Dynamic of the Soil Microbiota in Short-Term Crop Rotation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase I
3.2. Phase II
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, L.; Lyu, J.; Jin, N.; Xie, J.; Wu, Y.; Zhang, G.; Feng, Z.; Tang, Z.; Liu, Z.; Luo, S.; et al. Effects of Different Vegetable Rotations on the Rhizosphere Bacterial Community and Tomato Growth in a Continuous Tomato Cropping Substrate. PLoS ONE 2021, 16, e0257432. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; De Filippis, F.; Zotti, M.; Vandenberg, A.; Hucl, P.; Bonanomi, G. Pea-Wheat Rotation Affects Soil Microbiota Diversity, Community Structure, and Soilborne Pathogens. Microorganisms 2022, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Vives-Peris, V.; de Ollas Valverde, C.; Gómez-Cadenas, A.; Perez-Clemente, R. Root Exudates: From Plant to Rhizosphere and Beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Mcdaniel, M.; Tiemann, L.; Grandy, S. Does Agricultural Crop Diversity Enhance Soil Microbial Biomass and Organic Matter Dynamics? A Meta-Analysis. Ecol. Appl. 2013, 24, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Bowles, T.; Mooshammer, M.; Socolar, Y.; Calderon, F.; Cavigelli, M.; Culman, S.; Deen, W.; Drury, C.; Garcia y Garcia, A.; Gaudin, A.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Zverev, A.; Zverev, A.O.; Kichko, A.A.; Pinaev, A.G.; Provorov, N.A.; Andronov, E.E. Diversity Indices of Plant Communities and Their Rhizosphere Microbiomes: An Attempt to Find the Connection. Microorganisms 2021, 9, 2339. [Google Scholar] [CrossRef] [PubMed]
- Hoeffner, K.; Beylich, A.; Chabbi, A.; Cluzeau, D.; Dascalu, D.; Graefe, U.; Guzmán, G.; Hallaire, V.; Hanisch, J.; Landa, B.; et al. Legacy Effects of Temporary Grassland in Annual Crop Rotation on Soil Ecosystem Services. Sci. Total Environ. 2021, 780, 146140. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.; Dias, T.; Antunes, P. Application of Plant–Soil Feedbacks in the Selection of Crop Rotation Sequences. Ecol. Appl. 2021, 32, e2501. [Google Scholar] [CrossRef] [PubMed]
- Beillouin, D.; Ben Ari, T.; Malézieux, E.; Seufert, V.; Makowski, D. Positive but Variable Effects of Crop Diversification on Biodiversity and Ecosystem Services. Glob. Chang. Biol. 2021, 27, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Boincean, B.; Dent, D. Crop Rotation. In Farming the Black Earth, Sustainable and Climate-Smart Management of Chernozem Soils; Springer: Cham, Switzerland, 2019; pp. 89–124. ISBN 978-3-030-22532-2. [Google Scholar]
- Benitez, M.-S.; Osborne, S.; Lehman, R. Previous Crop and Rotation History Effects on Maize Seedling Health and Associated Rhizosphere Microbiome. Sci. Rep. 2017, 7, 15709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilton, S.; Bennett, A.; Chandler, D.; Mills, P.; Bending, G. Preceding Crop and Seasonal Effects Influence Fungal, Bacterial and Nematode Diversity in Wheat and Oilseed Rape Rhizosphere and Soil. Appl. Soil Ecol. 2018, 126, 34–46. [Google Scholar] [CrossRef]
- Kaplan, I.; Bokulich, N.; Caporaso, J.; Enders, L.; Ghanem, W.; Ingerslew, K. Phylogenetic Farming: Can Evolutionary History Predict Crop Rotation via the Soil Microbiome? Evol. Appl. 2020, 13, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.; Lauber, C.; Walters, W.; Berg-Lyons, D.; Lozupone, C.; Turnbaugh, P.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.; Mcmurdie, P.; Rosen, M.; Han, A.; Johnson, A.J.; Holmes, S. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Mcmurdie, P.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.2-1; R Foundation for Statistical Computing: Vienna, Austria, 2015. Available online: https://cran.r-project.org/package=vegan(accessed on 14 November 2022).
- Oberholster, T.; Vikram, S.; Cowan, D.; Valverde, A. Key Microbial Taxa in the Rhizosphere of Sorghum and Sunflower Grown in Crop Rotation. Sci. Total Environ. 2017, 624, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; He, Y.; Tu, M.; Xu, C.; Liu, G.; Wang, H.; Cao, W.; Liu, H. Chinese Milk Vetch Improves Plant Growth, Development and N Recovery in the Rice-Based Rotation System of South China. Sci. Rep. 2017, 7, 3577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zverev, A.O.; Kurchak, O.N.; Orlova, O.V.; Onishchuk, O.P.; Kichko, A.A.; Eregin, A.V.; Naliukhin, A.N.; Pinaev, A.G.; Andronov, E.E. Dynamic of the Soil Microbiota in Short-Term Crop Rotation. Life 2023, 13, 400. https://doi.org/10.3390/life13020400
Zverev AO, Kurchak ON, Orlova OV, Onishchuk OP, Kichko AA, Eregin AV, Naliukhin AN, Pinaev AG, Andronov EE. Dynamic of the Soil Microbiota in Short-Term Crop Rotation. Life. 2023; 13(2):400. https://doi.org/10.3390/life13020400
Chicago/Turabian StyleZverev, Aleksei O., Oksana N. Kurchak, Olga V. Orlova, Olga P. Onishchuk, Arina A. Kichko, Aleksander V. Eregin, Aleksey N. Naliukhin, Aleksandr G. Pinaev, and Evgeny E. Andronov. 2023. "Dynamic of the Soil Microbiota in Short-Term Crop Rotation" Life 13, no. 2: 400. https://doi.org/10.3390/life13020400
APA StyleZverev, A. O., Kurchak, O. N., Orlova, O. V., Onishchuk, O. P., Kichko, A. A., Eregin, A. V., Naliukhin, A. N., Pinaev, A. G., & Andronov, E. E. (2023). Dynamic of the Soil Microbiota in Short-Term Crop Rotation. Life, 13(2), 400. https://doi.org/10.3390/life13020400