- ☐
- RA patients are complex patients requiring a multidisciplinary approach, especially because the interaction between traditional cardiovascular risk factors and disease-specific inflammation increases cardiovascular risk.
- ☐
- RA patient management involves the following:
- ■
- Caution when prescribing medication that contributes to increased cardiovascular risk (e.g., COX-2 inhibitors, glucocorticoids, leflunomide);
- ■
- Management of cardiovascular risk factors (i.e., antihypertensive and hypolipidemic treatment should be administered according to current guidelines);
- ■
- Induction of disease remission and optimal control of systemic inflammation;
- ■
- Quantifying cardiovascular risk and detecting early atherosclerosis;
- ■
- Early implementation of targeted bDMARDs in selected patients.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes f death in 195 countries and territories. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Kerola, A.M.; Rollefstad, S.; Semb, A.G. Atherosclerotic cardiovascular disease in rheumatoid arthritis: Impact of inflammation and antirheumatic treatment. Eur. Cardiol. 2021, 16, e18. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update: A report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Back, M.; Benetos, A.; Boavida, J.M.; Capodanno, D.; Crawford, C.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Karger, A.B.; Steffen, B.T.; Nomura, S.O.; Guan, W.; Garg, P.K.; Szklo, M.; Budoff, M.J.; Tsai, M.Y. Associations between homocysteine and vascular calcification incidence, prevalence, and progression in the MESA Cohort. J. Am. Heart Assoc. 2020, 9, e013934. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.; Hoy, D.; Smith, E.; Bettampadi, D.; Mansournia, M.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Qorbani, M.; et al. Global, Regional and National Burden of RheumaToid Arthritis 1990–2017: A Systematic analysis of The Global Burden of Disease Study 2017. Ann. Rheum. Dis. 2019, 78, 1463–1471. [Google Scholar] [CrossRef]
- Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; et al. The global burden of rheumatoid arthritis: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1316–1322. [Google Scholar] [CrossRef]
- Van der Woude, D.; van der Helm-van Mil, A.H.M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 174–187. [Google Scholar] [CrossRef]
- Hansildaar, R.; Vedder, D.; Baniaamam, M.; Tausche, A.K.; Gerritsn, M.; Nurmohamed, M.T. Cardiovascular risk in inflammatory arthritis: Rheumatoid arthritis and gout. Lancet Rheumatol. 2020, 3, E58–E70. [Google Scholar] [CrossRef]
- Crowson, C.S.; Rollefstad, S.; Ikdahl, E.; Kitas, G.D.; van Riel, P.L.C.M.; Gabriel, S.E.; Matteson, E.L.; Kvien, T.K.; Douglas, K.; Sandoo, A.; et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 48–54. [Google Scholar] [CrossRef]
- Schieir, O.; Toseviski, C.; Glazier, R.H.; Hogg-Johnson, S.; Badley, E.M. Incident myocardial infarction associated with major types of arthritis in the general population: A systematic review and meta-analysis. Ann. Rheum. Dis. 2017, 76, 1396–1404. [Google Scholar] [CrossRef]
- Avina-Zubieta, J.; Thomas, J.; Sadatsafavi, M.; Lehman, A.; Lacaille, D. Risk of incident Cardiovascular Events in Patients with rheumatoid Arthritis: A Meta-analysis of Observational Studies. Ann. Rheum. Dis. 2012, 71, 1524–1529. [Google Scholar] [CrossRef]
- Hannawi, S.; Haluska, B.; Marwick, T.H.; Thomas, R. Atherosclerotic disease is increased in recent-onset rheumatoid arthritis: A critical role for inflammation. Arthritis Res. Ther. 2007, 9, R116. [Google Scholar] [CrossRef] [Green Version]
- Houge, I.S.; Hoff, M.; Thomas, R.; Videm, V. Mortality is increased in patients with rheumatoid arthritis or diabetes compared to the general population—The Nord-Trondelag health study. Sci. Rep. 2020, 10, 3593. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, J.; Boshuizen, H.; Roorda, L.; Tijhuis, G.; Nurmohamed, M.; van den Bos, G.; Dekker, J. Mortality in patients with rheumatoid arthritis: A 15-year prospective cohort study. Rheumatol. Int. 2016, 37, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Myasoedova, E.; Gabriel, S.E.; Matteson, E.L.; Davis, J.M., 3rd; Therneau, T.M.; Crowson, C.S. Decreased cardiovascular mortality in patients with incident rheumatoid arthtritis (RA) in recent years: Dawn of a new era in cardiovascular disease in RA? J. Rheumatol. 2017, 44, 732–739. [Google Scholar] [CrossRef]
- Hitchon, C.A.; Boire, G.; Haraoui, B.; Keystone, E.; Pope, J.; Jamal, S.; Tin, D.; Throne, C.; Bykerk, V.P. Self-reported comorbidity is common in early inflammatory arthritis and associated with poorer function and worse arthritis disease outcomes: Results from the Canadian Early Arthritis Cohort. Rheumatology 2016, 55, 1751–1762. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.I.; Wang, L.; Wei, W.; Yuce, H.; Phillips, K. Burden of rheumatoid arthritis among US Medicare population: Co-morbidities, health-care resource utilization and costs. Rheumatol. Adv. Pract. 2018, 2, rky005. [Google Scholar] [CrossRef]
- Ramos, A.L.; Redeker, I.; Hoffmann, F.; Callhoff, J.; Zink, A.; Albrecht, K. Comorbidities in patients with rheumatoid arthritis and the association with patient-reported outcomes: Results of claims data linked to questionnaire survey. J. Rheumatol. 2019, 46, 564–571. [Google Scholar] [CrossRef]
- Panoulas, V.F.; Douglas, K.M.J.; Smith, J.P.; Stavropoulos-Kalinoglou, A.; Metsios, G.S.; Nightingale, P.; Kitas, G.D. Transforming growth factor-β1 869T/C, but not interleukin-6-174G/C, polymorphism associates with hypertension in rheumatoid arthritis. Rheumatology 2009, 48, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Jagpal, A.; Navarro-Millan, I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: A narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2018, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadwen, B.; Stranges, S.; Barra, L. Risk factors for hypertension in rheumatoid arthritis patients: A systematic review. Autoimmune Dis. 2021, 20, 102786. [Google Scholar] [CrossRef] [PubMed]
- Hannawi, S.M.A.; Hannawi, H.; Al Salmi, I. Cardiovascular risk in rheumatoid arthritis: Literature review. Oman Med. J. 2021, 36, e262. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Sauer, B.; Teng, C.C.; Michael, G.; Cannon, G.W.; Said, I.; Cannella, A.; Bryant, R.; Michaud, K.; Caplan, L.; et al. Initiation of disease-modifying therapies in rheumatoid arthtritis is associated with changes in blood pressure. J. Clin. Rheumatol. 2018, 24, 203–209. [Google Scholar] [CrossRef]
- Seong-Kyu, K.; Sang Gyu, K.; Jung-Yoon, C. Association between biological disease modifying anti-rheumatic drugs and incident hypertension in patients with rheumatoid arthritis: Results from prospective nationwide KOBIO Registry. Medicine 2020, 99, e19415. [Google Scholar] [CrossRef]
- Patrick, D.M.; Van Beusecum, J.P.; Kirabo, A. The role of inflammation in hypertension: Novel concepts. Curr. Opin. Physiol. 2021, 19, 92–98. [Google Scholar] [CrossRef]
- Wenzel, U.O.; Ehmke, H.; Bode, M. Immune mechanisms in arterial hypertension. Recent advances. Cell Tissue Res. 2021, 385, 393–404. [Google Scholar] [CrossRef]
- Baghdadi, L.R.; Woodman, R.J.; Shanahan, E.M.; Mangoni, A.A. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117952. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Kim, S.C.; Vanni, K.; Huang, J.; Desai, R.; Murphy, S.N.; Solomon, D.H.; Liao, K.P. Association between inflammation and systolic blood pressure in RA compared to patients without RA. Arthritis Res. Ther. 2018, 20, 107. [Google Scholar] [CrossRef] [Green Version]
- Kypreos, K.E.; Bitzur, R.; Karavia, E.A.; Xepapadaki, E.; Panayiotakopoulos, G.; Constantinou, C. Pharmacological management of dyslipidemia in atherosclerosis: Limitations, challenges and therapeutic opportunities. Angiology 2018, 70, 1–13. [Google Scholar] [CrossRef]
- London, M.G.; Muriden, K.D.; Hewitt, J.V. Serum cholesterol in rheumatic diseases. Br. Med. J. 1963, 1, 1380–1383. [Google Scholar] [CrossRef]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid paradox in rheumatoid arthritis: The impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 2011, 70, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.P.; Liu, J.; Lu, B.; Solomon, D.H.; Kim, S.C. Associations between lipid levels and major adverse cardiovascular events in rheumatoid arthritis compared to non-rheumatoid arthritis patients. Arthritis Rheumatol. 2015, 67, 2004–2010. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Carrio, J.; Alperi-Lopez, M.; Lopez, P.; Lopez-Mejias, R.; Alonso-Castro, S.; Abal, F.; Ballina-Garcia, F.J.; Gonzalez-Gay, M.A.; Suarez, A. High triglycerides and low HDL-c lipid profile in rheumatoid arthritis: A potential link among inflammation, oxidative status and dysfunctional HDL. J. Clin. Lipidol. 2017, 11, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Venetsanopoulou, A.I.; Pelechas, E.; Voulgari, P.V.; Drosos, A.A. The lipid paradox in rheumatoid arthritis: The dark horse of the augmented cardiovascular risk. Rheumatol. Int. 2020, 40, 1181–1191. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Lee, Y.Y.; Grijalva, V.; Amjadi, S.; FitzGerald, J.; Ranganath, V.K.; Taylor, M.; McMahon, M.; Paulus, H.E.; Reddy, S.T. Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Despres, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Henning, R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504–529. [Google Scholar]
- Lu, B.; Hiraki, L.T.; Sparks, J.A.; Malspeis, S.; Chen, C.-Y.; Awosogba, J.A.; Arkema, E.V.; Costenbader, K.H.; Karlson, E.W. Being overweight or obese and risk of developing rheumatoid arthritis among women: A prospective cohort study. Ann. Rheum. Dis. 2014, 73, 1914–1922. [Google Scholar] [CrossRef]
- Brandao de Resende Guimaraes, M.F.; Rodrigues, C.E.M.; Gomes, K.W.P.; Machado, C.J.; Brenol, C.V.; Krampe, S.F.; Bueno de Andrade, N.P.; Kakehasi, A.M. High prevalence of obesity in rheumatoid arthritis patients: Association with disease activity, hypertension, dyslipidemia and diabetes, a multi-center study. Adv. Rheumatol. 2019, 59, 1–9. [Google Scholar] [CrossRef]
- Wolfe, F.; Michaud, K. Effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res. 2012, 64, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; McInnes, I.B. Debunking the obesity-mortality paradox in RA. Nat. Rev. Rheumatol. 2015, 11, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.F.; Billing, E.; Michaud, K.; Ibrahim, S.; Caplan, L.; Cannon, G.W.; Stokes, A.; Majithia, V.; Mikuls, T.R. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 2015, 67, 1711–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, E.; Hassali, R.; Ohl, S.; Lange, U.; Frommer, K.W.; Muller-Ladner, U. Adipokines and autoimmunity in inflammatory arthritis. Cells 2021, 10, 216. [Google Scholar] [CrossRef]
- Lei, Y.; Li, X.; Gao, Z.; Liu, Y.; Zhang, B.; Xia, L.; Lu, J.; Shen, H. Association Between Adiponectin and Clinical Manifestations in Rheumatoid Arthritis. J. Interferon Cytokine Res. 2020, 40, 501–508. [Google Scholar] [CrossRef]
- Carrion, M.; Frommer, K.W.; Perez-Garcia, S.; Muller-Ladner, U.; Gomariz, R.P.; Neumann, E. The Adipokine Network in Rheumatic Joint Diseases. Int. J. Mol. Sci. 2019, 20, 4091. [Google Scholar] [CrossRef] [Green Version]
- Batun-Garrido, J.A.J.; Salas-Magana, M.; Juarez-Rojop, I.E. Association between leptin and IL-6 concentrations with cardiovascular risk in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 631–637. [Google Scholar] [CrossRef]
- Fatel, E.C.S.; Rosa, F.T.; Simao, A.N.C.; Dichi, I. Adipokines in rheumatoid arthritis. Adv. Rheumatol. 2018, 58, 25. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Tsang, L.; Solomon, A.; Woodiwiss, A.J.; Gunter, S.; Mer, M.; Hsu, H.C.; Gomes, M.; Norton, G.R.; Millen, A.M.E.; et al. Nesfatin-1 and visfatin expression is associated with reduced atherosclerotic disease risk in patients with rheumatoid arthritis. Peptides 2018, 102, 31–37. [Google Scholar] [CrossRef]
- Senolt, L.; Housa, D.; Vernerova, Z.; Jirasek, T.; Svobodova, R.; Veigl, D.; Anderlova, K.; Muller-Ladner, U.; Pavelka, K.; Haluzik, M. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann. Rheum. Dis. 2007, 66, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Frommer, K.W.; Vasile, M.; Muller-Ladner, U.; Neumann, E. The Adipokine Omentin in Late-stage Rheumatoid Arthritis and Endstage Osteoarthritis. J. Rheumatol. 2017, 44, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, S.; Shi, J.; Zhang, L.; Li, J.; Chen, S.; Wu, C.; Shen, B. Serum progranulin irrelated with Breg cell levels, but elevated in RA patients, reflecting high disease activity. Rheumatol. Int. 2016, 36, 359–364. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, Y.Y.; Luo, L.M.; Xiao, W.K.; Wu, H.M.; Ye, P. Association between serum homocysteine and arterial stiffness in elderly: A community-based study. J. Geriatr. Cardiol. 2014, 11, 32–38. [Google Scholar] [CrossRef]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Lim, B.S.; Kang, J.H. Plasma homocysteine and coronary artery calcification in Korean men. Eur. J. Prev. Cardiol. 2015, 22, 478–485. [Google Scholar] [CrossRef]
- Roubenoff, R.; Dellaripa, P.; Nadeau, M.R.; Abad, L.W.; Muldoon, B.A.; Selhub, J.; Rosenberg, I.H. Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum. 1997, 40, 718–722. [Google Scholar] [CrossRef]
- Tekaya, R.; Rouached, L.; Ahmed, H.B.; Tekaya, A.B.; Bouden, S.; Saidane, O.; Bouzid, K.; Mahnoud, I.; Abdelmoula, L. Variation of homocysteine levels in rheumatoid arthritis patients: Relationship to inflammation, cardiovascular risk factors, and mehotrexate. Z. Rheumatol. 2021, 82, 38–43. [Google Scholar] [CrossRef]
- Katsushima, M.; Minamino, H.; Shirakashi, M.; Onishi, A.; Fujita, Y.; Yamamoto, W.; Onizawa, H.; Tsuji, H.; Watanabe, R.; Murakami, K.; et al. High plasma homocysteine level is associated with increased prevalence of non-remission state in rheumatoid arthritis: Findings from the KURAMA cohort. Mod. Rheumatol. 2022, roac106. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Capecchi, P.L.; Bisogno, S.; Galeazzi, M.; Marcolongo, R.; Pasini, F.L. Reduction in plasma homocysteine level in patients with rheumatoid arthritis given pulsed glucocorticoid treatment. Ann. Rheum. Dis. 2003, 63, 694–695. [Google Scholar] [CrossRef] [Green Version]
- Haagsma, C.J.; Blom, H.J.; van Riel, P.L.C.M.; van’t Hof, M.A.; Giesendorf, B.A.J.; van Oppenraaij-Emmerzaal, D.; van de Putte, L.B.A. Influence of sulphasalazine, methotrexate, and the combination of both on plasma homocysteine concentrations in patients with rheumatoid arthritis. Ann. Rheum. Dis. 1999, 58, 79–84. [Google Scholar] [CrossRef]
- Libby, P. History of discovery: Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018, 132, 1243–1252. [Google Scholar] [CrossRef]
- Gao, Y.; Galis, Z.S. Exploring the role of endothelial cell resilience in cardiovascular health and disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 179–185. [Google Scholar] [CrossRef]
- Barrett, T.J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 2019, 40, 20–33. [Google Scholar] [CrossRef]
- Furmanik, M.; van Gorp, R.; Whitehead, M.; Ahmad, S.; Bordoloi, J.; Kapustin, A.; Schurgers, L.J.; Shanahan, C.M. Endoplasmic reticulum stress mediates vascular smooth muscle cell calcification via increased release of Grp78 (glucose-regulated protein, 78kDa)-loaded extracellular vesicles. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 898–914. [Google Scholar] [CrossRef]
- Dobnikar, L.; Taylor, A.L.; Chappell, J.; Oldach, P.; Harman, J.L.; Oerton, E.; Dzierzak, E.; Bennett, M.R.; Spivakov, M.; Jorgensen, H.F. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat. Commun. 2018, 9, 4567. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Carvalho, J.; Looso, M.; Singh, P.; Chennupati, R.; Preussner, J.; Gunther, S.; Albarran-Juarez, J.; Tischner, D.; Classen, S.; et al. Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system. Nat. Commun. 2017, 8, 15700. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Margariti, A.; Le Bras, A.; Jacquet, L.; Kong, W.; Hu, Y.; Xu, Q. Transdifferentiated human vascular smooth muscle cells are a new potential cell source for endothelial regeneration. Sci. Rep. 2017, 7, 5590. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Xue, C.; Auerbach, B.J.; Fan, J.; Bashore, A.C.; Cui, J.; Yang, D.Y.; Trignano, S.B.; Liu, W.; Shi, J. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 2020, 142, 2060–2075. [Google Scholar] [CrossRef]
- Back, M.; Yurdagul, A.; Tabas, I.; Oorni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–405. [Google Scholar] [CrossRef]
- Ley, K. Role of the adaptive immune system in atherosclerosis. Biochem. Soc. Trans. 2020, 48, 2273–2281. [Google Scholar] [CrossRef]
- Winkels, H.; Wolf, D. Heterogeneity of T cells in atherosclerosis defined by single-cell RNA-sequencing and citometry by time of flight. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 549–563. [Google Scholar] [CrossRef]
- Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef]
- Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 2013, 61, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFayden, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; Mac Fayden, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tollefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damas, J.K.; et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Huse, C.; Anstensrud, A.K.; Michelsen, A.E.; Ueland, T.; Broch, K.; Woxholt, S.; Yang, K.; Sharma, K.; Tollefsen, I.M.; Bendz, B.; et al. Interleukin-6 inhibition in ST-elevation myocardial infarction: Immune cell profile in the randomised ASSAIL-MI trial. Lancet 2022, 80, 104013. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Post, W.S.; Blumenthal, R.S.; Polak, J.; Petri, M.; Gelber, A.C.; Szklo, M.; Bathon, J.M. Longitudinal predictors of progression of carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2011, 63, 3216–3225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Gay, M.A.; Gonzalez-Juanatey, C.; Lopez-Diaz, M.J.; Pineiro, A.; Garcia-Porrua, C.; Miranda-Filloy, J.A.; Ollier, W.E.R.; Martin, J.; Llorca, J. HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007, 57, 125–132. [Google Scholar] [CrossRef]
- Lopez-Mejias, R.; Genre, F.; Remuzgo-Martinez, S.; Robustillo-Villarino, M.; Garcia-Bermudez, M.; Llorca, J.; Corrales, A.; Gonzalez-Juanatey, C.; Ubilla, B.; Miranda-Filloy, J.A.; et al. Protective role of the interleukin 33 rs3939286 gene polymorphism in the development of subclinical atherosclerosis in rheumatoid arthritis patients. PLoS ONE 2015, 10, e0143153. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bermudez, M.; Lopez-Mejias, R.; Genre, F.; Castaneda, S.; Llorca, J.; Gonzalez-Juanatey, C.; Corrales, A.; Ubilla, B.; Miranda-Filloy, J.A.; Pina, T.; et al. Interferon regulatory factor 5 genetic variants are associated with cardiovascular disease in patients with rheumatoid arthritis. Arthritis Res. Ther. 2014, 16, R146. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Li, Z.; Li, X.; Chen, Y.; Zhang, Y.; Ding, D.; Deng, X.; Xia, M.; Qiu, J.; Ling, W. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediat. Inflamm. 2013, 2013, 726178. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Millan, I.; Yang, S.; DuVall, S.L.; Baddley, J.; Cannon, G.W.; Delzell, E.S.; Zhang, J.; Safford, M.M.; Patkar, N.M.; Mikuls, T.R.; et al. Association of hyperlipidaemia, inflammation and serological status and coronary heart disease among patients with rheumatoid arthritis: Data from the National Veterans Health Administration. Ann. Rheum. Dis. 2015, 75, 341–347. [Google Scholar] [CrossRef]
- Spinelli, F.R.; Pecani, A.; Conti, F.; Mancini, R.; Alessandri, C.; Valesini, G. Post-translational modifications in rheumatoid arthritis and atherosclerosis: Focus on citrullination and carbamylation. J. Int. Med. Res. 2016, 44 (Suppl. 1), 81–84. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Bonaventura, A.; Liberale, L.; Paolino, S.; Torre, F.; Dallegri, F.; Montecucco, F.; Cutolo, M. Atherosclerosis in rheumatoid arthritis: Promoters and opponents. Clin. Rev. Allergy Immunol. 2020, 58, 1–14. [Google Scholar] [CrossRef]
- Majka, D.S.; Vu, T.H.T.; Pope, R.M.; Teodorescu, M.; Karlson, E.W.; Liu, K.; Chang, R.W. Associations of rheumatoid factors with subclinical and clinical atherosclerosis in african american women: The multiethnic study of atherosclerosis. Arthritis Care Res. 2017, 69, 166–174. [Google Scholar] [CrossRef]
- Shi, J.; van de Stadt, L.A.; Nivine Levarht, E.W.; Huizinga, T.W.J.; Toes, R.E.M.; Trouw, L.A.; van Schaardenburg, D. Anti-carbamylated protein antibodies are present in arthralgia patients and predict the development of rheumatoid arthritis. Arthritis Rheum. 2013, 65, 911–915. [Google Scholar] [CrossRef]
- Holzer, M.; Gauster, M.; Pfeifer, T.; Wadsack, C.; Fauler, G.; Stiegler, P.; Koefeler, H.; Beubler, E.; Schuligoi, R.; Heinemann, A.; et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal. 2011, 14, 2337–2346. [Google Scholar] [CrossRef] [Green Version]
- Speer, T.; Owala, F.O.; Holy, E.W.; Zewinger, S.; Frenzel, F.L.; Stahli, B.E.; Razavi, M.; Triem, S.; Cvija, H.; Rohrer, L.; et al. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J. 2014, 35, 3021–3032. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, F.R.; Pecani, A.; Ciciarello, F.; Colasanti, T.; Di Franco, M.; Miranda, F.; Conti, F.; Valesini, G.; Alessandri, C. Associations between antibodies to carbamylated protein and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 2017, 18, 214. [Google Scholar] [CrossRef]
- Verbrugge, F.H.; Wilson Tang, W.H.; Hazen, S.L. Protein carbamylated and cardiovascular disease. Kidney Int. 2015, 88, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Giles, J.T.; Wasko, M.C.M.; Chung, C.; Szklo, M.; Blumenthal, R.S.; Kao, A.; Bokhari, S.; Zartoshti, A.; Stein, C.M.; Bathon, J.M. Exploring the lipid paradox theory in rheumatoid arthritis: Associations of low circulating low-density lipoprotein concentration with subclinical coronary atherosclerosis. Arthritis Rheumatol. 2019, 71, 1426–1436. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chien, K.L.; Hsu, H.C.; Su, T.C.; Chen, M.F.; Lee, Y.T. Use of serum homocysteine to predict stroke, coronary heart disease and death in ethnic Chinese. 12-years prospective cohort study. Circ. J. 2009, 73, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Martin-Herrero, F.; Martin-Moreiras, J.; Pabon, P.; Sanchez, P.L.; Morinigo-Munoz, J.L.; Jimenez-Candil, J.; Cruz-Gonzalez, I.; Alberca, I.; Gonzalez-Porras, J.R.; Martin-Luengo, C. Homocysteine and outcome in young patients with acute coronary syndromes. Int. J. Cardiol. 2007, 118, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wang, L.; Liu, Y.S.; Zheng, M.Q.; Ma, F.F.; Qi, Y.C.; Liu, G. Homocysteine as a potential predictive factor for high major adverse cardiovascular events risk in female patients with premature acute coronary syndrome. Medicine 2019, 98, e18019. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Freitag, D.F.; Laukkanen, J.A.; Chowdhury, S.; Gobin, R.; Mayr, M.; Di Angelantonio, E.; Chowdhury, R. Asymmetric dimethylarginine and cardiovascular risk: Systematic review and meta-analysis of 22 prospective studies. J. Am. Heart Assoc. 2015, 5, e001833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkarli, A.; Tekinturk, S.; Kaptanoglu, B.; Cobankara, V. Relationship between plasma levels of homocysteine and proinflammatory cytokines in patients with rheumatoid arthritis. J. Clin. Exp. Investig. 2016, 7, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Sun, L.; Du, L.; Zhang, T.; Xin, W.; Lan, X.; Du, G. Association of circulating levels of asymmetric dimethylarginine (ADMA) with carotid intima-media thickness: Evidence from 6168 participants. Ageing Res. Rev. 2013, 12, 699–707. [Google Scholar] [CrossRef]
- Moroni, L.; Selmi, C.; Angelini, C.; Meroni, P.L. Evaluation of endothelial function by flow-mediated dilation: A comprehensive review in rheumatic disease. Arch. Immunol. Ther. Exp. 2017, 65, 463–475. [Google Scholar] [CrossRef]
- Dimitroulas, T.; Hodson, J.; Sandoo, A.; Smith, J.; Kitas, G.D. Endothelial injury in rheumatoid arthritis: A crosstalk between dimethylarginines and systemic inflammation. Arthritis Res. Ther. 2017, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Senturk, T.; Yılmaz, N.; Sargın, G.; Koseoglu, K.; Yenisey, C. Relationship between asymmetric dimethylarginine and endothelial dysfunction in patients with rheumatoid arthritis. Eur. J. Rheumatol. 2016, 3, 106–108. [Google Scholar] [CrossRef]
- Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res. 2016, 118, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Staszel, T.; Zapala, B.; Polus, A.; Sadakierska-Chudy, A.; Kiec-Wilk, B.; Stepien, E.; Wybranska, I.; Chojnacka, M.; Dembinska-Kiec, A. Role of microRNAs in endothelial cell pathophysiology. Pol. Arch. Int. Med. 2011, 121, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.; Elfaki, I.; Khallar, N.; Waza, A.A.; Jha, C.; Mir, M.M.; Nisa, S.; Mohammad, B.; Mir, T.A.; Maqbool, M.; et al. Role of selected miRNAs as diagnostic and prognostic biomarkers in cardiovascular diseases, including coronary artery disease, myocardial infarction and atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 22. [Google Scholar] [CrossRef]
- Sharma, A.R.; Sharma, G.; Bhattacharya, M.; Lee, S.S.; Chakraborty, C. Circulating miRNA in atherosclerosis: A clinical biomarker and early diagnostic tool. Curr. Mol. Med. 2022, 22, 250–262. [Google Scholar] [CrossRef]
- Tabaei, S.; Tabaee, S.S. Implications for microRNA involvement in the prognostic and treatment of atherosclerosis. Mol. Cell. Biochem. 2021, 476, 1327–1336. [Google Scholar] [CrossRef]
- Tavasolian, F.; Abdollahi, E.; Rezaei, R.; Momtazi-Borojeni, A.A.; Henrotin, Y.; Sahebkar, A. Altered expression of microRNAs in rheumatoid arthritis. J. Cell. Biochem. 2018, 119, 478–487. [Google Scholar] [CrossRef]
- Evangelatos, G.; Fragoulis, G.E.; Koulouri, V.; Lambrou, G.I. MicroRNAs in Rheumatoid Arthritis: From Pathogenesis to Clinical Impact. Autoimmun. Rev. 2019, 18, 102391. [Google Scholar] [CrossRef]
- Renman, E.; Brink, M.; Arlestig, L.; Rantapaa-Dahlqvist, S.; Lejon, K. Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin. Rheumatol. 2021, 40, 2387–2394. [Google Scholar] [CrossRef]
- Bae, S.C.; Lee, Y.H. MiR-146a levels in rheumatoid arthritis and their correlation with disease activity: A meta-analysis. Int. J. Rheum. Dis. 2018, 21, 1335–1342. [Google Scholar] [CrossRef]
- Ciesla, M.; Kolarz, B.; Majdan, M.; Dryglewska, M. The Value of MIR-20B, MIR-22, MIR-26A, MIR-125B and MIR-221 in Rheumatoid Arthritis. Ann. Rheum. Dis. 2021, 80, 309–310. [Google Scholar] [CrossRef]
- Smigielska-Czepiel, K.; Van Den Berg, A.; Jellema, P.; Van Der Lei, R.J.; Bijzet, J.; Kluiver, J.; Boots, A.M.H.; Brouwer, E.; Kroesen, B.J. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 2014, 15, 115–125. [Google Scholar] [CrossRef]
- Taverner, D.; Llop, D.; Rosales, R.; Ferre, R.; Masana, L.; Vallve, J.C.; Paredes, S. Plasma expression of microRNA-425-5p and microRNA-451a as biomarkers of cardiovascular disease in rheumatoid arthritis patients. Sci. Rep. 2021, 11, 15670. [Google Scholar] [CrossRef]
- Paredes, S.; Taverner, D.; Ferre, R.; Alegret, J.M.; Masana, L.; Vallve, J.C. MicroRNA differential expression shared between rheumatoid arthritis and acute myocardial infarction: An exploratory study. Clin. Exp. Rheumatol. 2019, 37, 886–887. [Google Scholar] [PubMed]
- Ormseth, M.J.; Solus, J.F.; Sheng, Q.; Chen, S.C.; Ye, F.; Wu, Q.; Oeser, A.M.; Allen, R.; Raggi, P.; Vickers, K.C.; et al. Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis. Clin. Rheumatol. 2021, 40, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, E.; Kobayashi, K.; Inoue, K.; Lopez, L.R.; Shoenfeld, Y. Oxidized LDL/β2-glycoprotein I complexes: New aspects in atherosclerosis. Lupus 2005, 14, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Matsuura, E.; Liu, Q.; Furukawa, J.; Kaihara, K.; Inagaki, J.; Atsumi, T.; Sakairi, N.; Yasuda, T.; Voelker, D.R.; et al. A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J. Lipid Res. 2001, 42, 697–709. [Google Scholar] [CrossRef]
- Lopez, L.R.; Hurley, B.L.; Simpson, D.F.; Matsuura, E. Oxidized low-density lipoprotein/ β2-glycoprotein I complexes and autoantibodies in patients with type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2005, 1051, 97–103. [Google Scholar] [CrossRef]
- Kasahara, J.; Kobayashi, K.; Maeshima, Y.; Yamasaki, Y.; Yasuda, T.; Matsuura, E.; Makino, H. Clinical significance of serum oxidized low-density lipoprotein/ β2-glycoprotein I complexes in patients with chronic renal diseases. Nephron Clin. Pract. 2004, 98, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Staub, H.L.; Franck, M.; Ranzolin, A.; Norman, G.L.; Iverson, G.M.; von Muhler, C.A. IgA antibodies to beta2-glycoprotein I and atherosclerosis. Autoimmun. Rev. 2006, 6, 104–106. [Google Scholar] [CrossRef]
- Pahor, A.; Hojs, R.; Holc, I.; Ambrozic, A.; Cucnik, S.; Kveder, T.; Rozman, B. Antiphospholipid antibodies as a possible risk factor for atherosclerosis in patients with rheumatoid arthritis. Immunobiology 2006, 211, 689–694. [Google Scholar] [CrossRef]
- Pereira, I.; Laurindo, I.; Burlingame, R.; Anjos, L.; Viana, V.; Leon, E.; Vendramini, M.; Borba, E. Auto-antibodies do not influence development of atherosclerosis plaques in rheumatoid arthritis. Jt. Bone Spine 2008, 75, 416–421. [Google Scholar] [CrossRef]
- Holc, I.; Hojs, R.; Cikes, N.; Ambrozic, A.; Cucnik, S.; Kveder, T.; Rozman, B.; Pahor, A. Antiphospholipid antibodies and atherosclerosis: Insights from rheumatoid arthritis—A five-years follow-up study. Immunobiology 2011, 216, 1331–1337. [Google Scholar] [CrossRef]
- Karpouzas, G.A.; Ormseth, S.R.; Hernandez, E.; Bui, V.L.; Budoff, M.J. Beta-2-glycoprotein-I IgA antibodies predict coronary plaque progression in rheumatoid arthritis. Semin. Arthritis Rheum. 2011, 51, 20–27. [Google Scholar] [CrossRef]
- Hannawi, S.; Hannawi, H.; Alokaily, F.; Salmi, I. Variables associated with Subclinical Atherosclerosis Among rheumatoid Arthritis Patients of Gulf Cooperative Council Countries. Saudi Med. J. 2020, 41, 128–137. [Google Scholar] [CrossRef]
- Hannawi, S.; Hannawi, H.; Al Salmi, I. Cardiovascular Disease and Subclinical Atherosclerosis in rheumatoid Arthritis. Hypertens. Res. 2020, 43, 982–984. [Google Scholar] [CrossRef]
- Sedrakyan, S.; Fatima, T.; Khatun, M.; Awan, M.; Okam, N.; Jahan, N. Evaluation of The Risk of Getting Peripheral Artery Disease in Rheumatoid Arthritis and The Selection of Appropriate Diagnostic Methods. Cureus 2020, 12, e9782. [Google Scholar] [CrossRef]
- Tehan, P.; Stewart, S.; Chuter, V.; Carroll, M.; Rutherfurd, K.; Brenton-Rule, A. Relationship Between Lower Limb Vascular Characteristics, Peripheral Arterial Disease and Gait in Rheumatoid Arthritis. Int. J. Rheum. Dis. 2019, 22, 2017–2024. [Google Scholar] [CrossRef]
- Gonzalez-Juanatey, C.; Llorca, J.; Martin, J.; Gonzalez-Gay, M.A. Carotid intima-media thickness predicts the development of cardiovascular events in patients with rheumatoid arthritis. Semin. Arthritis Rheum. 2009, 38, 366–371. [Google Scholar] [CrossRef]
- Evans, M.R.; Escalante, A.; Battafarano, D.F.; Freeman, G.L.; O’Leary, D.H.; del Rincon, I. Carotid atherosclerosis predicts incident acute coronary syndromes in rheumatoid arthritis. Arthritis Rheum. 2011, 63, 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Ajeganova, S.; de Faire, U.; Jogestrand, T.; Frostegard, J.; Hafstrom, I. Carotid atherosclerosis, disease measures, oxidized low-density lipoproteins, and atheroprotective natural antibodies for cardiovascular disease in early rheumatoid arthritis—An inception cohort study. Rheumatology 2012, 39, 1146–1154. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, S.; Sakaguchi, M.; Miwa, K.; Furukado, S.; Yamagami, H.; Yagita, Y.; Mochizuki, H.; Kitagawa. K. Association of interleukin-6 with the progression of carotid atherosclerosis. A 9-year follow-up study. Stroke 2014, 45, 2924–2929. [Google Scholar] [CrossRef] [Green Version]
- Kaseem, E.; Ghonimy, R.; Adel, M.; El-Sharnoby, G. Non-traditional risk factors of carotid atherosclerosis in rheumatoid arthritis. Egypt Rheumatol. 2011, 33, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Corrales, A.; Gonzalez-Juanatey, C.; Peiro, M.E.; Blanco, R.; Llorca, J.; Gonzalez-Gay, M.A. Carotid ultrasound is useful for the cardiovascular risk stratification of patients with rheumatoid arthritis: Results of a population-based study. Ann. Rheum. Dis. 2014, 73, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, P.; Lupoli, R.; Di Manno, A.; Tasso, M.; Peluso, R.; Di Minno, M.N.D. Subclinical atherosclerosis in patients with rheumatoid arthritis. Thromb. Haemost. 2015, 113, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Wah-Suarez, M.I.; Galarza-Delgado, D.A.; Azpiri-Lopez, J.R.; Colunga-Pedraza, I.J.; Abundis-Marquez, E.E.; Davila-Jimenez, J.A.; Guillen-Gutierrez, C.Y.; Elizondo-Riojas, G. Carotid ultrasound findings in rheumatoid arthritis and control subjects: A case-control study. Int. J. Rheum. Dis. 2019, 22, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Mazario, R.; Fragio Gil, J.J.; Martinez Calabuig, P.; Grau Garcia, E.; Canada Martinez, A.J.; Roman Ivorra, J.A. Cardiovascular risk assessment with carotid ultrasound in rheumatoid arthritis. Med. Clin. 2022, 159, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Corrales, A.; Vegas-Revenga, N.; Rueda-Gotor, J.; Portilla, V.; Atienza-Mateo, B.; Blanco, R.; Castaneda, S.; Ferraz-Amaro, I.; Llorca, J. Gonzalez-Gay, M.A. Carotid plaques as predictors of cardiovascular events in patients with rheumatoid arthritis. Results from a 5-year-prospective follow-up study. Semin. Arthritis Rheum. 2020, 50, 1333–1338. [Google Scholar] [CrossRef]
- Gerasimova, E.; Popkova, T.; Gerasimova, D.; Nasonov, E. Clinical and diagnostic significance of intima-media thickness levels of soluble cell adhesion molecules and CD40 ligand in rheumatoid arthritis patients with low cardiovascular risk. Ann. Rheum. Dis. 2022, 81, 341. [Google Scholar] [CrossRef]
- Chung, C.P.; Oeser, A.; Raggi, P.; Gebretsadik, T.; Shintani, A.K.; Sokka, T.; Pincus, T.; Avalos, I.; Stein, C.M. Increased coronary-artery atherosclerosis in rheumatoid arthritis: Relationship to disease duration and cardiovascular risk factors. Arthritis Rheum. 2005, 52, 3045–3053. [Google Scholar] [CrossRef]
- Karpouzas, G.A.; Malpeso, J.; Choi, T.Y.; Li, D.; Munoz, S.; Budoff, M.I. Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease. Ann. Rheum. Dis. 2014, 73, 1797–1804. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.H.; Kim, H.R.; Min, H.K. Cardiovascular disease risk calculators to reflect the subclinical atherosclerosis of coronary artery in rheumatoid arthritis: A pilot study. BMC Rheumatol. 2021, 5, 39. [Google Scholar] [CrossRef]
- Findeisen, K.E.; Sewell, J.; Ostor, A.J.K. Biological therapies for rheumatoid arthritis: An overview for the clinician. Biologics 2021, 15, 343–352. [Google Scholar] [CrossRef]
- Smole, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewe, R.B.M.; Bijlsma, J.W.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Buch, M.H.; Bingham, S.J.; Bryer, D.; Emery, P. Long-term infliximab treatment in rheumatoid arthritis: Subsequent outcome of initial responders. Rheumatology 2007, 46, 1153–1156. [Google Scholar] [CrossRef] [Green Version]
- Raffeiner, B.; Botsios, C.; Sfriso, P.; Ometto, F.; Bernardi, L.; Todesco, S.; Punzi, L. Efficacy of low dose etanercept in maintaining clinical and radiological remission in rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 102. [Google Scholar]
- Boyadzieva, V.V.; Stoilov, N.; Stoilov, R.M.; Tachkov, K.; Kamusheva, M.; Mitov, K.; Petrova, G.I. Quality of life and cost study of rheumatoid arthritis therapy with biological medicines. Front. Pharmacol. 2018, 9, 794. [Google Scholar] [CrossRef]
- Smolen, J.S.; Goncalves, J.; Quinn, M.; Benedetti, F.; Lee, J.Y. Era of biosimilars in rheumatology: Reshaping the healthcare environment. RMD Open 2019, 5, e000900. [Google Scholar] [CrossRef] [Green Version]
- Feagan, B.G.; Marabani, M.; Wu, J.J.; Faccin, F.; Spronk, C.; Castaneda-Hernandez, G. The challenges of switching therapies in an evolving multiple biosimilars landscape: A narrative review of current evidence. Adv. Ther. 2020, 37, 4491–4518. [Google Scholar] [CrossRef]
- Schett, G. Physiological effects of modulating the interleukin-6 axis. Rheumatology 2018, 57, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Saremi, A.; Anderson, R.J.; Luo, P.; Moritz, T.E.; Schwenke, D.C.; Allison, M.; Reaven, P.D. Association between IL-6 and the extent of coronary atherosclerosis in the veterans affairs diabetes trial (VADT). Atherosclerosis 2009, 203, 610–614. [Google Scholar] [CrossRef] [Green Version]
- McInnes, I.B.; Thompson, L.; Giles, J.T.; Bathon, J.M.; Salmon, J.E.; Beaulieu, A.D.; Codding, C.E.; Carlson, T.H.; Delles, C.; Lee, J.S.; et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 2015, 74, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Cacciapaglia, F.; Anelli, M.G.; Rinaldi, A.; Fornaro, M.; Lopalco, G.; Scioscia, C.; Lapadula, G.; Iannone, F. Lipids and atherogenic indices fluctuation in rheumatoid arthritis patients on long-term tocilizumab treatment. Mediat. Inflamm. 2018, 2018, 2453265. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, S.Y.; Kawakami, A.; Yamasaki, S.; Imazato, T.; Iwamoto, N.; Fujikawa, K.; Aramaki, T.; Tamai, M.; Nalamura, H.; Ida, H.; et al. Effects of the anti-interleukin-6 receptor antibody, tocilizumab, on serum lipid levels in patients with rheumatoid arthritis. Rheumatol. Int. 2011, 31, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; McInnes, I.B.; Kavanaugh, A.; Tuckwell, K.; Klearman, M.; Pulley, J.; Sattar, N. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Clin. Trial 2016, 75, 1806–1812. [Google Scholar] [CrossRef] [Green Version]
- Greco, D.; Gualtierotti, R.; Agosti, P.; Adorni, M.P.; Ingegnoli, F.; Rota, M.; Bernini, F.; Meroni, P.L.; Ronda, N. Anti-atherogenic modification of serum lipoprotein function in patients with rheumatoid arthritis after tocilizumab treatment, a pilot study. J. Clin. Med. 2020, 9, 2157. [Google Scholar] [CrossRef]
- Garcia-Gomez, C.; Martin-Martinez, M.A.; Castaneda, S.; Sanchez-Alonso, F.; Uriarte-Ecenarro, M.; Gonzalez-Juanatey, C.; Romera-Baures, M.; Santos-Rey, J.; Pinto-Tasende, J.A.; Quesada-Masachs, E. Lipoprotein(a) concentrations in rheumatoid arthritis on biologic therapy: Results from the cardiovascular in rheumatology study project. J. Clin. Lipidol. 2017, 11, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Limon, P.; Ortega, R.; de la Rosa, I.A.; Abalos-Aguilera, M.C.; Perez-Sanchez, C.; Jimenez-Gomez, Y.; Peralbo-Santaella, E.; Font, P.; Ruiz-Vilches, D.; Ferrin, G. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl. Res. 2017, 183, 87–103. [Google Scholar] [CrossRef]
- Kume, K.; Amano, K.; Yamada, S.; Hatta, K.; Ohta, H.; Kuwaba, N. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: An open-label randomized controlled trial. J. Rheumatol. 2011, 38, 2169–2171. [Google Scholar] [CrossRef]
- Provan, S.A.; Berg, I.J.; Berner Hammer, H.; Mathiessen, A.; Kvien, T.K.; Semb, A.G. The impact of newer biological disease modifying anti-rheumatic drugs on cardiovascular risk factors: A 12-month longitudinal study in rheumatoid arthritis patients treated with rituximab, abatacept and tocilizumab. PLoS ONE 2015, 10, e0130709. [Google Scholar] [CrossRef]
- Jones, G.; Sebba, A.; Lowenstein, M.B.; Calvo, A.; Gomez-Reino, J.J.; Siri, D.A.; Tomsic, M.; Alecock, E.; Woodworth, T.; Genovese, M.C. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. Ann. Rheum. Dis. 2010, 69, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Tournadre, A.; Pereira, B.; Dutheil, F.; Giraud, C.; Courteix, D.; Sapin, V.; Frayssac, T.; Mathieu, S.; Malochet-Guinamand, S.; Soubrier, M. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J. Cachexia Sarcopenia Muscle 2017, 8, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, F.; Yun, H.; Chen, L.; Muntner, P.; Levitan, E.B.; Safford, M.M.; Kent, S.T.; Osterman, M.T.; Lewis, J.D.; et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Singht, S.; Fumery, M.; Singh, A.G.; Singh, N.; Prokop, L.J.; Dulai, P.S.; Sandborn, W.J.; Curtis, J.R. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: A systematic review and meta-analysis. Arthritis Care Res. 2020, 72, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Emery, P.; Rondon, J.; Parrino, J.; Lin, Y.; Pena-Rossi, C.; van Hoogstraten, H.; Graham, N.M.H.; Liu, N.; Paccaly, A.; Wu, R.; et al. Safety and tolerability of subcutaneous sarilumab and intravenous tocilizumab in patients with rheumatoid arthritis. Rheumatology 2019, 58, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Burmester, G.R.; Lin, Y.; Patel, R.; van Adelsberg, J.; Mangan, E.K.; Graham, N.M.H.; van Hoogstraten, H.; Bauer, D.; Vargas, J.I.; Lee, E.B. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): A randomised, double-blind, parallel-group phase III trial. Ann. Rheum. Dis. 2017, 76, 840–847. [Google Scholar] [CrossRef]
- Fleischmann, R.; Genovese, M.C.; Lin, Y.; St John, G.; van der Heijde, D.; Wang, S.; Gomez-Reino, J.J.; Maldonado-Cocco, J.A.; Stanislav, M.; Kivitz, A.J.; et al. Long-term safety of sarilumab in rheumatoid arthritis: An integrated analysis with up to 7 years’ follow-up. Rheumatology 2020, 59, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Lee, A.H.; Shin, H.Y.; Song, Y.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2791. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.; Sacks, F.; Braunwald, E. Elevation of tumor necrosis factor-alpha and increased risk of reccurrent coronary events after myocardial infarction. Circulation 2000, 101, 2149–2153. [Google Scholar] [CrossRef] [Green Version]
- Solomon, D.H.; Curtis, J.R.; Saag, K.G.; Lii, J.; Chen, L.; Harrold, L.R.; Herrinton, L.J.; Graham, D.J.; Kowal, M.K.; Kuriya, B.; et al. Cardiovascular risk in rheumatoid arthritis: Comparing TNF-α blockade with nonbiologic DMARDs. Am. J. Med. 2013, 126, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; et al. The effects of tumor necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 480–489. [Google Scholar] [CrossRef]
- Low, A.S.L.; Symmons, D.P.M.; Lunt, M.; Mercer, L.K.; Gale, C.P.; Watson, K.D.; Dixon, W.G.; Hyrich, K.L. Relationship between exposure to tumor necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.L.; Sinnthurai, P.; Buchbinder, R.; Hill, C.; Lassere, M.; March, L. Biologics and cardiovascular events in inflammatory arthritis: A prospective national cohort study. Atrhritis Res. Ther. 2018, 20, 171. [Google Scholar] [CrossRef] [Green Version]
- Karpouzas, G.A.; Orsmeth, S.R.; Hernandez, E.; Budoff, M.J. Biologics may prevent cardiovascular events in rheumatoid arthritis by inhibiting coronary plaque formation and stabilizing high-risk lesions. Arthritis Rheumatol. 2020, 72, 1467–1475. [Google Scholar] [CrossRef]
- Ljung, L.; Rantapaa-Dahlqvist, S.; Jacobsson, L.T.H.; Askling, J. Response to biological treatment and subsequent risk of coronary events in rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 2087–2094. [Google Scholar] [CrossRef]
- Bergstrom, U.; Jovinge, S.; Persson, J.; Jacobsson, L.T.H.; Turesson, C. Effects of treatment with adalimumab on blood lipid levels and atherosclerosis in patients with rheumatoid arthritis. Curr. Ther. Res. Clin. Exp. 2018, 89, 1–6. [Google Scholar] [CrossRef]
- Gabay, C.; Emery, P.; van Vollenhoven, R.; Dikranian, A.; Alten, R.; Pavelka, K.; Klearman, M.; Musselman, D.; Agarwal, S.; Green, J.; et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): A randomised, double-blind, controlled phase 4 trial. Lancet 2013, 381, 1541–1550. [Google Scholar] [CrossRef]
- Gonzalez-Juanatey, C.; Vasquez-Rodriguez, T.R.; Miranda-Filloy, J.A.; Gomez-Acebo, I.; Testa, A.; Garcia-Porrua, C.; Sanchez-Andrade, A.; Llorca, J.; Gonzalez-Gay, M.A. Anti-TNF-alpha-adalimumab therapy is associated with persistent improvement of endothelial function without progression of carotid intima-media wall thickness in patients with rheumatoid arthritis refractory to conventional therapy. Mediat. Inflamm. 2012, 2012, 674265. [Google Scholar] [CrossRef] [Green Version]
- Ronda, N.; Greco, D.; Adorni, M.P.; Zimetti, F.; Favari, E.; Hjeltnes, G.; Mikkelsen, L.; Borghi, M.O.; Favalli, E.G.; Gatti, R.; et al. Newly identified antiatherosclerotic activity of methotrexate and adalimumab: Complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol. 2015, 67, 1155–1164. [Google Scholar] [CrossRef]
- Biseell, L.A.; Hensor, E.M.A.; Kozera, L.; Mackie, S.L.; Burska, A.N.; Nam, J.L.; Keen, H.; Villeneuve, E.; Donica, H.; Buch, M.H. Improvement in insulin resistance is greater when infliximab is added to methotrexate during intensinve treatment of early rheumatoid arthritis-results from the IDEA study. Rheumatology 2016, 55, 2181–2190. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.; van Tits, L.J.H.; Barreta, P.; Lemmers, H.L.M.; van den Hoogen, F.H.J.; van Riel, P.L.C.; Radstake, T.R.D.J.; Netea, M.G.; Roest, M.; Stalenhoef, A.F.H. Anti-inflammatory therapy with tumor necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann. Rheum. Dis. 2009, 68, 868–872. [Google Scholar] [CrossRef]
- Kirkham, B.W.; Wasko, M.C.; Hsia, E.C.; Fleischmann, R.M.; Genovese, M.C.; Matteson, E.L.; Liu, H.; Rahman, M.U. Effects of golimumab, an anti-tumor necrosis factor-α human monoclonal antibody, on lipids and markers of inflammation. Ann. Rheum. Dis. 2014, 73, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Daien, C.I.; Fesler, P.; du Cailar, G.; Daien, V.; Mura, T.; Dupuy, A.M.; Cristol, J.P.; Ribstein, J.; Combe, B.; Morel, J. Etanercept normalises left ventricular mass in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jimenez, N.A.; Garcia-Gonzalez, C.E.; Ayala-Lopez, K.P.; Trujillo-Hernandez, B.; Aguilar-Chavez, E.A.; Rocha-Munoz, A.D.; Vasquez-Jimenez, J.C.; Olivas-Flores, E.; Salazar-Paramao, M.; Corona-Sanchez, E.G.; et al. Modifications in lipid levels are independent of serum TNF-α in rheumatoid arthritis: Results of an observational 24-weeks cohort study comparing patients receiving etanercept plus methotrexate or methotrexate as monotherapy. Biomed Res. Int. 2014, 2014, 510305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursini, F.; Leporini, C.; Bene, F.; D’Angelo, S.; Mauro, D.; Russo, E.; De Sarro, G.; Olivieri, I.; Pitzalis, C.; Lewis, M.; et al. Anti-TNF-alpha agents and endothelial function in rheumatoid arthritis: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 5346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, F.; Charakida, M.; Topham, E.; McLoughlin, E.; Patel, N.; Sutill, E.; Kay, C.W.M.; D’Aiuto, F.; Landmesser, U.; Taylor, P.C.; et al. Anti-inflammatory treatment improves high-density lipoprotein function in rheumatoid arthritis. Heart 2017, 103, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, F.R.; Metere, A.; Barbati, C.; Pierdominici, M.; Iannuccelli, C.; Lucchino, B.; Ciciarello, F.; Agati, L.; Valesini, G.; Di Franco, M. Effect of therapeutic inhibition of TNF on circulating endothelial progenitor cells in patients with rheumatoid arthritis. Mediat. Inflamm. 2013, 2013, 537539. [Google Scholar] [CrossRef] [Green Version]
- Kume, K.; Amano, K.; Yamada, S.; Hatta, K.; Amano, K.; Ohta, H.; Kuwaba, N. Tocilizumab improves arterial stiffness as well as other biologics with methtrexate-resistant active rheumatoid arthritis—An opel label, randomized cohort multi center study. J. Radiol. 2015, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Tam, L.S.; Shang, Q.; Li, E.K.; Wang, S.; Li, R.J.; Lee, K.L.; Leung, Y.Y.; Ying, K.Y.; Ym, C.W.; Kun, E.W.; et al. Infliximab is associated with improvement in arterial stiffness in patients with early rheumatoid arthritis—A randomized trial. J. Rheumatol. 2012, 39, 2267–2275. [Google Scholar] [CrossRef]
- Angel, K.; Provan, S.A.; Fagerhol, M.K.; Mowinckel, P.; Kvien, T.; Atar, D. Effect of 1-year anti-TNF-α therapy on aortic stiffness, carotid atherosclerosis, and calprotectin in inflammatory arthropathies: A controlled study. Am. J. Hypertens. 2012, 25, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Tam, L.S.; Kitas, G.D.; Gonzalez-Gay, M.A. Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology 2014, 53, 1108–1119. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Hong, D.; Zhang, Y.; Sang, Y.; Yang, Z.; Zhang, X. Association between anti-TNF therapy for rheumatoid arthritis and hypertension: A meta-analysis of randomized controlled trials. Medicine 2015, 94, 731. [Google Scholar] [CrossRef]
- Giles, J.T.; Sattar, N.; Gabriel, S.; Ridker, P.M.; Gay, S.; Warne, C.; Musselman, D.; Brockwell, L.; Shittu, E.; Klearman, M.; et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: A randomised controlled trial. Arthritis Rheum. 2019, 72, 31–40. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Buch, D.H.; Dougados, M.; Bhatt, D.L.; Giles, J.T.; Ytterberg, S.R.; Koch, G.G.; Vranic, I.; Wu, J.; Wang, C.; et al. Risk of major adverse cardiovascular events with tofacitinib versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: A post hoc analysis from ORAL Surveillance. Ann. Rheum. Dis. 2022, 81, 119–129. [Google Scholar] [CrossRef]
- Hoisnard, L.; Vegas, L.P.; Dray-Spira, R.; Weill, A.; Zureik, M.; Sbidian, E. Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: A nationwide cohort study. Ann. Rheum. Dis. 2022, 74. [Google Scholar] [CrossRef]
- Ait-Oufella, H.; Herbin, O.; Bouaziz, J.D.; Binder, C.J.; Uyttenhove, C.; Laurans, L.; Taleb, S.; Van Vre, E.; Esposito, B.; Vilar, J.; et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 2010, 207, 1579–1587. [Google Scholar] [CrossRef]
- Tsiantoulas, D.; Diehl, C.J.; Witztum, J.L.; Binder, C.J. B cells and humoral immunity in atherosclerosis. Circ. Res. 2014, 114, 1743–1756. [Google Scholar] [CrossRef]
- Correa, J.E.B.; Cortez, M.A.F.; Uribe, J.A.; Camacho, L.S.R. Comparison of plasma cytokine levels before and after treatment with rituximab in patients with rheumatoid arthritis and systemic lupus erythematosus-associated polyautoimmunity. Univ. Med. 2018, 59, 21–36. [Google Scholar] [CrossRef]
- Srikakulapu, P.; McNamara, C.A. B cells and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, 1060–1067. [Google Scholar] [CrossRef] [Green Version]
- Tsiantoulas, D.; Sage, A.P.; Mallat, Z.; Binder, C.J. Targeting B cells in atherosclerosis: Closing the gap from bench to bedside. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Raterman, H.G.; Levels, H.; Voskuyl, A.E.; Lems, W.F.; Dijkmans, B.A.; Nurmohamed, M.T. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann. Rheum. Dis. 2013, 72, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Novikova, D.S.; Popkova, T.V.; Lukina, G.V.; Luchikhina, E.L.; Karateev, D.E.; Volkov, A.V.; Novikov, A.A.; Aleksandrova, E.N.; Nasonov, E.L. The effects of rituximab on lipids, arterial stiffness and carotid intima-media thickness in rheumatoid arthritis. J. Korean Med. Sci. 2016, 31, 202–207. [Google Scholar] [CrossRef]
- Mathieu, S.; Pereira, B.; Dubost, J.J.; Lusson, J.R.; Soubrier, M. No significant change in arterial stiffness in RA after 6 months and 1 year of rituximab treatment. Rheumatology 2012, 51, 1107–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benucci, M.; Saviola, G.; Manfredi, M.; Sarzi-Puttini, P.; Atzeni, F. Factors correlated with improvement of endothelial dysfunction during rituximab therapy in patients with rheumatoid arthritis. Biologics 2013, 7, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsue, P.Y.; Scherzer, R.; Grunfeld, C.; Imboden, J.; Wu, Y.; Del Puerto, G.; Nitta, E.; Shigenaga, J.; Schnell Heringer, A.; Ganz, P.; et al. Depletion of B-cell rituximab improves endothelial function and reduces inflammation among individuals with rheumatoid arthritis. J. Am. Heart Assoc. 2014, 3, e001267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vollenhove, R.F.; Emery, P.; Bingham, C.O.; Keystone, E.C.; Fleischmann, R.M.; Furst, D.E.; Tyson, N.; Collinson, N.; Lehane, P.B. Long-term safety of rituximab in rheumatoid arthritis: 9.5 years follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 2013, 72, 1496–1502. [Google Scholar] [CrossRef] [Green Version]
- Ewing, M.M.; Karper, J.C.; Abdul, S.; de Jong, R.C.M.; Peters, H.A.B.; de Vries, M.R.; Redeker, A.; Kuiper, J.; Toes, R.E.M.; Arens, R.; et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int. J. Cardiol. 2013, 168, 1965–1974. [Google Scholar] [CrossRef] [Green Version]
- Pappas, D.A.; John, A.; Curtis, J.A.; Reed, G.W.; Greenberg, J.D.; Shewade, A.; Solomon, D.H.; Kremer, J.M.; Soomers, T. Effect of biological agents on lipid and cardiovascular risk in rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 49. [Google Scholar] [CrossRef]
- Saito, K.; Hanami, K.; Hirata, S.; Kubo, S.; Nawata, M.; Yamaoka, K.; Nakayamada, S.; Nakano, K.; Tanaka, Y. Comparison of lipid profile including high molecular weight adiponectin (HMW-AN) after treatment with three different biologics in the patients with bio-naïve rheumatoid arthritis. Ann. Rheum. Dis. 2014, 72, 459. [Google Scholar] [CrossRef]
- Charles-Schoeman, C.; Gugiu, G.B.; Ge, H.; Shahbazian, A.; Lee, Y.Y.; Wang, X.; Furst, D.E.; Ranganath, V.K.; Maldonado, M.; Lee, T.; et al. Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis. Artheriosclerosis 2018, 275, 107–114. [Google Scholar] [CrossRef]
- Mathieu, S.; Couderc, M.; Glace, B.; Pereira, B.; Tournadre, A.; Dubost, J.J.; Soubrier, M. Effects of 6 months of abatacept treatment on aortic stiffness in patients with rheumatoid arthritis. Biologics 2013, 7, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Ursini, F.; Russo, E.; Hribal, M.L.; Mauro, D.; Savarino, F.; Bruno, C.; Tripolino, C.; Rubino, M.; Naty, S.; Grembiale, R.D. Abatacept improves whole body insulin sensitivity in rheumatoid arthritis: An observational study. Medicine 2015, 94, e888. [Google Scholar] [CrossRef]
- Jin, Y.; Kang, E.H.; Brill, G.; Desai, R.J.; Kim, S.C. Cardiovascular risk after initiation of abatacept versus TNF inhibitors in rheumatoid arthritis patients with and without baseline cv disease. J. Rheumatol. 2018, 45, 1240–1248. [Google Scholar] [CrossRef]
- Kang, E.H.; Jin, Y.; Brill, G.; Lewey, J.; Patorno, E.; Desai, R.J.; Kim, S.C. Comparative cardiovascular risk of abatacept tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: A multidatabase cohort study. J. Am. Heart Assoc. 2018, 24, e001393. [Google Scholar] [CrossRef] [Green Version]
- Meune, C.; Touze, E.; Trinquart, L.; Allanore, Y. High risk of clinical cardiovascular events in rheumatoid arthritis: Levels of associations of myocardial infarction and stroke through a systematic review and meta-analysis. Arch. Cardiovasc. Dis. 2010, 103, 253–261. [Google Scholar] [CrossRef] [Green Version]
Classes of bDMARDs | bDMARDs | Biosimilar | Mechanism | Effects |
---|---|---|---|---|
Anti-IL-6 | Tocilizumab | - | Monoclonal antibodies act as IL-6 receptor antagonists, to which they bind and prevent this cytokine from being fixed at this level | Clinical and biological improvement, slowing or stopping disease progression; preventing joint destruction Increased efficiency as a therapy in RA patients [150,152,155,158] |
Sarilumab | - | |||
Anti-TNF-α | Infliximab | √ | Chimeric IgG1k monoclonal antibody | Neutralization of biological effects of TNF-α, such as stimulation of synthesis and release of pro-inflammatory cytokines, prostaglandins, and platelet-activating factors; endothelial dysfunction; development and progression of atheromatous plaques; cardiac remodeling [150,152] |
Adalimumab | √ | Human IgG1 monoclonal antibody | ||
Golimumab | - | Fully human monoclonal antibody | ||
Certolizumab pegol | - | PEGylated monoclonal antibody formed with a humanized Fab fragment | ||
Etanercept | √ | Soluble TNF-α receptor | ||
Anti-CD20 (anti-LB) | Rituximab | √ | Chimeric monoclonal anti-CD20 antibody; the antigen CD20 is expressed on the surface of LB | Induces B2 cell depletion Clinical improvement, slowing or stopping disease progression; preventing joint destruction Increased efficacy in combination with MTX [150,152,155] |
Anti-CD80/86 (anti-LT) | Abatacept | - | Soluble receptor consisting of a fusion molecule that blocks the binding of CD80 and CD86 receptors on the antigen-presenting cell (APC), thereby inhibiting T-cell activation | Clinical improvement, slowing disease progression; preventing joint destruction Therapeutic effects and safety profile similar to adalimumab [150,152,155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, D.; Rezus, E.; Badescu, M.C.; Dima, N.; Seritean Isac, P.N.; Dragoi, I.-T.; Rezus, C. Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy. Life 2023, 13, 319. https://doi.org/10.3390/life13020319
Popescu D, Rezus E, Badescu MC, Dima N, Seritean Isac PN, Dragoi I-T, Rezus C. Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy. Life. 2023; 13(2):319. https://doi.org/10.3390/life13020319
Chicago/Turabian StylePopescu, Diana, Elena Rezus, Minerva Codruta Badescu, Nicoleta Dima, Petronela Nicoleta Seritean Isac, Ioan-Teodor Dragoi, and Ciprian Rezus. 2023. "Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy" Life 13, no. 2: 319. https://doi.org/10.3390/life13020319
APA StylePopescu, D., Rezus, E., Badescu, M. C., Dima, N., Seritean Isac, P. N., Dragoi, I.-T., & Rezus, C. (2023). Cardiovascular Risk Assessment in Rheumatoid Arthritis: Accelerated Atherosclerosis, New Biomarkers, and the Effects of Biological Therapy. Life, 13(2), 319. https://doi.org/10.3390/life13020319