Mechanism of Wuyao–Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases and Software
2.2. Screening of the Active Ingredients of Wuyao–Ginseng
2.3. Target Screening of Wuyao–Ginseng
2.4. Construction of the Active Ingredient Drug Target Network of Wuyao–Ginseng
2.5. Irritable Bowel Syndrome (IBS) GEO Chip Screening and Analysis
2.6. Construction of the Network of the Active Ingredient Disease Target for the Prevention and Treatment of IBS-D by Wuyao–Ginseng
2.7. PPI Network Construction
2.8. Concentration Analysis of the Drug Target Differential Genes KEGG and GO
2.9. Composition and Target Molecular Docking
3. Results
3.1. Active Ingredients and Targets of Wuyao–Ginseng
3.2. Construction of the Core Network of the Active Ingredient Drug Target of Wuyao–Ginseng
3.3. Analysis of GEO Differential Gene Data
3.4. Intersection of the Drug Targets of Wuyao–Ginseng and the Disease Targets of IBS-D
3.5. Network Pharmacological Analysis of the Active Ingredient Disease Target of Wuyao–Ginseng
3.6. PPI Network Construction
3.7. Enrichment Analysis of the KEGG Pathway
3.8. GO Functional Enrichment Analysis
3.9. Verification of the Molecular Docking
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Ford, A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome foundation global study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional gastrointestinal disorders: History, pathophysiology, clinical features and Rome IV. Gastroenterology 2016, 150, 1262–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballou, S.; Mcmahon, C.; Lee, H.N.; Katon, J.; Shin, A.; Rangan, V.; Singh, P.; Nee, J.; Camilleri, M.; Lembo, A.; et al. Effects of irritable bowel syndrome on daily activities vary among subtypes based on results from the IBS in America survey. Clin. Gastroenterol. Hepatol. 2019, 17, 2471–2478. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.N.; Wang, L.D.; Liu, J.H.; Mao, L.F.; Du, X.J.; Wu, X.W. Treatment of irritable bowel syndrome based on hepatic main drainage. TCM Res. 2017, 30, 60–63. [Google Scholar]
- Huang, M.Y.; Cai, X.J. Research progress of clinical application of Simotang. J. Pract. Tradit. Chin. Med. 2019, 35, 1552–1554. [Google Scholar]
- Zou, M.L.; Huang, X.Y.; Chen, Y.L.; Ning, X. Molecular mechanisms of tripterygium wilfordii in treatment of ulcerative colitis explored by GEO chip analysis combined with network pharmacology. Chin. Pharmacol. Bull. 2021, 37, 1743–1749. [Google Scholar]
- Meng, X.W.; Jia, X.Y.; Lu, Z.Y.; Cheng, Z.L.; Tan, Y.N.; Zhang, M. Mechanism and core target analysis of Liuwei Dihuang pills in treatment of systemic Lupus erythematosus based on GEO chip and network pharmacology geo. Chin. J. Inf. TCM 2022, 29, 1–7. [Google Scholar]
- Lacy, B.E.; Pimentel, M.; Brenner, D.M.; Chey, W.D.; Keefer, L.A.; Long, M.D.; Moshiree, B. ACG clinical guideline: Management of irritable bowel syndrome. Am. J. Gastroenterol. 2021, 116, 17–44. [Google Scholar] [CrossRef]
- Yao, C.J.; Li, Y.L.; Pu, M.J.; Luo, L.-H.; Feng, P.-M. Traditional Chinese medicine for irritable bowel syndrome: A protocol for meta-analysis. Medicine 2020, 99, e23394. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Yan, J.; Sun, Z.G. Treating functional gastrointestinal diseases from Qi. Glob. Tradit. Chin. Med. 2015, 10, 1238–1240. [Google Scholar]
- Deng, G.M.; Xiang, B.; Xiao, X.Q.; Ge, J.W.; Chen, Z.; Yang, L.P.; Wei, F. Study on chemical constituents of Lindera aggregate by GC-MS and UPLC-ESI-MS/MS. J. Chin. Med. Mater. 2016, 39, 2229–2236. [Google Scholar]
- Deng, G.M.; Xiang, B.; Xiao, X.Q.; Ouyang, L.Q.; Liu, J.S.; Wei, F.; Zhu, Q.; Jiang, S.C. Pharmacodynamic effects of main chemical components of Lindera aggregate based on network pharmacology. Chin. Tradit. Herb. Drugs 2018, 49, 5125–5133. [Google Scholar]
- Wang, J.W.; Chen, X.Y.; Hu, P.Y.; Tan, M.M.; Tang, X.G.; Huang, M.C.; Lou, Z.H. Effects of Linderae radix extracts on a rat model of alcoholic liver injury. Exp. Ther. Med. 2016, 11, 2185–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Q.; Lu, S.; Gao, X.; Luo, Y.; Tong, B.; Wei, Z.; Lu, T.; Xia, Y.; Chou, G.; Wang, Z.; et al. Norisoboldine, an alkaloid compound isolated from Radix Linderae, inhibits synovial angiogenesis in adjuvant-induced arthritis rats by moderating Notch1 pathway-related endothelial tip cell phenotype. Exp. Biol. Med. 2012, 237, 919–932. [Google Scholar] [CrossRef]
- Gao, S.; Li, W.; Lin, G.; Liu, G.; Deng, W.; Zhai, C.; Bian, C.; He, G.; Hu, Z. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice. Immunopharmacol. Immunotoxicol. 2016, 38, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lv, Z.W. Research progress in chemical constituents and pharmacological action of Renshen (Ginseng). Guid. J. Tradit. Chin. Med. Pharmacol. 2021, 27, 1127–130, 137. [Google Scholar]
- Hou, S.L.; Zhang, J.J.; Zhang, N. Fingerprints of two different varieties of panax ginseng established by HPLC. Spec. Wild Econ. Anim. Plant Res. 2021, 43, 53–57. [Google Scholar]
- Gui, Y.R.; Wang, S.; Dong, J.; Zhou, T.; Wang, D.D.; Hou, W. Exploring the mechanism of Yishen Qinggan prescription to reverse endocrine therapy resistance of breast cancer based on network pharmacology. Chin. J. Inf. TCM 2022, 29, 1–8. [Google Scholar]
- El-Salhy, M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J. Gastroenterol. 2020, 26, 1427–1438. [Google Scholar] [CrossRef]
- Fei, L.; Wang, Y. MicroRNA-495 reduces visceral sensitivity in mice with diarrhea-predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life 2020, 72, 1468–1480. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Shi, C.; Yang, T.; Xu, B. Electroacupuncture inhibits the activity of astrocytes in spinal cord in rats with visceral hypersensitivity by inhibiting P2Y1 Receptor-Mediated MAPK/ERK signaling pathway. Evid.-Based Complement. Altern. Med. 2020, 2020, 4956179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Lee, H.J.; Wu, S.P.; Lin, S.C.; Lanz, R.B.; Creighton, C.J.; DeMayo, F.J.; Tsai, S.Y.; Tsai, M.J. Androgen deprivation-induced NCoA2 promotes metastatic and castration-resistant prostate cancer. J. Clin. Investig. 2014, 124, 5013–5026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Suzuki, S.; Ono, S.; Goto, M.; Miyabe, S.; Ogawa, T.; Tsuchida, H.; Ito, H.; Takahara, T.; Satou, A.; et al. In situ PD-L1 expression in oral squamous cell carcinoma is induced by heterogeneous mechanisms among patients. Int. J. Mol. Sci. 2022, 23, 4077. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Pan, D.; Liu, F.; Hong, Y.; Huang, G.; Huang, X.; Wang, X.; Lin, Z. Ginsenoside compound K inhibits the proliferation, migration and invasion of Eca109 cell via VEGF-A/Pi3k/Akt pathway. J. Cardiothorac. Surg. 2022, 17, 99. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, R.; Sindhu, G. Evaluate the antigenotoxicity and anticancer role of beta-Sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag. 2017, 13, 95–101. [Google Scholar] [PubMed]
- Wang, S.L.; Tsai, Y.C.; Fu, S.L.; Cheng, M.J.; Chung, M.I.; Chen, J.J. 2-(2-phenylethyl)-4H-chromen-4-one derivatives from the resinous wood of aquilaria sinensis with anti-inflammatory effects in LPS-induced macrophages. Molecules 2018, 23, 289. [Google Scholar] [CrossRef] [Green Version]
- Lau, Y.S.; Ling, W.C.; Murugan, D.; Mustafa, M.R. Boldine ameliorates vascular oxidative stress and endothelial dysfunction: Therapeutic implication for hypertension and diabetes. J. Cardiovasc. Pharmacol. 2015, 65, 522–531. [Google Scholar] [CrossRef] [PubMed]
NO | MOL ID | Active Ingredients | OB (%) | DL | Drug |
---|---|---|---|---|---|
1 | MOL010495 | 6,7-dimethoxy-2 | 31.93 | 0.3 | Wuyao |
2 | MOL010496 | DMPEC | 32.38 | 0.39 | Wuyao |
3 | MOL010907 | Norboldine | 40.92 | 0.46 | Wuyao |
4 | MOL010913 | C09495 | 77.09 | 0.25 | Wuyao |
5 | MOL010916 | Nubigenol | 42.55 | 0.19 | Wuyao |
6 | MOL010917 | Boldine | 31.18 | 0.51 | Wuyao |
7 | MOL000359 | Sitosterol | 36.91 | 0.75 | Wuyao |
8 | MOL000098 | Quercetin | 46.43 | 0.28 | Wuyao |
9 | MOL002879 | Diop | 43.59 | 0.39 | Ginseng |
10 | MOL000449 | Stigmasterol | 43.83 | 0.76 | Ginseng |
11 | MOL003648 | Intermit | 65.83 | 0.54 | Ginseng |
12 | MOL000422 | Kaempferol | 41.88 | 0.24 | Ginseng |
13 | MOL004492 | Chrysanthemaxanthin | 38.72 | 0.58 | Ginseng |
14 | MOL005308 | Aposiopolamine | 66.65 | 0.22 | Ginseng |
15 | MOL005314 | Celabenzine | 101.88 | 0.49 | Ginseng |
16 | MOL005317 | Deoxyharringtonine | 39.27 | 0.81 | Ginseng |
17 | MOL005318 | Dianthrone | 40.45 | 0.2 | Ginseng |
18 | MOL005320 | Arachidonate | 45.57 | 0.2 | Ginseng |
19 | MOL005321 | Frosinone A | 65.9 | 0.34 | Ginseng |
20 | MOL005344 | Ginsenoside Rh2 | 36.32 | 0.56 | Ginseng |
21 | MOL005348 | Ginsenoside Rh4 | 31.11 | 0.78 | Ginseng |
22 | MOL005356 | Girinimbine | 61.22 | 0.31 | Ginseng |
23 | MOL005357 | Geminis B | 31.99 | 0.83 | Ginseng |
24 | MOL005360 | Malkangunin | 57.71 | 0.63 | Ginseng |
25 | MOL005376 | Panaxadiol | 33.09 | 0.79 | Ginseng |
26 | MOL005384 | Suchilactone | 57.52 | 0.56 | Ginseng |
27 | MOL005399 | Alexandrine | 36.91 | 0.75 | Ginseng |
28 | MOL005401 | Ginsenoside Rg5 | 39.56 | 0.79 | Ginseng |
29 | MOL000787 | Fumarine | 59.26 | 0.83 | Ginseng |
30 | MOL000358 | Beta-sitosterol | 36.91 | 0.75 | Wuyao–Ginseng |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Qing, R.; Fan, Z.; He, Q.; Wu, J.; He, Y.; Ouyang, L.; Chen, Z.; Deng, G. Mechanism of Wuyao–Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data. Life 2023, 13, 339. https://doi.org/10.3390/life13020339
Sun W, Qing R, Fan Z, He Q, Wu J, He Y, Ouyang L, Chen Z, Deng G. Mechanism of Wuyao–Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data. Life. 2023; 13(2):339. https://doi.org/10.3390/life13020339
Chicago/Turabian StyleSun, Wenjing, Ruizi Qing, Zhiqiang Fan, Qin He, Jinhong Wu, Yang He, Linqi Ouyang, Zhen Chen, and Guiming Deng. 2023. "Mechanism of Wuyao–Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data" Life 13, no. 2: 339. https://doi.org/10.3390/life13020339
APA StyleSun, W., Qing, R., Fan, Z., He, Q., Wu, J., He, Y., Ouyang, L., Chen, Z., & Deng, G. (2023). Mechanism of Wuyao–Ginseng Medicine Pair in the Prevention and Treatment of Diarrhea-Type Irritable Bowel Syndrome Based on Gene Expression Omnibus Chip Data. Life, 13(2), 339. https://doi.org/10.3390/life13020339