Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Study Site: Tavolara Island (Sardinia, Italy)
2.3. Bait Application Method
2.4. Fish Sampling
2.5. Brodifacoum Analysis
2.6. Vitamin K and Vitamin K Epoxide Reductase Analyses
2.7. Prothrombin Time
2.8. ENA Assay
2.9. Statistical Analysis
3. Results
3.1. Brodifacoum Concentration
3.2. Vitamin K and Vitamin K Epoxide Reductase Concentrations
3.3. Prothrombin Time Assay
3.4. ENA Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rattner, B.A.; Lazarus, R.S.; Elliott, J.E.; Shore, R.F.; van den Brink, N. Adverse Outcome Pathway and Risks of Anticoagulant Rodenticides to Predatory Wildlife. Environ. Sci. Technol. 2014, 48, 8433–8445. [Google Scholar] [CrossRef] [PubMed]
- Watt, B.E.; Proudfoot, A.T.; Bradberry, S.M.; Vale, J.A. Anticoagulant Rodenticides. Toxicol Rev 2005, 24, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, H.H.W.; Janssen, C.A.T.; Mosterd, J.J. Warfarin Resistance: Biochemical Evaluation of a Warfarin-Resistant Wild Brown Rat. Biochem. Pharmacol. 1989, 38, 3129–3132. [Google Scholar] [CrossRef]
- Kotthoff, M.; Rüdel, H.; Jürling, H.; Severin, K.; Hennecke, S.; Friesen, A.; Koschorreck, J. First Evidence of Anticoagulant Rodenticides in Fish and Suspended Particulate Matter: Spatial and Temporal Distribution in German Freshwater Aquatic Systems. Environ. Sci. Pollut. Res. 2019, 26, 7315–7325. [Google Scholar] [CrossRef]
- Eason, C.T.; Murphy, E.C.; Wright, G.R.G.; Spurr, E.B. Assessment of Risks of Brodifacoum to Non-Target Birds and Mammals in New Zealand. Ecotoxicology 2002, 11, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Fasco, M.J.; Principe, L.M. R-and S-Warfarin inhibition of vitamin K and vitamin K 2, 3-epoxide reductase activities in the rat. J. Biol. Chem. 1982, 257, 4894–4901. [Google Scholar] [CrossRef]
- Wallin, R.; Martin, L.F. Vitamin K-Dependent Carboxylation and Vitamin K Metabolism in Liver. Effects of Warfarin. J. Clin. Investig. 1985, 76, 1879–1884. [Google Scholar] [CrossRef]
- Dubock, A.C.; Kaukeinen, D.E.; Carolina, N. Brodifacoum (Talon™ rodenticide), a novel concept. In Proceedings of the Vertebrate Pest Conference, Sacramento, CA, USA, 7–8 March 1978; p. 8. [Google Scholar]
- Hooker, S.; Innes, J. Ranging Behaviour of Forest-dwelling Ship Rats, Rattus Rattus, and Effects of Poisoning with Brodifacoum. N. Z. J. Zool. 1995, 22, 291–304. [Google Scholar] [CrossRef]
- Erickson, W.A.; Urban, D.J. Potential Risks of Nine Rodenticides to Birds and Nontarget Mammals: A Comparative Approach; US Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances: Washington, DC, USA, 2004; p. 225.
- Lambert, O.; Pouliquen, H.; Larhantec, M.; Thorin, C.; L’Hostis, M. Exposure of Raptors and Waterbirds to Anticoagulant Rodenticides (Difenacoum, Bromadiolone, Coumatetralyl, Coumafen, Brodifacoum): Epidemiological Survey in Loire Atlantique (France). Bull. Environ. Contam. Toxicol. 2007, 79, 91–94. [Google Scholar] [CrossRef]
- Fournier-Chambrillon, C.; Berny, P.J.; Coiffier, O.; Barbedienne, P.; Dassé, B.; Delas, G.; Galineau, H.; Mazet, A.; Pouzenc, P.; Rosoux, R.; et al. Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: Implications for conservation of european mink (Mustela lutreola). J. Wildl. Dis. 2004, 40, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Stone, W.B.; Okoniewski, J.C.; Stedelin, J.R. Poisoning of wildlife with anticoagulant rodenticides in New York. J. Wildl. Dis. 1999, 35, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.B.; Okoniewski, J.C.; Stedelin, J.R. Anticoagulant Rodenticides and Raptors: Recent Findings from New York, 1998-2001. Bull. Environ. Contam. Toxicol. 2003, 70, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Shore, R.F.; Birks, J.D.S.; Afsar, A.; Wienburg, C.L.; Kitchener, A.C. Spatial and Temporal Analysis of Second-Generation Anticoagulant Rodenticide Residues in Polecats (Mustela Putorius) from throughout Their Range in Britain, 1992–1999. Environ. Pollut. 2003, 122, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Alomar, H.; Chabert, A.; Coeurdassier, M.; Vey, D.; Berny, P. Accumulation of Anticoagulant Rodenticides (Chlorophacinone, Bromadiolone and Brodifacoum) in a Non-Target Invertebrate, the Slug, Deroceras Reticulatum. Sci. Total. Environ. 2018, 610–611, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Barbudo, I.S.; Camarero, P.R.; Mateo, R. Primary and Secondary Poisoning by Anticoagulant Rodenticides of Non-Target Animals in Spain. Sci. Total. Environ. 2012, 420, 280–288. [Google Scholar] [CrossRef]
- Wiens, J.D.; Dilione, K.E.; Eagles-Smith, C.A.; Herring, G.; Lesmeister, D.B.; Gabriel, M.W.; Wengert, G.M.; Simon, D.C. Anticoagulant Rodenticides in Strix Owls Indicate Widespread Exposure in West Coast Forests. Biol. Conserv. 2019, 238, 108238. [Google Scholar] [CrossRef]
- Fisher, P.; Griffiths, R.; Speedy, C.; Broome, K. Environmental Monitoring for Brodifacoum Residues after Aerial Application of Baits for Rodent Eradication. Proc. Vertebr. Pest Conf. 2010, 24, 161–166. [Google Scholar] [CrossRef]
- Howald, G.; Donlan, C.J.; Faulkner, K.R.; Ortega, S.; Gellerman, H.; Croll, D.A.; Tershy, B.R. Eradication of Black Rats Rattus Rattus from Anacapa Island. Oryx 2010, 44, 30. [Google Scholar] [CrossRef]
- Dowding, J.E.; Lovegrove, T.I.G.; Ritchie, J.; Kast, S.N.; Puckett, M. Mortality of northern New Zealand dotterels (Charadrius obscurus aquilonius) following an aerial poisoning operation. Notornis 2006, 53, 235. [Google Scholar]
- Masuda, B.M.; Fisher, P.; Beaven, B. Residue Profiles of Brodifacoum in Coastal Marine Species Following an Island Rodent Eradication. Ecotoxicol. Environ. Saf. 2015, 113, 1–8. [Google Scholar] [CrossRef]
- Primus, T.; Wright, G.; Fisher, P. Accidental Discharge of Brodifacoum Baits in a Tidal Marine Environment: A Case Study. Bull. Environ. Contam. Toxicol. 2005, 74, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Pitt, W.C.; Berentsen, A.R.; Shiels, A.B.; Volker, S.F.; Eisemann, J.D.; Wegmann, A.S.; Howald, G.R. Non-Target Species Mortality and the Measurement of Brodifacoum Rodenticide Residues after a Rat (Rattus Rattus) Eradication on Palmyra Atoll, Tropical Pacific. Biol. Conserv. 2015, 185, 36–46. [Google Scholar] [CrossRef]
- Siers, S.; Shiels, A.; Volker, S.; Rex, K. Brodifacoum Residues in Fish Three Years after an Island-Wide Rat Eradication Attempt in the Tropical Pacific. MBI 2020, 11, 105–121. [Google Scholar] [CrossRef]
- Broome, K.; Golding, C.; Brown, K.; Corson, P.; Bell, P. Rat Eradication Using Aerial Baiting Current Agreed Best Practice Used in New Zealand; New Zealand Department of Conservation: Wellington, New Zealand, 2017.
- Christensen, T.K.; Lassen, P.; Elmeros, M. High Exposure Rates of Anticoagulant Rodenticides in Predatory Bird Species in Intensively Managed Landscapes in Denmark. Arch. Environ. Contam. Toxicol. 2012, 63, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Sherman, P.A.; Sander, E.G. Vitamin K Epoxide Reductase: Evidence That Vitamin K Dihydroquinone Is a Product of Vitamin K Epoxide Reduction. Biochem. Biophys. Res. Commun. 1981, 103, 997–1005. [Google Scholar] [CrossRef]
- Jakob, E.; Elmadfa, I. Application of a Simplified HPLC Assay for the Determination of Phylloquinone (Vitamin K1) in Animal and Plant Food Items. Food Chem. 1996, 56, 87–91. [Google Scholar] [CrossRef]
- Pacheco, M.; Santos, M.A. Induction of EROD Activity and Genotoxic Effects by Polycyclic Aromatic Hydrocarbons and Resin Acids on the Juvenile Eel (Anguilla anguilla L.). Ecotoxicol. Environ. Saf. 1997, 38, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Mosterd, J.J.; Thijssen, H.H.W. The Long-Term Effects of the Rodenticide, Brodifacoum, on Blood Coagulation and Vitamin K Metabolism in Rats. Br. J. Pharmacol. 1991, 104, 531–535. [Google Scholar] [CrossRef]
- Ostermeyer, U.; Schmidt, T. Determination of Vitamin K in the Edible Part of Fish by High-Performance Liquid Chromatography. Eur. Food Res. Technol. 2001, 212, 518–528. [Google Scholar] [CrossRef]
- Rattner, B.A.; Horak, K.E.; Warner, S.E.; Johnston, J.J. Acute Toxicity of Diphacinone in Northern Bobwhite: Effects on Survival and Blood Clotting. Ecotoxicol. Environ. Saf. 2010, 73, 1159–1164. [Google Scholar] [CrossRef]
- Sage, M.; Fourel, I.; Cœurdassier, M.; Barrat, J.; Berny, P.; Giraudoux, P. Determination of Bromadiolone Residues in Fox Faeces by LC/ESI-MS in Relationship with Toxicological Data and Clinical Signs after Repeated Exposure. Environ. Res. 2010, 110, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Kawatsu, H. Clotting Time of Common Carp Blood. NIPPON SUISAN GAKKAISHI 1986, 52, 591–595. [Google Scholar] [CrossRef]
- Yildiz, H.Y. Reference Biochemical Values for Three Cultured Sparid Fish: Striped Sea Bream, Lithognathus Mormyrus; Common Dentex, Dentex Dentex; and Gilthead Sea Bream, Sparus aurata. Comp. Clin. Pathol. 2009, 18, 23–27. [Google Scholar] [CrossRef]
- Bolognesi, C.; Cirillo, S. Genotoxicity Biomarkers in Aquatic Bioindicators. Curr. Zool. 2014, 60, 273–284. [Google Scholar] [CrossRef]
- Caliani, I.; Poggioni, L.; D’Agostino, A.; Fossi, M.C.; Casini, S. An Immune Response-Based Approach to Evaluate Physiological Stress in Rehabilitating Loggerhead Sea Turtle. Veter-Immunol. Immunopathol. 2019, 207, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Lobo, J.; Caeiro, S.; Martins, M.; Ferreira, A.M.; Caetano, M.; Vale, C.; DelValls, T.Á.; Costa, M.H. Genotoxic Damage in Solea Senegalensis Exposed to Sediments from the Sado Estuary (Portugal): Effects of Metallic and Organic Contaminants. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2008, 654, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Maceda-Veiga, A.; Monroy, M.; Viscor, G.; De Sostoa, A. Changes in Non-Specific Biomarkers in the Mediterranean Barbel (Barbus Meridionalis) Exposed to Sewage Effluents in a Mediterranean Stream (Catalonia, NE Spain). Aquat. Toxicol. 2010, 100, 229–237. [Google Scholar] [CrossRef]
- Marques, A.; Custódio, M.; Guilherme, S.; Gaivão, I.; Santos, M.A.; Pacheco, M. Assessment of Chromosomal Damage Induced by a Deltamethrin-Based Insecticide in Fish (Anguilla anguilla L.)—A Follow-up Study upon Exposure and Post-Exposure Periods. Pestic. Biochem. Physiol. 2014, 113, 40–46. [Google Scholar] [CrossRef]
- Marques, A.; Rego, A.; Guilherme, S.; Gaivão, I.; Santos, M.A.; Pacheco, M. Evidences of DNA and Chromosomal Damage Induced by the Mancozeb-Based Fungicide Mancozan® in Fish (Anguilla anguilla L.). Pestic. Biochem. Physiol. 2016, 133, 52–58. [Google Scholar] [CrossRef]
- Pacheco, M.; Santos, M.A. Biochemical and Genotoxic Responses of Adult Eel (Anguilla anguilla L.) to Resin Acids and Pulp Mill Effluent: Laboratory and Field Experiments. Ecotoxicol. Environ. Saf. 1999, 42, 81–93. [Google Scholar] [CrossRef]
- Pacheco, M.; Santos, M.A. Biotransformation, Genotoxic, and Histopathological Effects of Environmental Contaminants in European Eel (Anguilla anguilla L.). Ecotoxicol. Environ. Saf. 2002, 53, 331–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, M.; Pacheco, M.; Santos, M.A. Sparus aurata L. Liver EROD and GST Activities, Plasma Cortisol, Lactate, Glucose and Erythrocytic Nuclear Anomalies Following Short-Term Exposure Either to 17β-Estradiol (E2) or E2 Combined with 4-Nonylphenol. Sci. Total. Environ. 2005, 336, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Ware, K.M.; Feinstein, D.L.; Rubinstein, I.; Weinberg, G.; Rovin, B.H.; Hebert, L.; Muni, N.; Cianciolo, R.E.; Satoskar, A.A.; Nadasdy, T.; et al. Brodifacoum Induces Early Hemoglobinuria and Late Hematuria in Rats: Novel Rapid Biomarkers of Poisoning. Am. J. Nephrol. 2015, 41, 392–399. [Google Scholar] [CrossRef]
- Oliveira, M.; Pacheco, M.; Santos, M.A. Cytochrome P4501A, Genotoxic and Stress Responses in Golden Grey Mullet (Liza Aurata) Following Short-Term Exposure to Phenanthrene. Chemosphere 2007, 66, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Maria, V.L.; Correia, A.C.; Santos, M.A. Genotoxic and Hepatic Biotransformation Responses Induced by the Overflow of Pulp Mill and Secondary-Treated Effluents on Anguilla anguilla L. Ecotoxicol. Environ. Saf. 2003, 55, 126–137. [Google Scholar] [CrossRef]
- Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Golovko, O.; Žlábek, V.; Nunes, B. Assessment of Toxic Effects of the Antibiotic Erythromycin on the Marine Fish Gilthead Seabream (Sparus aurata L.) by a Multi-Biomarker Approach. Chemosphere 2019, 216, 234–247. [Google Scholar] [CrossRef]
- Gusso-Choueri, P.K.; Choueri, R.B.; Santos, G.S.; de Araújo, G.S.; Cruz, A.C.F.; Stremel, T.; de Campos, S.X.; Cestari, M.M.; Ribeiro, C.A.O.; de Sousa Abessa, D.M. Assessing Genotoxic Effects in Fish from a Marine Protected Area Influenced by Former Mining Activities and Other Stressors. Mar. Pollut. Bull. 2016, 104, 229–239. [Google Scholar] [CrossRef]
- Regnery, J.; Parrhysius, P.; Schulz, R.S.; Möhlenkamp, C.; Buchmeier, G.; Reifferscheid, G.; Brinke, M. Wastewater-Borne Exposure of Limnic Fish to Anticoagulant Rodenticides. Water Res. 2019, 167, 115090. [Google Scholar] [CrossRef]
- Housenger, J.; Melendez, J.L. Risks of Brodifacoum Use to the Federally Threatened Alameda Whipsnake (Masticophis lateralis euryxanthus), and the Federally Endangered Salt Marsh Harvest Mouse (Reithrodontomys raviventris) and San Joaquin Kit Fox (Vulpes macrotis mutica); Environmental Fate and Effects Division Office of Pesticide Programs: Washington, DC, USA, 2012.
Species | Weight (g) | Length (cm) | #Sample |
---|---|---|---|
Brown meagre (Sciaena umbra) | 158.9 ± 15.7 (147.8–170) | 24.75 ± 1.06 (24–25.5) | 2 |
Painted comber (Serranus scriba) | 86.32 ± 42.27 (33.7–153) | 18.33 ± 3.37 (13–22) | 6 |
Mediterranean rainbow wrasse (Coris julis) | 30.68 ± 0 | 14 ± 0 | 1 |
Two-banded sea bream (Diplodus vulgaris) | 123.03 ± 14.04 (105.9 ± 139) | 18.9 ± 1.6 (17–21) | 5 |
Comber (Serranus cabrilla) | 22.5 ± 4.11 (19.59–25.4) | 12 ± 1.41 (11–13) | 2 |
Salema (Sarpa salpa) | 435 ± 21.21 (420–450) | 28 ± 0.71 (27.5–28.5) | 2 |
Black seabream (Spondyolisoma cantharus) | 400 ± 0 | 21 ± 0 | 1 |
Brown wrasse (Labrus merula) | 800 ± 0 | 36.5 ± 0 | 1 |
Nuclear Abnormalities Categories | |||||
---|---|---|---|---|---|
Species | Lobed | Kidney-Shaped | Segmented | Micronuclei | #Sample |
Brown meagre (Sciaena umbra) | 26.5 ± 10.61 ab | 6 ± 0 c | 0 ± 0 | 1.5 ± 0.71 a | 2 |
Painted comber (Serranus scriba) | 37 ± 26.34 ab | 2.83 ± 2.64 ab | 0.5 ± 0.84 | 0.83 ± 1.6 a | 6 |
Two-banded sea bream (Diplodus vulgaris) | 15.5 ± 11.9 a | 0.25 ± 0.5 a | 0 ± 0 | 0 ± 0 | 4 |
Comber (Serranus cabrilla) | 36 ± 0 b | 2 ± 0 b | 0 ± 0 | 0 ± 0 | 1 |
Salema (Sarpa salpa) | 29.5 ± 30.41 ab | 2 ± 2.83 ab | 0 ± 0 | 1 ± 0 a | 2 |
Black seabream (Spondyolisoma cantharus) | 46 ± 0 b | 1 ± 0 a | 0 ± 0 | 0 ± 0 | 1 |
Brown wrasse (Labrus merula) | 91 ± 0 a | 7 ± 0 d | 0 ± 0 | 0 ± 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliani, I.; Di Noi, A.; Amico, C.; Berni, R.; Romi, M.; Cai, G.; Guarnieri, M.; Navone, A.; Spano, G.; Howald, G.R.; et al. Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results. Life 2023, 13, 415. https://doi.org/10.3390/life13020415
Caliani I, Di Noi A, Amico C, Berni R, Romi M, Cai G, Guarnieri M, Navone A, Spano G, Howald GR, et al. Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results. Life. 2023; 13(2):415. https://doi.org/10.3390/life13020415
Chicago/Turabian StyleCaliani, Ilaria, Agata Di Noi, Carlo Amico, Roberto Berni, Marco Romi, Giampiero Cai, Massimo Guarnieri, Augusto Navone, Giovanna Spano, Gregg R. Howald, and et al. 2023. "Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results" Life 13, no. 2: 415. https://doi.org/10.3390/life13020415
APA StyleCaliani, I., Di Noi, A., Amico, C., Berni, R., Romi, M., Cai, G., Guarnieri, M., Navone, A., Spano, G., Howald, G. R., Sposimo, P., & Marsili, L. (2023). Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results. Life, 13(2), 415. https://doi.org/10.3390/life13020415