In Vitro Anticancer and Antibacterial Activities of the Essential Oil of Forsskal’s Basil Growing in Extreme Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Plant Material
2.2.2. Essential Oil Hydro-Distillation
2.2.3. Gas Chromatography-Mass Spectrometry Analyses and Peak identification
2.2.4. Cell Culture
2.2.5. Cytotoxicity and Selectivity Studies
2.2.6. Clonogenic Survival Assay
2.2.7. Western Blotting
2.2.8. Quantitative Real-Time PCR (qRT-PCR)
2.2.9. Antibacterial Assay
2.2.10. Statistical Analysis
3. Results
3.1. OFEO Analysis
3.2. Cytotoxicity and Selectivity Studies
3.3. Clonogenicity Assay
3.4. Western Blotting
3.5. Quantitative Real-Time PCR (qRT-PCR)
3.6. Antibacterial Activity
3.6.1. Well-Diffusion Method
3.6.2. Minimum Inhibitory Concentration (MIC) Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Martiz, R.M.; Patil, S.M.; Abdulaziz, M.; Babalghith, A.; Al-Areefi, M.; Al-Ghorbani, M.; Mallappa Kumar, J.; Prasad, A.; Mysore Nagalingaswamy, N.P.; Ramu, R. Defining the Role of Isoeugenol from Ocimum tenuiflorum against Diabetes Mellitus-Linked Alzheimer’s Disease through Network Pharmacology and Computational Methods. Molecules 2022, 27, 2398. [Google Scholar] [CrossRef] [PubMed]
- AlQathama, A.; Ezuruike, U.F.; Mazzari, A.L.; Yonbawi, A.; Chieli, E.; Prieto, J.M. Effects of selected Nigerian medicinal plants on the viability, mobility, and multidrug-resistant mechanisms in liver, colon, and skin cancer cell lines. Front. Pharmacol. 2020, 11, 546439. [Google Scholar] [CrossRef] [PubMed]
- Sakr, S.A.; Al-Amoudi, W.M. Effect of leave extract of Ocimum basilicum on deltamethrin induced nephrotoxicity and oxidative stress in albino rats. J. Appl. Pharm. Sci. 2012, 2, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Leelapornpisid, P.; Wickett, R.R.; Chansakaow, S.; Wongwattananukul, N. Potential of native Thai aromatic plant extracts in antiwrinkle body creams. J. Cosmet. Sci. 2015, 66, 219–231. [Google Scholar]
- Nadeem, H.R.; Akhtar, S.; Ismail, T.; Qamar, M.; Sestili, P.; Saeed, W.; Azeem, M.; Esatbeyoglu, T. Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets. Antioxidants 2022, 11, 1882. [Google Scholar] [CrossRef] [PubMed]
- Abdelhady, M.I.; Motaal, A.A. A cytotoxic C-glycosylated derivative of apigenin from the leaves of Ocimum basilicum var. thyrsiflorum. Rev. Bras. Farmacogn. 2016, 26, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, E.; Kafyah, M.T.; Alzaydi, A.A.; Fatani, A.A.; Hazazzi, F.A.; Babgi, S.K.; Alqarhi, N.M.; Sindi, A.A.H.; Akram, D.; Alam, M.; et al. Synthesis and characterization of polyvinyl alcohol/corn starch/linseed polyol-based hydrogel loaded with biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2020, 163, 2236–2247. [Google Scholar] [CrossRef]
- Manosroi, J.; Dhumtanom, P.; Manosroi, A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett. 2006, 235, 114–120. [Google Scholar] [CrossRef]
- Chang, W.C.; Hsieh, C.H.; Hsiao, M.W.; Lin, W.C.; Hung, Y.C.; Ye, J.C. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan J. Obstet. Gynecol. 2010, 49, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Kehkashan Arshad, Q.; Ahsana, D.; Bina, S.S.; Nurul, K.; Huma, A.; Shakil, A.; Shaista, E.; Shazia, H.; Sabira, B. Anticancer Activity of Ocimum basilicum and the Effect of Ursolic Acid on the Cytoskeleton of MCF-7 Human Breast Cancer Cells. Lett. Drug Des. Discov. 2010, 7, 726–736. [Google Scholar] [CrossRef]
- Rao, B.R.R.; Kothari, S.K.; Rajput, D.K.; Patel, R.P.; Darokar, M.P. Chemical and biological diversity in fourteen selections of four Ocimum species. Nat. Prod. Commun. 2011, 6, 1934578X1100601134. [Google Scholar] [CrossRef] [Green Version]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Goswami, P.; Singh, V.R.; Verma, S.K.; Darokar, M.P.; Singh, N.; Saikia, D.; Chanotiya, C.S. Essential Oil Composition and Antimicrobial Activity of Methyl cinnamate-Linalool Chemovariant of Ocimum basilicum L. from India. Rec. Nat. Prod. 2017, 11, 193–204. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- El-Readi, M.Z.; Al-Abd, A.M.; Althubiti, M.A.; Almaimani, R.A.; Al-Amoodi, H.S.; Ashour, M.L.; Wink, M.; Eid, S.Y. Multiple Molecular Mechanisms to Overcome Multidrug Resistance in Cancer by Natural Secondary Metabolites. Front. Pharmacol. 2021, 12, 658513. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Wang, Z.; Mohammad, M.; Sarkar, F.H.; Mohammad, R.M. Efficacy of selected natural products as therapeutic agents against cancer. J. Nat. Prod. 2008, 71, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dal Piaz, F.; Bader, A.; Malafronte, N.; D’Ambola, M.; Petrone, A.M.; Porta, A.; Hadda, T.B.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of compounds isolated from the leaf-surface extract of Psiadia punctulata (DC.) Vatke growing in Saudi Arabia. Phytochemistry 2018, 155, 191–202. [Google Scholar] [CrossRef]
- El-Readi, M.Z.; Eid, H.H.; Ashour, M.L.; Eid, S.Y.; Labib, R.M.; Sporer, F.; Wink, M. Variations of the chemical composition and bioactivity of essential oils from leaves and stems of Liquidambar styraciflua (Altingiaceae). J. Pharm. Pharmacol. 2013, 65, 1653–1663. [Google Scholar] [CrossRef]
- Di Stasi, M.; Donadio, G.; Bader, A.; De Leo, M.; Braca, A. Two new triterpenes from Commicarpus grandiflorus (A. Rich.) Standl. aerial parts exudate. Nat. Prod. Res. 2022. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Youssef, F.S.; Eid, S.Y.; Alshammari, E.; Ashour, M.L.; Wink, M.; El-Readi, M.Z. Chrysanthemum indicum and Chrysanthemum morifolium: Chemical Composition of Their Essential Oils and Their Potential Use as Natural Preservatives with Antimicrobial and Antioxidant Activities. Foods 2020, 9, 1460. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.M.; Hassan, H.M.; El Gendy, A.E.N.G.; El-Beih, A.A.; Mohamed, T.A.; Elshamy, A.I.; Bader, A.; Shams, K.A.; Mohammed, R.; Hegazy, M.E.F. Comparative chemical study and antimicrobial activity of essential oils of three Artemisia species from Egypt and Saudi Arabia. Flavour Fragr. J. 2019, 34, 450–459. [Google Scholar] [CrossRef]
- El-Said, H.; Ashgar, S.S.; Bader, A.; AlQathama, A.; Halwani, M.; Ascrizzi, R.; Flamini, G. Essential Oil Analysis and Antimicrobial Evaluation of Three Aromatic Plant Species Growing in Saudi Arabia. Molecules 2021, 26, 959. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Eldeeb, H.M.; Khan, R.A.; Al-Omar, M.S.; Mohammed, S.A.A.; Sajid, M.S.M.; Aly, M.S.A.; Ahmad, A.M.; Abdellatif, A.A.H.; Eid, S.Y.; et al. Sage, Salvia officinalis L., Constituents, Hepatoprotective Activity, and Cytotoxicity Evaluations of the Essential Oils Obtained from Fresh and Differently Timed Dried Herbs: A Comparative Analysis. Molecules 2021, 26, 5757. [Google Scholar] [CrossRef] [PubMed]
- Gushash, A.S. Plants in the Mountains of Sarat and Hejaz; Sarawat Designer and Printers: Madinah, Saudi Arabia, 2006; Volume 2, pp. 15–19. [Google Scholar]
- Fatope, M.O.; Marwah, R.G.; Al Hadhrami, N.M.; Onifade, A.K.; Williams, J.R. Identification of the Chemotypes of Ocimum forskolei and Ocimum basilicum by NMR Spectroscopy. Chem. Biodivers. 2008, 5, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Demissew, S. A description of some essential oil bearing plants in Ethiopia and their indigenous uses. J. Essent. Oil Res. 1993, 5, 465–479. [Google Scholar] [CrossRef]
- Odalo, J.O.; Omolo, M.O.; Malebo, H.; Angira, J.; Njeru, P.M.; Ndiege, I.O.; Hassanali, A. Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop. 2005, 95, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Jayaramaiah, R.H.; Anand, A.; Beedkar, S.D.; Dholakia, B.B.; Punekar, S.A.; Kalunke, R.M.; Gade, W.N.; Thulasiram, H.V.; Giri, A.P. Functional characterization and transient expression manipulation of a new sesquiterpene synthase involved in β-caryophyllene accumulation in Ocimum. Biochem. Biophys. Res. Commun. 2016, 473, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Benitez, N.P.; Meléndez León, E.M.; Stashenko, E.E. Eugenol and methyl eugenol chemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia. J. Chromatogr. Sci. 2009, 47, 800–803. [Google Scholar] [CrossRef] [Green Version]
- Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem. 2010, 119, 311–316. [Google Scholar] [CrossRef]
- van Vuuren, S.; Viljoen, A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical Composition, Antioxidant and Antimicrobial Activity of Basil (Ocimum basilicum L.) Essential Oil. J. Essent. Oil Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- NIST; Wiley Technology. NIST/EPA/NIH Mass Spectral Library, 1st ed.; Wiley: Hoboken, NJ, USA, 2014; p. 48. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography–Mass Spectroscopy; Allured Publishing Corp.: Carol Stream, IL, USA, 1995. [Google Scholar]
- Bader, A.; AlQathama, A.; Cioni, P.L.; Ceccarini, L.; Abdelhady, M.I.; Al-Shareef, W.; Ascrizzi, R.; Flamini, G. Essential Oil Biodiversity of Achillea ligustica All. Obtained from Mainland and Island Populations. Plants 2022, 11, 1054. [Google Scholar] [CrossRef]
- Bader, A.; Flamini, G.; Cioni, P.L.; Morelli, I. The composition of the root oil of Salvadora persica L. J. Essent. Oil Res. 2002, 14, 128–129. [Google Scholar] [CrossRef]
- Bader, A.; Caponi, C.; Cioni, P.L.; Flamini, G.; Morelli, I. Acorenone in the essential oil of flowering aerial parts of Seseli tortuosum L. Flavour Frag. J. 2003, 18, 57–58. [Google Scholar] [CrossRef]
- Shaheen, U.; Ragab, E.A.; Abdalla, A.N.; Bader, A. Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry 2018, 145, 168–178. [Google Scholar] [CrossRef]
- Khalid, A.; Algarni, A.S.; Homeida, H.E.; Sultana, S.; Javed, S.A.; Abdalla, H.; Alhazmi, H.A.; Albratty, M.; Abdalla, A.N. Phytochemical, Cytotoxic, and Antimicrobial Evaluation of Tribulus terrestris L., Typha domingensis pers., and Ricinus communis L.: Scientific Evidences for Folkloric Uses. Evid.-Based Complement. Altern. Med. 2022, 2022, 6519712. [Google Scholar] [CrossRef]
- Almaimani, R.A.; Aslam, A.; Ahmad, J.; El-Readi, M.Z.; El-Boshy, M.E.; Abdelghany, A.H.; Idris, S.; Alhadrami, M.; Althubiti, M.; Almasmoum, H.A.; et al. In vivo and in vitro enhanced tumoricidal effects of metformin, active vitamin D3, and 5-fluorouracil triple therapy against colon cancer by modulating the PI3K/Akt/PTEN/mTOR network. Cancers 2022, 14, 1538. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Di Stefano, M.; Poli, G.; Tuccinardi, T.; Bader, A.; Vassallo, A.; Abdallah, M.E.; El-Readi, M.Z.; Refaat, B.; Algarni, A.S.; et al. Co-Inhibition of P-gp and Hsp90 by an Isatin-Derived Compound Contributes to the Increase of the Chemosensitivity of MCF7/ADR-Resistant Cells to Doxorubicin. Molecules 2021, 27, 90. [Google Scholar] [CrossRef]
- Valgas, C.; Souza, S.M.D.; Smânia, E.F.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koohestanian, A.; Tatari, M.; Samadi Kazemi, M.; Asgharzade, A.; Taghizadeh, S.F. Phytochemicals, Antioxidant Activity, and Biological Activities of Rosa persica Root. Erwerbs-Obstbau 2022. [Google Scholar] [CrossRef]
- Yi, J.L.; Shi, S.; Shen, Y.L.; Wang, L.; Chen, H.Y.; Zhu, J.; Ding, Y. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int. J. Clin. Exp. Pathol. 2015, 8, 1116. [Google Scholar] [PubMed]
- Manikandan, P.; Murugan, R.S.; Priyadarsini, R.V.; Vinothini, G.; Nagini, S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci. 2010, 86, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.L.; Al-Shabanah, O.; Hassan, Z.K.; Hafez, M.M. Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3a pathway inhibition. Int. J. Mol. Sci. 2021, 22, 9243. [Google Scholar] [CrossRef]
- Fadilah, F.; Andrajati, R.; Yanuar, A.; Arsianti, A. In-vitro anticancer activity combination of eugenol and simple aromatic benzoate compounds against human colon HCT-116 cells and WiDr cells. J. Pharm. Sci. Res. 2017, 9, 637. [Google Scholar]
Gene | Sequence | Main Role(s) in Cancer |
---|---|---|
AKT | F:GTGGCAAGATGTGTATGAG R:CTGGCTGAGTAGGAGAAC | Cell proliferation and survival |
pAKT | F: GGACAAGGACGGGCACATTA R: CGACCGCACATCATCTCGTA | |
PCNA | F: AAGGAGGATGAAGCGGTAACAAT R: GTCTTGGACAGAGGAGTGGC | Cell cycle arrest |
cyclinD1 | F: CCAGCCGCAATGCTGTAG R: TTGGGACGCCTCAGCTAAG | |
Bcl2 | F: CTCTCGTCGCTACCGTCGCG R: AGGCATCCCAGCCTCCGTTATCC | Anti-apoptosis |
Caspase 3 | F: ACATGGAAGCGAATCAATGGACTC R: AAGGACTCAAATTCTGTTGCCACC | Apoptosis |
GAPDH | F: AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGGTCA | House keeping |
Compounds | l.r.i 1 | Class | Relative Abundance (%) ± SD (n = 3) |
---|---|---|---|
myrcene | 991 | mh | 0.1 ± 0.01 |
(Z)-β-ocimene | 1036 | mh | 0.1 ± 0.01 |
(E)-β-ocimene | 1047 | mh | 2.5 ± 0.18 |
linalool | 1101 | om | 9.8 ± 0.09 |
α-terpineol | 1191 | om | 0.2 ± 0.01 |
eugenol | 1357 | pp | 12.1 ± 0.45 |
α-copaene | 1376 | sh | 0.2 ± 0.02 |
β-bourbonene | 1385 | sh | 0.1 ± 0.01 |
β-elemene | 1392 | sh | 0.2 ± 0.04 |
methyl eugenol | 1405 | pp | 56.6 ± 0.94 |
β-caryophyllene | 1419 | sh | 2.4 ± 0.17 |
trans-α-bergamotene | 1436 | sh | 1.1 ± 0.10 |
α-guaiene | 1439 | sh | 0.9 ± 0.09 |
α-humulene | 1453 | sh | 1.3 ± 0.09 |
(E)-β-farnesene | 1458 | sh | 0.7 ± 0.04 |
germacrene D | 1481 | sh | 3.5 ± 0.26 |
β-selinene | 1486 | sh | 0.5 ± 0.04 |
α-selinene | 1495 | sh | 0.3 ± 0.02 |
bicyclogermacrene | 1496 | sh | 0.2 ± 0.03 |
aciphyllene | 1499 | sh | 0.2 ± 0.03 |
α-bulnesene | 1505 | sh | 2.2 ± 0.14 |
trans-γ-cadinene | 1514 | sh | 0.1 ± 0.02 |
δ-cadinene | 1524 | sh | 0.4 ± 0.03 |
cis-sesquisabinene hydrate | 1544 | os | 0.1 ± 0.01 |
germacrene D-4-ol | 1574 | os | 0.2 ± 0.02 |
caryophyllene oxide | 1582 | os | 0.3 ± 0.02 |
humulene oxide II | 1608 | os | 0.1 ± 0.01 |
T-cadinol | 1641 | os | 0.9 ± 0.01 |
β-eudesmol | 1649 | os | 0.4 ± 0.02 |
α-cadinol | 1654 | os | 0.7 ± 0.02 |
β-sinensal | 1695 | os | 0.9 ± 0.16 |
mint sulfide | 1735 | sh S | 0.4 ± 0.03 |
phytol | 2112 | od | 0.5 ± 0.08 |
Monoterpene hydrocarbons (mh) | 2.7 ± 0.20 | ||
Oxygenated monoterpenes (om) | 10.0 ± 0.09 | ||
Sesquiterpenes hydrocarbons (sh) | 14.2 ± 0.99 | ||
Oxygenated sesquiterpenes (os) | 3.6 ± 0.18 | ||
Sulfur sesquiterpene hydrocarbons (sh S) | 0.4 ± 0.03 | ||
Oxygenated diterpenes (od) | 0.5 ± 0.08 | ||
Phenylpropanoids (pp) | 68.7 ± 1.39 | ||
Total identified (%) | 100.0 ± 0.01 |
Component | MCF7 | HT29 | HCT116 | MRC5 |
---|---|---|---|---|
OFEO | 17.09 ± 1.96 | 6.66 ± 0.17 | 5.34 ± 1.64 | 24.80 ± 1.12 |
Doxorubicin | 2.09 ± 0.17 | 1.50 ± 0.21 | 3.33 ± 0.75 | 2.50 ± 0.14 |
Component | Selectivity Index a | ||
---|---|---|---|
MCF7 | HT29 | HCT116 | |
OFEO | 1.45 | 3.72 | 4.64 |
Doxorubicin | 1.19 | 1.66 | 0.75 |
Treatment | E. coli | K. pneumonia | P. aeruginosa | S. aureus |
---|---|---|---|---|
OFEO | 15 ± 0.50 | 15 ± 1.00 | 15 ± 0.50 | 13 ± 0.50 |
Amikacin | 18 ± 1.01 | 20 ± 1.01 | 22 ± 1.01 | - |
Amoxicillin | - | - | - | 15 ± 2.01 |
Bacteria Strains | E. coli | K. pneumonia | P. aeruginosa | S. aureus |
---|---|---|---|---|
OFEO Concentration (μg/ml) | 250 | 250 | 500 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bader, A.; Abdalla, A.N.; Obaid, N.A.; Youssef, L.; Naffadi, H.M.; Elzubier, M.E.; Almaimani, R.A.; Flamini, G.; Pieracci, Y.; El-Readi, M.Z. In Vitro Anticancer and Antibacterial Activities of the Essential Oil of Forsskal’s Basil Growing in Extreme Environmental Conditions. Life 2023, 13, 651. https://doi.org/10.3390/life13030651
Bader A, Abdalla AN, Obaid NA, Youssef L, Naffadi HM, Elzubier ME, Almaimani RA, Flamini G, Pieracci Y, El-Readi MZ. In Vitro Anticancer and Antibacterial Activities of the Essential Oil of Forsskal’s Basil Growing in Extreme Environmental Conditions. Life. 2023; 13(3):651. https://doi.org/10.3390/life13030651
Chicago/Turabian StyleBader, Ammar, Ashraf N. Abdalla, Najla A. Obaid, Lamees Youssef, Hind M. Naffadi, Mohamed E. Elzubier, Riyad A. Almaimani, Guido Flamini, Ylenia Pieracci, and Mahmoud Zaki El-Readi. 2023. "In Vitro Anticancer and Antibacterial Activities of the Essential Oil of Forsskal’s Basil Growing in Extreme Environmental Conditions" Life 13, no. 3: 651. https://doi.org/10.3390/life13030651
APA StyleBader, A., Abdalla, A. N., Obaid, N. A., Youssef, L., Naffadi, H. M., Elzubier, M. E., Almaimani, R. A., Flamini, G., Pieracci, Y., & El-Readi, M. Z. (2023). In Vitro Anticancer and Antibacterial Activities of the Essential Oil of Forsskal’s Basil Growing in Extreme Environmental Conditions. Life, 13(3), 651. https://doi.org/10.3390/life13030651