Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. COVID-19 RT-PCR Assay for Nasal and Pharyngeal Swab Specimens
2.3. Laboratory Medicine Analyses and Clinical Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE2 | angiotensin-converting enzyme 2 |
ARDS | acute respiratory distress syndrome |
CI | confidence intervals |
COVID-19 | Coronavirus Disease |
CRP | C-reactive protein |
G-CSF | granulocyte colony-stimulating factor |
IL-2 | interkeukine-2 |
IL-6 | interleukin-6 |
IL-7 | interleukin-7 |
IL-10 | interleukin-10 |
IP-10 | interferon gamma-induced protein 10 kDa |
IQR | interquartile range |
LDH | lactate dehydrogenase |
MCP-1 | monocyte chemoattractant protein-1 |
MIP-1α | macrophage inflammatory protein-1 alpha |
MODS | multiple organ dysfunction syndrome |
NK | natural killer |
OR | odds ratio |
PCT | procalcitonin |
RT-PCR | real-time reverse-transcriptase polymerase-chain reaction |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
STAT3 | signal transducer and activator of transcription 3 |
TNF-α | tumor necrosis factor-alpha |
References
- Khan, M.; Adil, S.F.; Alkhathlan, H.Z.; Tahir, M.N.; Saif, S.; Khan, M.; Khan, S.T. COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far. Molecules 2020, 26, 39. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Du, L.; Shi, Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerg. Microbes Infect. 2020, 9, 275–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montazersaheb, S.; Hosseiniyan Khatibi, S.M.; Hejazi, M.S.; Tarhriz, V.; Farjami, A.; Ghasemian Sorbeni, F.; Farahzadi, R.; Ghasemnejad, T. COVID-19 infection: An overview on cytokine storm and related interventions. Virol. J. 2022, 19, 92. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Rakhshandehroo, T.; Wei, E.X.; Rashidian, M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol. Lett. 2020, 225, 31–32. [Google Scholar] [CrossRef]
- Fatone, M.C. COVID-19: A Great Mime or a Trigger Event of Autoimmune Manifestations? Curr. Rheumatol. Rev. 2021, 17, 7–16. [Google Scholar]
- Meng, J.; Li, R.; Zhang, Z.; Wang, J.; Huang, Q.; Nie, D.; Fan, K.; Guo, W.; Zhao, Z.; Han, Z. A Review of Potential Therapeutic Strategies for COVID-19. Viruses 2022, 14, 2346. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.M.; Isacco, C.G.; et al. SARS-CoV-2 Disease Adjuvant Therapies and Supplements Breakthrough for the Infection Prevention. Microorganisms 2021, 9, 525. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Dipalma, G.; Inchingolo, A.M.; Malcangi, G.; Santacroce, L.; D’Oria, M.T.; Isacco, C.G.; Bordea, I.R.; Candrea, S.; Scarano, A.; et al. The 15-Months Clinical Experience of SARS-CoV-2: A Literature Review of Therapies and Adjuvants. Antioxidants 2021, 10, 881. [Google Scholar] [CrossRef]
- Pan, F.; Yang, L.; Li, Y.; Liang, B.; Li, L.; Ye, T.; Li, L.; Liu, D.; Gui, S.; Hu, Y.; et al. Factors associated with death outcome in patients with severe coronavirus disease-19 (COVID-19): A case-control study. Int. J. Med. Sci. 2020, 17, 1281–1292. [Google Scholar] [CrossRef]
- Hu, R.; Han, C.; Pei, S.; Yin, M.; Chen, X. Procalcitonin levels in COVID-19 patients. Int. J. Antimicrob. Agents 2020, 56, 106051. [Google Scholar] [CrossRef]
- Todor, S.B.; Bîrluțiu, V.; Topîrcean, D.; Mihăilă, R.G. Role of biological markers and CT severity score in predicting mortality in patients with COVID-19: An observational retrospective study. Exp. Ther. Med. 2022, 24, 698. [Google Scholar] [CrossRef]
- Poskurica, M.; Stevanović, Đ.; Zdravković, V.; Čekerevac, I.; Ćupurdija, V.; Zdravković, N.; Nikolić, T.; Marković, M.; Jovanović, M.; Popović, M.; et al. Admission Predictors of Mortality in Hospitalized COVID-19 Patients-A Serbian Cohort Study. J. Clin. Med. 2022, 11, 6109. [Google Scholar] [CrossRef]
- Sayah, W.; Berkane, I.; Guermache, I.; Sabri, M.; Lakhal, F.Z.; Yasmine Rahali, S.; Djidjeli, A.; Lamara Mahammed, L.; Merah, F.; Belaid, B.; et al. Interleukin-6, procalcitonin and neutrophil-to-lymphocyte ratio: Potential immune-inflammatory parameters to identify severe and fatal forms of COVID-19. Cytokine 2021, 141, 155428. [Google Scholar] [CrossRef]
- Lugito, N.P.H. Is procalcitonin a part of human immunological response to SARS-CoV-2 infection or “just” a marker of bacterial coinfection? Curr. Res. Transl. Med. 2021, 69, 103289. [Google Scholar] [CrossRef]
- Pink, I.; Raupach, D.; Fuge, J.; Vonberg, R.P.; Hoeper, M.M.; Welte, T.; Rademacher, J. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection 2021, 49, 935–943. [Google Scholar] [CrossRef]
- Heer, R.S.; Mandal, A.K.; Kho, J.; Szawarski, P.; Csabi, P.; Grenshaw, D.; Walker, I.A.; Missouris, C.G. Elevated procalcitonin concentrations in severe Covid-19 may not reflect bacterial co-infection. Ann. Clin. Biochem. 2021, 58, 520–527. [Google Scholar] [CrossRef]
- Dolci, A.; Robbiano, C.; Aloisio, E.; Chibireva, M.; Serafini, L.; Falvella, F.S.; Pasqualetti, S.; Panteghini, M. Searching for a role of procalcitonin determination in COVID-19: A study on a selected cohort of hospitalized patients. Clin. Chem. Lab. Med. 2020, 59, 433–440. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Mousavi-Nasab, S.D.; Mardani, R.; Nasr Azadani, H.; Zali, F.; Ahmadi Vasmehjani, A.; Sabeti, S.; Alavi Darazam, I.; Ahmadi, N. Neutrophil to lymphocyte ratio and C-reactive protein level as prognostic markers in mild versus severe COVID-19 patients. Gastroenterol. Hepatol. Bed. Bench. 2020, 13, 361–366. [Google Scholar] [PubMed]
- Yang, M.; Chen, X.; Xu, Y. A Retrospective Study of the C-Reactive Protein to Lymphocyte Ratio and Disease Severity in 108 Patients with Early COVID-19 Pneumonia from January to March 2020 in Wuhan, China. Med. Sci. Monit. 2020, 26, e926393. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Song, C.; Lu, R.; Zhao, Y.; Lin, F.; Han, D.; Chen, L.; Pan, P.; Dai, M. Early Prediction of Disease Progression in Patients with Severe COVID-19 Using C-Reactive Protein to Albumin Ratio. Dis. Markers 2021, 2021, 6304189. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef]
- Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.; Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [Google Scholar] [CrossRef]
- Turan, O.; Mirici, A.; Duru Akçalı, S.; Turan, P.A.; Batum, Ö.; Şengül, A.; Ekici Ünsal, Z.; Işık Kabakoğlu, N.; Ogan, N.; Torun, Ş.; et al. Characteristics of hospitalised COVID-19 patients and parameters associated with severe pneumonia. Int. J. Clin. Pract. 2021, 75, e14786. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, B.; Fu, M.; Li, M.; Yuan, X.; Zhu, Y.; Peng, J.; Guo, H.; Lu, Y. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: Results from a retrospective cohort study. Ann. Med. 2021, 53, 257–266. [Google Scholar] [CrossRef]
- Vincent, J.L.; Taccone, F.S. Understanding pathways to death in patients with COVID-19. Lancet Respir. Med. 2020, 8, 430–432. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Bordea, I.R.; Malcangi, G.; Xhajanka, E.; Scarano, A.; Lorusso, F.; Farronato, M.; Tartaglia, G.M.; Isacco, C.G.; et al. SARS-CoV-2 Disease through Viral Genomic and Receptor Implications: An Overview of Diagnostic and Immunology Breakthroughs. Microorganisms 2021, 9, 793. [Google Scholar] [CrossRef]
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef]
- Signore, A.; Lauri, C.; Colandrea, M.; Di Girolamo, M.; Chiodo, E.; Grana, C.M.; Campagna, G.; Aceti, A. Lymphopenia in patients affected by SARS-CoV-2 infection is caused by margination of lymphocytes in large bowel: An [18F] FDG PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3419–3429. [Google Scholar] [CrossRef]
- Ashrafi, F.; Nematollahi, P.; Salmasi, M.; Hedayat, A.; Amra, B. Association of lymphocyte subsets with mortality in severe COVID-19 pneumonia patients. J. Clin. Lab. Anal. 2021, 35, e24046. [Google Scholar] [CrossRef]
- Berthelot, J.M.; Lioté, F.; Maugars, Y.; Sibilia, J. Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING? Front. Immunol. 2020, 11, 607069. [Google Scholar] [CrossRef]
- Cantenys-Molina, S.; Fernández-Cruz, E.; Francos, P.; de Quirós, J.C.L.B.; Muñoz, P.; Gil-Herrera, J. Lymphocyte subsets early predict mortality in a large series of hospitalized COVID-19 patients in Spain. Clin. Exp. Immunol. 2021, 203, 424–432. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, X.; Xue, Q.; Chen, L. Reduced Counts of Various Subsets of Peripheral Blood T Lymphocytes in Patients with Severe Course of COVID-19. Bull. Exp. Biol. Med. 2022, 172, 721–724. [Google Scholar] [CrossRef]
- Iannetta, M.; Buccisano, F.; Fraboni, D.; Malagnino, V.; Campogiani, L.; Teti, E.; Spalliera, I.; Rossi, B.; Di Lorenzo, A.; Palmieri, R.; et al. Baseline T-lymphocyte subset absolute counts can predict both outcome and severity in SARS-CoV-2 infected patients: A single center study. Sci. Rep. 2021, 11, 12762. [Google Scholar] [CrossRef]
- Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Catucci, O.; Amatulli, F.; Cefalo, A.; Lazzaro, R.; Palazzo, D.; Aityan, S.K.; et al. Immunity Profiling of COVID-19 Infection, Dynamic Variations of Lymphocyte Subsets, a Comparative Analysis on Four Different Groups. Microorganisms 2021, 9, 2036. [Google Scholar] [CrossRef]
- de Oliveira, D.C.; Spiri, B.S.; Schluga, Y.C.; Justus, J.L.P.; Neto, F.D.N.L.; de Azambuja, A.P. Evaluation of lymphocyte count, T-cell subsets and neutrophil-to-lymphocyte ratio as early predictors for severity and outcome of COVID-19 disease-a report from a highly complex hospital in Brazil. Hematol. Transfus. Cell Ther. 2022; in press. [Google Scholar]
- Montiel-Cervantes, L.A.; Medina, G.; Pilar Cruz-Domínguez, M.; Pérez-Tapia, S.M.; Jiménez-Martínez, M.C.; Arrieta-Oliva, H.I.; Carballo-Uicab, G.; López-Pelcastre, L.; Camacho-Sandoval, R. Poor Survival in COVID-19 Associated with Lymphopenia and Higher Neutrophile-Lymphocyte Ratio. Isr. Med. Assoc. J. 2021, 23, 153–159. [Google Scholar]
- Li, M.; Guo, W.; Dong, Y.; Wang, X.; Dai, D.; Liu, X.; Wu, Y.; Li, M.; Zhang, W.; Zhou, H.; et al. Elevated Exhaustion Levels of NK and CD8+ T Cells as Indicators for Progression and Prognosis of COVID-19 Disease. Front. Immunol. 2020, 11, 580237. [Google Scholar] [CrossRef]
- Yuan, S.; Jiang, S.C.; Zhang, Z.W.; Fu, Y.F.; Hu, J.; Li, Z.L. Quantification of Cytokine Storms During Virus Infections. Front. Immunol. 2021, 12, 659419. [Google Scholar] [CrossRef]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Cefalo, A.; Catucci, O.; Aityan, S.K.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Maggiore, M.E.; et al. The Vitamin D, IL-6 and the eGFR Markers a Possible Way to Elucidate the Lung–Heart–Kidney Cross-Talk in COVID-19 Disease: A Foregone Conclusion. Microorganisms 2021, 9, 1903. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.K.; Damodar, S.; Gujar, S.; Das, M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from meta-analysis and regression. Heliyon 2021, 7, e06155. [Google Scholar] [CrossRef] [PubMed]
- Mulla, S.; Molla, M.M.A.; Ahmed, S.M.A.; Akhtaruzzaman, A.K.M.; Saleh, A.A.; Anwar, S. Association of interferon gamma inducible protein-10, monocyte chemoattractant protein-1, macrophage inflammatory protein-1 alpha, interleukin-6, and rs12252 single nucleotide polymorphism of interferon-induced transmembrane protein-3 gene with the severity of COVID-19 infection. Egypt J. Intern. Med. 2022, 34, 53. [Google Scholar] [PubMed]
- Ergoren, M.C.; Paolacci, S.; Manara, E.; Dautaj, A.; Dhuli, K.; Anpilogov, K.; Camilleri, G.; Suer, H.K.; Sayan, M.; Tuncel, G.; et al. A pilot study on the preventative potential of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 transmission. Acta Biomed. 2020, 91, e2020022. [Google Scholar]
- Balzanelli, M.G.; Distratis, P.; Aityan, S.K.; Amatulli, F.; Catucci, O.; Cefalo, A.; De Michele, A.; Dipalma, G.; Inchingolo, F.; Lazzaro, R.; et al. An Alternative “Trojan Horse” Hypothesis for COVID-19: Immune Deficiency of IL-10 and SARS-CoV-2 Biology. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 1–5. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Basheer, M.; Saad, E.; Kananeh, M.; Asad, L.; Khayat, O.; Badarne, A.; Abdo, Z.; Arraf, N.; Milhem, F.; Bassal, T.; et al. Cytokine Patterns in COVID-19 Patients: Which Cytokines Predict Mortality and Which Protect Against? Curr. Issues Mol. Biol. 2022, 44, 4735–4747. [Google Scholar] [CrossRef]
- Medeiros, T.; Guimarães, G.M.C.; Carvalho, F.R.; Alves, L.S.; Faustino, R.; Campi-Azevedo, A.C.; Peruhype-Magalhães, V.; Teixeira-Carvalho, A.; de Souza Gomes, M.; do Amaral, L.R.; et al. Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators. Cytokine 2022, 157, 155974. [Google Scholar] [CrossRef]
- Hernandez-Diaz, S.; Huybrechts, K.F.; Desai, R.J.; Cohen, J.M.; Mogun, H.; Pennell, P.B.; Bateman, B.T.; Patorno, E. Topiramate use early in pregnancy and the risk of oral clefts: A pregnancy cohort study. Neurology 2018, 90, e342–e351. [Google Scholar] [CrossRef]
- Kokkoris, S.; Stamataki, E.; Emmanouil, G.; Psachoulia, C.; Ntaidou, T.; Maragouti, A.; Kanavou, A.; Malachias, S.; Christodouli, F.; Papachatzakis, I.; et al. Serum inflammatory and brain injury biomarkers in COVID-19 patients admitted to intensive care unit: A pilot study. eNeurologicalSci 2022, 29, 100434. [Google Scholar] [CrossRef]
- Nguyen, N.; Nguyen, H.; Ukoha, C.; Hoang, L.; Patel, C.; Ikram, F.G.; Acharya, P.; Dhillon, A.; Sidhu, M. Relation of interleukin-6 levels in COVID-19 patients with major adverse cardiac events. Proc. Bayl. Univ. Med. Cent. 2022, 35, 6–9. [Google Scholar] [CrossRef]
- Halmaciu, I.; Arbănași, E.M.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Bacalbasa, N.; Suciu, B.A.; Cojocaru, I.I.; Runcan, A.I.; Grosu, F.; et al. Chest CT Severity Score and Systemic Inflammatory Biomarkers as Predictors of the Need for Invasive Mechanical Ventilation and of COVID-19 Patients’ Mortality. Diagnostics 2022, 12, 2089. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, W.; Yan, X.; Guo, T.; Wang, B.; Xia, H.; Ye, L.; Xiong, J.; Jiang, Z.; Liu, Y.; et al. Prognostic Value of C-Reactive Protein in Patients With Coronavirus 2019. Clin. Infect. Dis. 2020, 71, 2174–2179. [Google Scholar] [CrossRef]
- Chapanduka, Z.C.; Abdullah, I.; Allwood, B.; Koegelenberg, C.F.; Irusen, E.; Lalla, U.; Zemlin, A.E.; Masha, T.E.; Erasmus, R.T.; Jalavu, T.P.; et al. Haematological predictors of poor outcome among COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa. PLoS ONE 2022, 17, e0275832. [Google Scholar] [CrossRef]
- Yousfi, N.; Fathallah, I.; Attoini, A.; Jones, M.; Henchir, M.; Ben Hassine, Z.; Kouraichi, N.; Ben Salah, N. Prognostic Value of Routine Blood Parameters in Intensive Care Unit COVID-19 Patients. EJIFCC 2022, 33, 121–130. [Google Scholar]
- Peralta-Amaro, A.L.; Pecero-García, E.I.; Valadez-Calderón, J.G.; Ramírez-Ventura, J.C.; Coria-Moctezuma, L.A.; Hernández-Utrera, J.E. Low testosterone levels as an independent risk factor for mortality in male patients with COVID-19: Report of a Single-Center Cohort Study in Mexico. Rev. Int. Androl. 2022; in press. [Google Scholar]
- Chen, T.; Dai, Z.; Mo, P.; Li, X.; Ma, Z.; Song, S.; Chen, X.; Luo, M.; Liang, K.; Gao, S.; et al. Clinical Characteristics and Outcomes of Older Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Single-Centered, Retrospective Study. Newman A, editor. J. Gerontol. Ser. A 2020, 75, 1788–1795. [Google Scholar] [CrossRef]
- Heubner, L.; Petrick, P.L.; Güldner, A.; Bartels, L.; Ragaller, M.; Mirus, M.; Rand, A.; Tiebel, O.; Beyer-Westendorf, J.; Rößler, M.; et al. Extreme obesity is a strong predictor for in-hospital mortality and the prevalence of long-COVID in severe COVID-19 patients with acute respiratory distress syndrome. Sci. Rep. 2022, 12, 18418. [Google Scholar] [CrossRef]
- Vimercati, L.; De Maria, L.; Quarato, M.; Caputi, A.; Gesualdo, L.; Migliore, G.; Cavone, D.; Sponselli, S.; Pipoli, A.; Inchingolo, F.; et al. Association between Long COVID and Overweight/Obesity. J. Clin. Med. 2021, 10, 4143. [Google Scholar] [CrossRef]
- Nader, M.; Zmerli, O.; Platt, D.E.; Hamdan, H.; Hamdash, S.; Tayeh, R.A.; Azar, J.; Kadi, D.; Sultan, Y.; Bazarbachi, T.; et al. Observational study of factors associated with morbidity and mortality from COVID-19 in Lebanon, 2020-2021. PLoS ONE 2022, 17, e0275101. [Google Scholar] [CrossRef]
- Kurian, N.M.; BYadav, S.C.; Gurjar, M.; Mishra, P.; Sanjeev, O.P.; Azim, A.; Gupta, D.; Hashim, Z.; Verma, A.; Bhatia, E.; et al. Association of hyperglycaemia at-admission & diabetes mellitus with 28 day mortality in patients admitted with moderate-severe SARS-CoV-2 infection: A retrospective study. Indian J. Med. Res. 2022, 155, 554–564. [Google Scholar]
- Caira-Chuquineyra, B.; Fernandez-Guzman, D.; Alvarez-Arias, P.M.; Zarate-Curi, Á.A.; Herrera-Añazco, P.; Benites-Zapata, V.A. Association between prehospital medication and fatal outcomes in a cohort of hospitalized patients due to coronavirus disease-2019 in a referral hospital in Peru. Travel. Med. Infect. Dis. 2022, 50, 102472. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Patients (n = 150) | Survivors (n = 100) | Non-Survivors (n = 50) | p-Values |
---|---|---|---|---|
Age (years) | 70 (62–80) | 65 (57–73) | 79 (73–85) | <0.0001 |
Males | 79 (52.7%) | 64 (55.25–69.75) | 78 (69–83) | <0.0001 |
Females | 71 (47.3%) | 68 (57.25–77.5) | 83 (74–85) | <0.0001 |
Days from clinical onset | 7 (7–10) | 7 (3–20) | 7 (2–30) | 0.994 |
Males | 7 (7–10) | 7 (7–10.75) | 7 (7–10) | 0.310 |
Females | 7 (7–10) | 7 (7–10) | 7 (7–10) | 0.392 |
Comorbidities | Patients (n = 150) |
---|---|
Hypertension | 83 (55.3%) |
Obesity | 53 (35.3%) |
Diabetes | 36 (24%) |
Chronic cardiac disease | 34 (22.6%) |
Chronic neurological disorders | 24 (16%) |
Chronic pulmonary disease | 12 (8%) |
Chronic kidney disease | 11 (7.3%) |
Malignancies | 7 (4.6%) |
Autoimmune disorders | 6 (4%) |
HIV | 0 |
Treatments | Patients (n = 150) |
---|---|
Antiviral therapy | |
Remdesivir, No (%) | 19 (12) |
Immune therapy | |
Hyperimmune plasma, No (%) | 9 (6) |
CTS therapy | |
Prednisone or equivalent > 1.5 mg/kg/day | 148 (98) |
ICU admission, No (%) | 34 (22) |
Length of hospital, days, median (range) | 13 (1–87) |
Blood Count | Patients (n = 150) | Survivors (n = 100) | Non-Survivors (n = 50) | p-Values |
---|---|---|---|---|
WBC (×103/µL) | 8 (6–11) | 7.8 (5.5–10) | 8.2 (5.7–11) | 0.3957 |
Lymphocytes (×103/µL) | 0.9 (0.6–1.3) | 1.0 (0.70–1.4) | 0.70 (0.50–0.90) | <0.0001 |
Monocytes (×103/µL) | 0.5 (0.3–0.6) | 0.50 (0.30–0.60) | 0.45 (0.30–0.60) | 0.7255 |
Neutrophil (×103/µL) | 6.2 (1–23.1) | 6.0 (3.8–8.4) | 6.7 (4.9–9.9) | 0.1263 |
CD3 (cells/µL) | 443 (281–707) | 556 (358–836) | 304 (194–491) | <0.000 1 |
CD4 (cells/µL) | 272 (174–445) | 353 (207–548) | 184 (113–272) | <0.0001 |
CD8 (cells/µL) | 135 (77–228) | 172 (97–265) | 83 (49–139) | <0.0001 |
CD4/CD8 ratio | 1.98 (1.4–3.2) | 1.97 (1.53–2.98) | 2.00 (1.15–3.98) | 0.9539 |
Hb (g/dL) | 13.4 (12–14) | 14(12–15) | 13 (11–14) | 0.0535 |
PLT (×103/µL) | 236 (179–310) | 254 (197–318) | 200 (160–258) | 0.0013 |
Inflammation-Related Biomarkers | Patients (n = 150) | Survivors (n = 100) | Non-Survivors (n = 50) | p-Values |
D-Dimers (ng/mL) | 1118 (696–2160) | 1041 (652–1692) | 1490 (997–3604) | 0.0114 |
Ferritin (ng/mL) | 738 (407–1293) | 655 (349–1013) | 1111 (618–1561) | 0.0018 |
Fibrinogen (g/L) | 533 (418–643) | 523 (406–633) | 544 (453–678) | 0.4193 |
IL-6 (pg/mL) | 13 (2–28) | 9 (3–19) | 20 (11–57) | <0.0001 |
LDH (U/L) | 357 (272–464) | 318 (257–398) | 489 (359–557) | <0.0001 |
CRP (mg/L) | 67 (26–124) | 51 (16–80) | 128 (68–170) | <0.0001 |
PCT (ng/mL) | 0.08 (0.03–0.23) | 0.05 (0.02–0.12) | 0.21 (0.10–0.51) | <0.0001 |
Variables | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Age | 1.14 | 1.07 to 1.22 | 0.0001 |
Number of comorbidities | 1.84 | 1.11 to 3.05 | 0.0178 |
Variables not included in the model | |||
D-Dimers, Ferritin, Fibrinogen, CRP, PCT, IL-6, LDH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuzio, D.; Inchingolo, A.M.; Ruggieri, V.; Fasano, M.; Federico, M.; Mandorino, M.; Dirienzo, L.; Scacco, S.; Rizzello, A.; Delvecchio, M.; et al. Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection. Life 2023, 13, 322. https://doi.org/10.3390/life13020322
Fuzio D, Inchingolo AM, Ruggieri V, Fasano M, Federico M, Mandorino M, Dirienzo L, Scacco S, Rizzello A, Delvecchio M, et al. Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection. Life. 2023; 13(2):322. https://doi.org/10.3390/life13020322
Chicago/Turabian StyleFuzio, Diana, Angelo Michele Inchingolo, Vitalba Ruggieri, Massimo Fasano, Maria Federico, Manuela Mandorino, Lavinia Dirienzo, Salvatore Scacco, Alessandro Rizzello, Maurizio Delvecchio, and et al. 2023. "Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection" Life 13, no. 2: 322. https://doi.org/10.3390/life13020322
APA StyleFuzio, D., Inchingolo, A. M., Ruggieri, V., Fasano, M., Federico, M., Mandorino, M., Dirienzo, L., Scacco, S., Rizzello, A., Delvecchio, M., Parise, M., Rana, R., Faccilongo, N., Rapone, B., Inchingolo, F., Mancini, A., Fatone, M. C., Gnoni, A., Dipalma, G., & Dirienzo, G. (2023). Inflammation as Prognostic Hallmark of Clinical Outcome in Patients with SARS-CoV-2 Infection. Life, 13(2), 322. https://doi.org/10.3390/life13020322