Right Ventricular Morphology and Function after Exercise Training in People with Systemic Sclerosis: A Randomized Controlled Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Study Protocol
2.3. CPET via Arm Ergometry
2.4. Echocardiographic Measurements
2.5. Exercise Training Program
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- Ross, L.; Prior, D.; Proudman, S.; Vacca, A.; Baron, M.; Nikpour, M. Defining primary systemic sclerosis heart involvement: A scoping literature review. Semin Arthritis Rheum. 2019, 48, 874–887. [Google Scholar] [CrossRef]
- Hung, G.; Mercurio, V.; Hsu, S.; Mathai, S.C.; Shah, A.A.; Mukherjee, M. Progress in Understanding, Diagnosing, and Managing Cardiac Complications of Systemic Sclerosis. Curr. Rheumatol. Rep. 2019, 21, 68. [Google Scholar] [CrossRef]
- Steen, V.D.; Medsger, T.A., Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 2000, 43, 2437–2444. [Google Scholar] [CrossRef]
- Giucă, A.; Gegenava, T.; Mihai, C.M.; Jurcuţ, C.; Săftoiu, A.; Gȋrniţă, D.M.; Popescu, B.A.; Marsan, N.A.; Jurcuț, R. Sclerodermic Cardiomyopathy-A State-of-the-Art Review. Diagnostics 2022, 12, 669. [Google Scholar] [CrossRef]
- D’Andrea, A.; Caso, P.; Cuomo, S.; Di Uccio, F.S.; Scarafile, R.; Salerno, G.; Romano, S.; Stisi, S.; Scherillo, M.; Calabrò, R. Myocardial and vascular dysfunction in systemic sclerosis: The potential role of noninvasive assessment in asymptomatic patients. Int. J. Cardiol. 2007, 121, 298–301. [Google Scholar] [CrossRef]
- Mukherjee, M.; Chung, S.E.; Ton, V.K.; Tedford, R.J.; Hummers, L.K.; Wigley, F.M.; Abraham, T.P.; Shah, A.A. Unique abnormalities in right ventricular longitudinal strain in systemic sclerosis patients. Circ Cardiovasc Imaging. 2016, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Mitropoulos, A.; Gumber, A.; Crank, H.; Akil, M.; Klonizakis, M. The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients. Arthritis Res Ther. 2018, 20, 112. [Google Scholar] [CrossRef]
- Mitropoulos, A.; Gumber, A.; Akil, M.; Klonizakis, M. Exploring the microcirculatory effects of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Microvasc Res. 2019, 125, 103887. [Google Scholar] [CrossRef]
- Yiu, K.H.; Schouffoer, A.A.; Marsan, N.A.; Ninaber, M.K.; Stolk, J.; Vlieland, T.V.; Scherptong, R.W.; Delgado, V.; Holman, E.R.; Fat Tse, H.; et al. Left ventricular dysfunction assessed by speckle-tracking strain analysis in patients with systemic sclerosis: Relationship to functional capacity and ventricular arrhythmias. Arthritis Rheumatol. 2011, 63, 3969–3978. [Google Scholar] [CrossRef]
- Colalillo, A.; Pellicano, C.; Romaniello, A.; Rosato, E. In systemic sclerosis TAPSE/sPAP ratio is correlated with ventilatory efficiency and exercise capacity assessed by CPET. Clin. Exp. Med. 2022, 12. [Google Scholar] [CrossRef]
- Mitropoulos, A.; Boström, C.; Mattsson, M.; Kouidi, E.; Dimitroulas, T.; Liem, S.I.E.; Vlieland, T.P.M.V.; de Vries-Bouwstra, J.K.; Jacobsen, S.; Cuomo, G.; et al. Exploring the effects of a combined exercise programme on pain and fatigue outcomes in people with systemic sclerosis: Study protocol for a large European multi-centre randomised controlled trial. Trials 2022, 23, 962. [Google Scholar] [CrossRef]
- Mitropoulos, A.; Gumber, A.; Crank, H.; Klonizakis, M. Validation of an Arm Crank Ergometer Test for Use in Sedentary Adults. J. Sports Sci. Med. 2017, 16, 558–564. [Google Scholar]
- Lang, R.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Industry representatives; Reviewers: This document was reviewed by members of the 2016–2018 EACVI Scientific Documents Committee. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: A consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imag. 2018, 19, 591–600. [Google Scholar]
- Badano, L.P.; Muraru, D.; Parati, G.; Haugaa, K.; Voigt, J.U. How to do right ventricular strain. Eur. Heart J. Cardiovasc. Imag. 2020, 21, 825–827. [Google Scholar] [CrossRef]
- Fine, N.M.; Chen, L.; Bastiansen, P.M.; Frantz, R.P.; Pellikka, P.A.; Oh, J.K.; Kane, G.C. Reference Values for Right Ventricular Strain in Patients without Cardiopulmonary Disease: A Prospective Evaluation and Meta-Analysis. Echocardiography 2015, 32, 787–796. [Google Scholar] [CrossRef]
- Matias, C.; Isla, L.P.; Vasconcelos, M.; Almería, C.; Rodrigo. J.L.; Serra, V.; Zamorano, J. Speckle-tracking-derived strain and strain-rate analysis: A technique for the evaluation of early alterations in right ventricle systolic function in patients with systemic sclerosis and normal pulmonary artery pressure. J. Cardiovasc. Med. 2009, 10, 129–134. [Google Scholar] [CrossRef]
- Karadag, D.T.; Sahin, T.; Tekeoglu. S.; Işik, O.O.; Yazici, A.; Eraldemir, F.C.; Cefle, A. Evaluation of left and right ventricle by two-dimensional speckle tracking echocardiography in systemic sclerosis patients without overt cardiac disease. Clin. Rheumatol. 2020, 39, 37–48. [Google Scholar] [CrossRef]
- Kepez, A.; Akdogan, A.; Sade, L.E.; Deniz, A.; Kalyoncu, U.; Karadag, O.; Hayran, M.; Aytemir, K.; Ertenli, I.; Kiraz, S.; et al. Detection of subclinical cardiac involvement in systemic sclerosis by echocardiographic strain imaging. Echocardiography 2008, 25, 191–197. [Google Scholar] [CrossRef]
- Fortuni, F.; Butcher, S.C.; Dietz, M.F.; van der Bijl, P.; Prihadi, E.A.; De Ferrari, G.M.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Right Ventricular-Pulmonary Arterial Coupling in Secondary Tricuspid Regurgitation. Am. J. Cardiol. 2021, 148, 138–145. [Google Scholar] [CrossRef]
- Walker, U.A.; Clements, P.J.; Allanore, Y.; Distler, O.; Oddis, C.V.; Khanna, D.; Furst, D.E. Muscle involvement in systemic sclerosis: Points to consider in clinical trials. Rheumatology 2017, 56 (Suppl. 5), v38–v44. [Google Scholar] [CrossRef] [Green Version]
- Bratoiu, I.; Burlui, A.M.; Cardoneanu, A.; Macovei, L.A.; Richter, P.; Rusu-Zota, G.; Rezus, C.; Badescu, M.C.; Szalontay, A.; Rezus, E. The Involvement of Smooth Muscle, Striated Muscle, and the Myocardium in Scleroderma: A Review. Int. J. Mol. Sci. 2022, 23, 12011. [Google Scholar] [CrossRef]
- De Oliveira, N.C.; Portes, L.A.; Pettersson, H.; Alexanderson, H.; Boström, C. Aerobic and resistance exercise in systemic sclerosis: State of the art. Musculoskeletal. Care. 2017, 15, 316–323. [Google Scholar] [CrossRef]
- Ross, L.; Costello, B.; Lindqvist, A.; Hansen, D.; Brown, Z.; Stevens, W.; Burns, A.; Prior, D.; Pianta, M.; Perera, W.; et al. Disease specific determinants of cardiopulmonary fitness in systemic sclerosis. Semin Arthritis Rheum. 2022, 58, 152137. [Google Scholar] [CrossRef]
- Rosato, E.; Romaniello, A.; Magrì, D.; Bonini, M.; Sardo, L.; Gigante, A.; Quarta, S.; Digiulio, M.A.; Viola, G.; Di Paolo, M.; et al. Exercise tolerance in systemic sclerosis patients without pulmonary impairment: Correlation with clinical variables. Clin. Exp. Rheumatol. 2014, 32 (Suppl. 86), S103–S108. [Google Scholar]
- Battaglia, S.; Bellia, M.; Serafino-Agrusa, L.; Giardina, A.; Messina, M.; Cannizzaro, F.; Midiri, M.; Triolo, G.; Scichilone, N. Physical capacity in performing daily activities is reduced in scleroderma patients with early lung involvement. Clin. Respir. J. 2017, 11, 36–42. [Google Scholar]
- Lima, T.R.; Guimarães, F.S.; Carvalho, M.N.; Sousa, T.L.; Menezes, S.L.; Lopes, A.J. Lower limb muscle strength is associated with functional performance and quality of life in patients with systemic sclerosis. Braz. J. Phys. Ther. 2015, 19, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Ewert, R.; Ittermann, T.; Habedank, D.; Held, M.; Lange, T.J.; Halank, M.; Winkler, J.; Gläser, S.; Olschewski, H.; Kovacs, G. Prognostic value of cardiopulmonary exercise testing in patients with systemic sclerosis. BMC Pulm Med. 2019, 19, 230. [Google Scholar] [CrossRef]
- Liem, S.I.E.; Vliet Vlieland, T.P.M.; Schoones, J.W.; de Vries-Bouwstra, J.K. The effect and safety of exercise therapy in patients with systemic sclerosis: A systematic review. Rheumatol. Adv. Pract. 2019, 9, 3. [Google Scholar] [CrossRef]
- Pettersson, H.; Alexanderson, H.; Poole, J.L.; Varga, J.; Regardt, M.; Russell, A.-M.; Salam, Y.; Jensen, K.; Mansour, J.; Frech, T.; et al. Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Pract. Res. Clin. Rheumatol. 2021, 35, 101695. [Google Scholar] [CrossRef]
- Metsios, G.; Fenton, S.A.; Moe, H.R.; van der Esch, M.; van Zanten, J.V.; Koutedakis, Y.; Vitalis, P.; Kennedy, N.; Brodin, N.C.; Tzika, A.; et al. IMPACT-RMD Consortium. Implementation of Physical Activity into routine Clinical pracTice in Rheumatic Musculoskeletal Disease: The IMPACT-RMD study protocol and rationale. Mediterr. J. Rheumatol. 2020, 30, 231–236. [Google Scholar] [CrossRef]
- Metsios, G.S.; Brodin, N.; Vlieland, T.P.M.V.; Van den Ende, C.H.M.; Stavropoulos-Kalinoglou, A.; Fatouros, I.; van der Esch, M.; Fenton, S.A.M.; Tzika, K.; Moe, R.H.; et al. IMPACT-RMD Consortium. Position Statement on Exercise Dosage in Rheumatic and Musculoskeletal Diseases: The Role of the IMPACT-RMD Toolkit. Mediterr. J. Rheumatol. 2021, 32, 378–385. [Google Scholar] [CrossRef]
- Mitropoulos, A.; Gumber, A.; Crank, H.; Akil, M.; Klonizakis, M. Exploring the feasibility of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Clin. Rheumatol. 2020, 39, 1889–1898. [Google Scholar] [CrossRef] [Green Version]
- Macpherson, R.E.; Hazell, T.J.; Olver, T.D.; Paterson, D.H.; Lemon, P.W. Run sprint interval training improves aerobic perfor-mance but not maximal cardiac output. Med. Sci. Sports Exerc. 2011, 43, 115–122. [Google Scholar] [CrossRef]
- Ozaki, H.; Loenneke, J.P.; Thiebaud, R.S. Abe, Takashi. Resistance training induced increase in VO2max in young and older sub-jects. Eur. Rev. Aging Phys. Act 2013, 10, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Harms, S.J.; Hickson, R.C. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training. J. Appl. Physiol. 1983, 54, 798–802. [Google Scholar] [CrossRef]
- Coggan, A.R.; Spina, R.J.; King, D.S.; Rogers, M.A.; Brown, M.; Nemeth, P.M.; Holloszy, J.O. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J. Appl. Physiol. 1992, 72, 1780–1786. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, M.; Mercurio, V.; Hsu, S.; Mayer, S.A.; Mathai, S.C.; Hummers, L.K.; Kass, D.A.; Hassoun, P.M.; Wigley, F.M.; Tedford, R.J.; et al. Assessment of right ventricular reserve utilizing exercise provocation in systemic sclerosis. Int. J. Cardiovasc. Imag. 2021, 37, 2137–2147. [Google Scholar] [CrossRef]
Parameters | Total | Group ET | Group CON | p |
---|---|---|---|---|
N | 28 | 14 | 14 | |
Gender | ||||
Male (n,%) | 4 (14.29%) | 4 (28.6%) | 0 (0%) | 0.098 |
Female (n,%) | 24 (85.71%) | 10 (71.4%) | 14 (100%) | |
Age (years) | 57.21 ± 10.76 | 56.14 ± 10.212 | 58.29 ± 11.56 | 0.61 |
BSA | 1.71 ± 0.14 | 1.73 ± 0.16 | 1.70 ± 0.13 | 0.54 |
Disease duration [IQR] (years) | 6.50 [10.5] | 6.50 [4.8] | 8.00 [13.5] | 0.80 |
Type of disease | ||||
Limited (n,%) | 15 (53.57%) | 5 (35.7%) | 10 (71.4%) | 0.06 |
Diffuse (n,%) | 13 (46.43%) | 9 (64.3%) | 4 (28.6%) | |
ANA | ||||
Positive (n,%) | 28 (100%) | 14 | 14 | 1.00 |
Negative (n,%) | 0 | 0 | 0 | |
ACA | ||||
Positive (n,%) | 8 (28.57%) | 2 (14.3%) | 6 (42.9%) | 0.209 |
Negative (n,%) | 20 (71.43) | 12 (85.7%) | 8 (57.1%) | |
SCL70 | ||||
Positive (n,%) | 13 (46.43%) | 9 (64.3%) | 4 (28.6%) | 0.058 |
Negative (n,%) | 15 (53.57%) | 5 (35.7%) | 10 (71.4%) |
ET | CON | ET vs. CON p | ||||||
---|---|---|---|---|---|---|---|---|
LV Indices | Baseline | After | p | Baseline | After | p | Baseline | After |
LVIVSd (mm) | 7.7 ± 0.9 | 7.8 ± 0.7 | 0.33 | 7.8 ± 0.6 | 7.9 ± 0.8 | 0.69 | 0.65 | 0.82 |
LVEDD (mm) | 46.1 ± 3.2 | 46.7 ± 2.4 | 0.44 | 46.3 ± 3.4 | 47.7 ± 2.7 | 0.10 | 0.88 | 0.30 |
LVPWd (mm) | 7.7 ± 0.9 | 7.6 ± 0.7 | 0.79 | 7.7 ± 0.7 | 7.7 ± 0.8 | 0.99 | 0.86 | 0.78 |
LVEDV (mL) | 84.7 ± 17 | 86.5 ± 5.9 | 0.67 | 82.1 ± 11 | 81.7 ± 8.1 | 0.90 | 0.66 | 0.08 |
SV (ml) | 52.0 ± 7.6 | 52.3 ± 7.7 | 0.68 | 49.7 ± 7.3 | 49.5 ± 7.4 | 0.82 | 0.21 | 0.12 |
CO (l/min) | 3.72 ± 0.6 | 3.77 ± 0.5 | 0.41 | 3.80 ± 0.5 | 3.87 ± 0.5 | 0.25 | 0.72 | 0.67 |
LVEF (%) | 62.7 ± 5.3 | 63.7 ± 4.6 | 0.50 | 62.2 ± 4.3 | 62.0 ± 3.0 | 0.86 | 0.81 | 0.36 |
MVE (m/s) | 0.75 ± 0.1 | 0.69 ± 0.1 | 0.26 | 0.74 ± 0.08 | 0.73 ± 0.09 | 0.73 | 0.84 | 0.09 |
MVA (m/s) | 0.69 ± 0.1 | 0.68 ± 0.1 | 0.59 | 0.71 ± 0.1 | 0.72 ± 0.1 | 0.94 | 0.66 | 0.34 |
MVE/A | 1.11 ± 0.3 | 1.03 ± 0.2 | 0.46 | 1.04 ± 0.1 | 1.04 ± 0.1 | 0.99 | 0.44 | 0.91 |
E/E’ | 6.6 ± 1.7 | 7.2 ± 1.6 | 0.44 | 6.9 ± 1.1 | 7.3 ± 1.3 | 0.43 | 0.66 | 0.90 |
LAVi (ml/m2) | 25.6 ± 7.6 | 26.6 ± 4.3 | 0.63 | 24.7 ± 4.3 | 25.7 ± 4.5 | 0.45 | 0.73 | 0.65 |
ET | CON | ET vs. CON p | ||||||
---|---|---|---|---|---|---|---|---|
RV Indices | Baseline | After | p | Baseline | After | p | Baseline | After |
RV bas (mm) | 38.7 ± 2.6 | 37.1 ± 2.9 | 0.08 | 37.0 ± 2.1 | 37.1 ± 2.3 | 0.89 | 0.11 | 0.99 |
RVOT prox (mm) | 30.3 ± 2.7 | 30.1 ± 2.1 | 0.77 | 29.6 ± 1.6 | 28.4 ± 2.3 | 0.08 | 0.46 | 0.06 |
RAVol/BSA (mL/m2) | 21.7 ± 4.2 | 21.2 ± 3.0 | 0.49 | 19.8 ± 6.0 | 19.2 ± 3.9 | 0.70 | 0.40 | 0.09 |
TVE (m/s) | 0.63 ± 0.07 | 0.68 ± 0.08 | 0.16 | 0.67 ± 0.06 | 0.64 ± 0.16 | 0.64 | 0.14 | 0.54 |
TVA (m/s) | 0.52 ± 0.06 | 0.59 ± 0.07 | 0.06 | 0.57 ± 0.12 | 0.57 ± 0.09 | 0.99 | 0.07 | 0.49 |
TVE/A | 1.23 ± 0.19 | 1.16 ± 0.16 | 0.32 | 1.20 ± 0.18 | 1.13 ± 0.19 | 0.32 | 0.68 | 0.70 |
TVS’ (m/s) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.57 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.45 | 0.47 | 0.52 |
TVE’ (m/s | 0.13 ± 0.02 | 0.12 ± 0.02 | 0.34 | 0.13 ± 0.02 | 0.13 ± 0.01 | 0.67 | 0.94 | 0.27 |
TVA’ (m/s) | 0.15 ± 0.03 | 0.14 ± 0.02 | 0.43 | 0.15 ± 0.02 | 0.15 ± 0.02 | 0.69 | 0.91 | 0.08 |
TAPSE (mm) | 22.7 ± 3.2 | 22.0 ± 2.9 | 0.35 | 23.1 ± 1.5 | 23.1 ± 2.3 | 0.99 | 0.71 | 0.30 |
PASP (mmHg) | 24.5 ± 6.2 | 24.0 ± 5.4 | 0.69 | 25.5 ± 2.3 | 26.7 ± 3.5 | 0.25 | 0.59 | 0.18 |
RVAT (msec) | 123.3 ± 3.3 | 122.2 ± 3.9 | 0.39 | 121.6 ± 5.9 | 121.0 ± 7.6 | 0.78 | 0.39 | 0.62 |
RVFWLS (%) | −20.9 ± 1.3 | −22.3 ± 2.3 | 0.03 | −21.0 ± 3.4 | −20.7 ± 2.5 | 0.85 | 0.96 | 0.04 |
RVFWLSbas (%) | −22.2 ± 1.7 | −25.2 ± 2.0 | 0.001 | −21.6 ± 4.1 | −21.6 ± 2.2 | 0.99 | 0.58 | 0.001 |
RVFWLSmid (%) | −21.7 ± 1.5 | −22.5 ± 2.1 | 0.12 | −21.3 ± 3.7 | −20.6 ± 2.7 | 0.52 | 0.66 | 0.06 |
RVFWLSap (%) | −18.9 ± 2.9 | −19.1 ± 3.7 | 0.85 | −20.1 ± 3.0 | −20.3 ± 4.0 | 0.91 | 0.36 | 0.43 |
RV4CLS (%) | −20.7 ± 1.1 | −22.1 ± 2.6 | 0.03 | −20.2 ± 2.7 | −20.5 ± 2.7 | 0.72 | 0.45 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anifanti, M.; Teloudi, A.; Mitropoulos, A.; Syrakou, N.; Pagkopoulou, E.; Triantafyllidou, E.; Boström, C.; Diederichsen, L.P.; Cuomo, G.; Dimitroulas, T.; et al. Right Ventricular Morphology and Function after Exercise Training in People with Systemic Sclerosis: A Randomized Controlled Pilot Study. Life 2023, 13, 545. https://doi.org/10.3390/life13020545
Anifanti M, Teloudi A, Mitropoulos A, Syrakou N, Pagkopoulou E, Triantafyllidou E, Boström C, Diederichsen LP, Cuomo G, Dimitroulas T, et al. Right Ventricular Morphology and Function after Exercise Training in People with Systemic Sclerosis: A Randomized Controlled Pilot Study. Life. 2023; 13(2):545. https://doi.org/10.3390/life13020545
Chicago/Turabian StyleAnifanti, Maria, Andriana Teloudi, Alexandros Mitropoulos, Niki Syrakou, Eleni Pagkopoulou, Eva Triantafyllidou, Carina Boström, Louise Pyndt Diederichsen, Giovanna Cuomo, Theodoros Dimitroulas, and et al. 2023. "Right Ventricular Morphology and Function after Exercise Training in People with Systemic Sclerosis: A Randomized Controlled Pilot Study" Life 13, no. 2: 545. https://doi.org/10.3390/life13020545
APA StyleAnifanti, M., Teloudi, A., Mitropoulos, A., Syrakou, N., Pagkopoulou, E., Triantafyllidou, E., Boström, C., Diederichsen, L. P., Cuomo, G., Dimitroulas, T., Klonizakis, M., & Kouidi, E. (2023). Right Ventricular Morphology and Function after Exercise Training in People with Systemic Sclerosis: A Randomized Controlled Pilot Study. Life, 13(2), 545. https://doi.org/10.3390/life13020545