Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases—A Review
Abstract
:1. Introduction
2. Artificial Intelligence
2.1. Support Vector Machines
2.2. Random Forest
2.3. K-Nearest Neighbor
2.4. Linear Discriminant Analysis
2.5. Naive Bayes
2.6. Principal Component Analysis
2.7. Linear Regression
- Simple linear regression (LR): consists of a model in which the main objective is to search how a dependent variable (y) is related to the independent variable (x).
- Multivariate linear regression (MLR): this model is used to measure the relationship between a dependent variable (y) and a set of diverse independent variables ().
2.8. Artificial Neural Networks
2.9. Convolutional Neural Networks
2.10. Human–Computer Interfaces
3. Machine Learning and HCI in Motor Neuron Diseases
3.1. MND Diagnosis Using ML Algorithms
3.1.1. ALS Diagnosis
3.1.2. Other MND Diagnoses
3.2. MND Prognosis and Monitoring Using ML Algorithms
3.3. Machine Learning Algorithms to Assist Patients with MND
4. Limitations
- Missing data, sparsity, and biasing: machine learning models need a large amount of data to be trained properly. In healthcare, there is usually a lack of data because of the cost of acquiring information, the difficulty of the procedures, the time consumed during data acquisition, ethical issues, patients not going to all of their check-ups, etc. Moreover, the data obtained during clinical procedures or medical check-ups are usually not clean or well structured. Therefore, it is not rare to find noisy data and redundant values in healthcare datasets [69].
- Complexity: biological systems are not easy to understand. There are a lot of variables to take into account when attempting to analyze the human body and how it responds to a given stimulus or state. Therefore, the complexity of healthcare data can be challenging for ML applications in medicine [70].
- Interpretability: machine learning algorithms are usually treated as black boxes, meaning that there is no true understanding of how and why the algorithm works. This is an issue because medical professionals and healthcare providers need to interpret the recommended actions from an ML model for them to apply those actions to a patient [71].
- Operational challenges: most of the time, ML applications need patients to be followed for long periods to obtain enough data. Moreover, constructing and deploying the model requires personnel with adequate skills to develop it and understand the obtained results. Furthermore, ML-driven systems must be easy to integrate into the clinical workflow.
- Ethical issues: this is currently a huge issue for ML applications in healthcare. Despite machine learning models being useful tools, they are not perfect and can make mistakes. In medicine, this may cause healthcare providers to be misled and make incorrect decisions. Moreover, all of the information used in ML models must be anonymized due to data ownership and patient privacy [72]. Moreover, transparency standards must be satisfied. Therefore, machine learning models cannot be non-interpretable [73].
- Overfitting: this is a very common issue with machine learning models. It means that the model works correctly when dealing with a given set of data, but fails to generalize its results when applied to a different set of data. This is a problem in healthcare because models cannot be trained for every single patient and we must guarantee the correct performance in cases where those models are applied [74].
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ragagnin, A.M.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci. 2019, 13, 532. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory failure in amyotrophic lateral sclerosis. Chest 2019, 155, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.E.; Song, T.J. The Global Burden of Motor Neuron Disease: An Analysis of the 2019 Global Burden of Disease Study. Front. Neurol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Hamidou, B.; Marin, B.; Lautrette, G.; Nicol, M.; Camu, W.; Corcia, P.; Arnes-Bes, M.C.; Tranchant, C.; Clavelou, P.; Hannequin, D.; et al. Exploring the diagnosis delay and ALS functional impairment at diagnosis as relevant criteria for clinical trial enrolment. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R.; Fitzhenry, D.; Grant, L.; Martyn, D.; Kerr, D.A. Diagnosis pathway for patients with amyotrophic lateral sclerosis: Retrospective analysis of the US Medicare longitudinal claims database. BMC Neurol. 2013, 13, 1–7. [Google Scholar] [CrossRef]
- Srinivasan, J.; Scala, S.; Jones, H.R.; Saleh, F.; Russell, J.A. Inappropriate surgeries resulting from misdiagnosis of early amyotrophic lateral sclerosis. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2006, 34, 359–360. [Google Scholar] [CrossRef]
- Xiao, X.; Wu, Z.C.; Chou, K.C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS ONE 2011, 6, e20592. [Google Scholar] [CrossRef]
- Pinto, S.; Swash, M.; de Carvalho, M. Does surgery accelerate progression of amyotrophic lateral sclerosis? J. Neurol. Neurosurg. Psychiatry 2014, 85, 643–646. [Google Scholar] [CrossRef]
- Palese, F.; Sartori, A.; Logroscino, G.; Pisa, F.E. Predictors of diagnostic delay in amyotrophic lateral sclerosis: A cohort study based on administrative and electronic medical records data. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 176–185. [Google Scholar] [CrossRef]
- Nzwalo, H.; de Abreu, D.; Swash, M.; Pinto, S.; de Carvalho, M. Delayed diagnosis in ALS: The problem continues. J. Neurol. Sci. 2014, 343, 173–175. [Google Scholar] [CrossRef]
- Kraemer, M.; Buerger, M.; Berlit, P. Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 2010, 112, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Halcox, J.P.; Wareham, K.; Cardew, A.; Gilmore, M.; Barry, J.P.; Phillips, C.; Gravenor, M.B. Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation: The REHEARSE-AF study. Circulation 2017, 136, 1784–1794. [Google Scholar] [CrossRef]
- Huang, Z.; Chan, T.M.; Dong, W. MACE prediction of acute coronary syndrome via boosted resampling classification using electronic medical records. J. Biomed. Inform. 2017, 66, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, B.; Downing, N.; Bucholz, E.; Dharmarajan, K.; Manhapra, A.; Li, S.X.; Negahban, S.N.; Krumholz, H.M. Analysis of machine learning techniques for heart failure readmissions. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Qu, K.; Luo, Y.; Yin, D.; Ju, Y.; Tang, H. Predicting diabetes mellitus with machine learning techniques. Front. Genet. 2018, 9, 515. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Johansen, M.D.; Hejlesen, O. Toward big data analytics: Review of predictive models in management of diabetes and its complications. J. Diabetes Sci. Technol. 2016, 10, 27–34. [Google Scholar] [CrossRef]
- Allalou, A.; Nalla, A.; Prentice, K.J.; Liu, Y.; Zhang, M.; Dai, F.F.; Ning, X.; Osborne, L.R.; Cox, B.J.; Gunderson, E.P.; et al. A predictive metabolic signature for the transition from gestational diabetes mellitus to type 2 diabetes. Diabetes 2016, 65, 2529–2539. [Google Scholar] [CrossRef]
- Grzybowski, A.; Brona, P.; Lim, G.; Ruamviboonsuk, P.; Tan, G.S.; Abramoff, M.; Ting, D.S. Artificial intelligence for diabetic retinopathy screening: A review. Eye 2020, 34, 451–460. [Google Scholar] [CrossRef]
- Grigory Sidorenkov, M.; van Boven PharmD, J.F. Predicting short-and long-term glycated haemoglobin response after insulin initiation in patients with type 2 diabetes mellitus using machine-learning algorithms. Diabetes Obes. Metab. 2019, 21, 2704–2711. [Google Scholar]
- Kröner, P.T.; Engels, M.M.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.; Krittanawong, C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J. Gastroenterol. 2021, 27, 6794. [Google Scholar] [CrossRef]
- Brewka, G. Artificial intelligence—A modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. Knowl. Eng. Rev. 1996, 11, 78–79. [Google Scholar] [CrossRef]
- Zhang, X.D. A Matrix Algebra Approach to Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Sun, S.; Huang, R. An adaptive k-nearest neighbor algorithm. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; Volume 1, pp. 91–94. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 27–33. [Google Scholar]
- Berrar, D. Bayes’ theorem and naive Bayes classifier. Encycl. Bioinform. Comput. Biol. ABC Bioinform. 2018, 403, 412. [Google Scholar]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of dimensionality reduction techniques on big data. IEEE Access 2020, 8, 54776–54788. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 2018, 8, 1–207. [Google Scholar]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Prestopnik, N.; Zhang, P. Human–Computer Interaction (HCI): Interactivity, Immersion, and Invisibility as New Extensions. In Wiley Encyclopedia of Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Dix, A. Human–computer interaction, foundations and new paradigms. J. Vis. Lang. Comput. 2017, 42, 122–134. [Google Scholar] [CrossRef]
- Joseph, A.W.; Murugesh, R. Potential eye tracking metrics and indicators to measure cognitive load in human-computer interaction research. J. Sci. Res 2020, 64, 168–175. [Google Scholar] [CrossRef]
- Nguyen, P.; Bui, N.; Nguyen, A.; Truong, H.; Suresh, A.; Whitlock, M.; Pham, D.; Dinh, T.; Vu, T. Tyth-typing on your teeth: Tongue-teeth localization for human-computer interface. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 10–15 June 2018; pp. 269–282. [Google Scholar]
- Yin, R.; Wang, D.; Zhao, S.; Lou, Z.; Shen, G. Wearable sensors-enabled human–machine interaction systems: From design to application. Adv. Funct. Mater. 2021, 31, 2008936. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain–computer interface paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef] [PubMed]
- Sarica, A.; Cerasa, A.; Valentino, P.; Yeatman, J.; Trotta, M.; Barone, S.; Granata, A.; Nistico, R.; Perrotta, P.; Pucci, F.; et al. The corticospinal tract profile in amyotrophic lateral sclerosis. Hum. Brain Mapp. 2017, 38, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Agosta, F.; Riva, N.; Copetti, M.; Spinelli, E.G.; Falzone, Y.; Sorarù, G.; Comi, G.; Chiò, A.; Filippi, M. Multimodal structural MRI in the diagnosis of motor neuron diseases. NeuroImage Clin. 2017, 16, 240–247. [Google Scholar] [CrossRef]
- Fratello, M.; Caiazzo, G.; Trojsi, F.; Russo, A.; Tedeschi, G.; Tagliaferri, R.; Esposito, F. Multi-view ensemble classification of brain connectivity images for neurodegeneration type discrimination. Neuroinformatics 2017, 15, 199–213. [Google Scholar] [CrossRef]
- Thome, J.; Steinbach, R.; Grosskreutz, J.; Durstewitz, D.; Koppe, G. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum. Brain Mapp. 2022, 43, 681–699. [Google Scholar] [CrossRef]
- D’hulst, L.; Van Weehaeghe, D.; Chiò, A.; Calvo, A.; Moglia, C.; Canosa, A.; Cistaro, A.; Willekens, S.M.; De Vocht, J.; Van Damme, P.; et al. Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 570–577. [Google Scholar] [CrossRef]
- Costagli, M.; Donatelli, G.; Cecchi, P.; Bosco, P.; Migaleddu, G.; Siciliano, G.; Cosottini, M. Distribution indices of magnetic susceptibility values in the primary motor cortex enable to classify patients with amyotrophic lateral sclerosis. Brain Sci. 2022, 12, 942. [Google Scholar] [CrossRef]
- Chang, K.H.; Lin, C.N.; Chen, C.M.; Lyu, R.K.; Chu, C.C.; Liao, M.F.; Huang, C.C.; Chang, H.S.; Ro, L.S.; Kuo, H.C. Altered Metabolic Profiles of the Plasma of Patients with Amyotrophic Lateral Sclerosis. Biomedicines 2021, 9, 1944. [Google Scholar] [CrossRef]
- Perez-Ortiz, C.X.; Gordillo, J.L.; Mendoza-Montoya, O.; Antelis, J.M.; Caraza, R.; Martinez, H.R. Functional Connectivity and Frequency Power Alterations during P300 Task as a Result of Amyotrophic Lateral Sclerosis. Sensors 2021, 21, 6801. [Google Scholar] [CrossRef]
- Bandini, A.; Green, J.R.; Wang, J.; Campbell, T.F.; Zinman, L.; Yunusova, Y. Kinematic features of jaw and lips distinguish symptomatic from presymptomatic stages of bulbar decline in amyotrophic lateral sclerosis. J. Speech Lang. Hear. Res. 2018, 61, 1118–1129. [Google Scholar] [CrossRef]
- Quint ao, C.; Vigário, R.; Santos, M.M.; Gomes, A.L.; de Carvalho, M.; Pinto, S.; Gamboa, H. Surface electromyography for testing motor dysfunction in amyotrophic lateral sclerosis. Neurophysiol. Clin. 2021, 51, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Likhachov, D.; Vashkevich, M.; Azarov, E.; Malhina, K.; Rushkevich, Y. A mobile application for detection of amyotrophic lateral sclerosis via voice analysis. In Proceedings of the International Conference on Speech and Computer, St. Petersburg, Russia, 27–30 September 2021; pp. 372–383. [Google Scholar]
- Imamura, K.; Yada, Y.; Izumi, Y.; Morita, M.; Kawata, A.; Arisato, T.; Nagahashi, A.; Enami, T.; Tsukita, K.; Kawakami, H.; et al. Prediction model of amyotrophic lateral sclerosis by deep learning with patient induced pluripotent stem cells. Ann. Neurol. 2021, 89, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- MacWilliams, B.A.; Carroll, K.L.; Stotts, A.K.; Kerr, L.M.; Schwartz, M.H. Discrimination between hereditary spastic paraplegia and cerebral palsy based on gait analysis data: A machine learning approach. Gait Posture 2022, 98, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Sekar, G.; Sivakumar, C.; Logeshwaran, J. NMLA: The Smart Detection of Motor Neuron Disease and Analyze the Health Impacts with Neuro Machine Learning Model. NeuroQuantology 2022, 20, 892–899. [Google Scholar]
- Bede, P.; Murad, A.; Lope, J.; Shing, S.L.H.; Finegan, E.; Chipika, R.H.; Hardiman, O.; Chang, K.M. Phenotypic categorisation of individual subjects with motor neuron disease based on radiological disease burden patterns: A machine-learning approach. J. Neurol. Sci. 2022, 432, 120079. [Google Scholar] [CrossRef]
- Chen, D.; Rust, S.; Lin, E.J.D.; Lin, S.; Nelson, L.; Alfano, L.; Lowes, L.P. Prediction of Clinical Outcomes of Spinal Muscular Atrophy Using Motion Tracking Data and Elastic Net Regression. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August 2018–1 September 2018; pp. 474–481. [Google Scholar]
- Hothorn, T.; Jung, H.H. RandomForest4Life: A random forest for predicting ALS disease progression. Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 444–452. [Google Scholar] [CrossRef]
- Ko, K.D.; El-Ghazawi, T.; Kim, D.; Morizono, H. Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach. In Proceedings of the 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, Honolulu, HI, USA, 21–24 May 2014; pp. 1–6. [Google Scholar]
- Taylor, A.A.; Fournier, C.; Polak, M.; Wang, L.; Zach, N.; Keymer, M.; Glass, J.D.; Ennist, D.L.; Consortium, P.R.O.A.A.C.T. Predicting disease progression in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2016, 3, 866–875. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, H.; Boss, J.; Goutman, S.A.; Mukherjee, B.; Dinov, I.D.; Guan, Y.; Consortium, P.R.O.A.A.C.T. Complete hazard ranking to analyze right-censored data: An ALS survival study. PLoS Comput. Biol. 2017, 13, e1005887. [Google Scholar] [CrossRef]
- Beaulieu-Jones, B.K.; Greene, C.S.; Pooled Resource Open-Access ALS Clinical Trials Consortium. Semi-supervised learning of the electronic health record for phenotype stratification. J. Biomed. Inform. 2016, 64, 168–178. [Google Scholar] [CrossRef]
- Pfohl, S.R.; Kim, R.B.; Coan, G.S.; Mitchell, C.S. Unraveling the complexity of amyotrophic lateral sclerosis survival prediction. Front. Neuroinformatics 2018, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- van der Burgh, H.K.; Schmidt, R.; Westeneng, H.J.; de Reus, M.A.; van den Berg, L.H.; van den Heuvel, M.P. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. NeuroImage Clin. 2017, 13, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Pancotti, C.; Birolo, G.; Rollo, C.; Sanavia, T.; Di Camillo, B.; Manera, U.; Chiò, A.; Fariselli, P. Deep learning methods to predict amyotrophic lateral sclerosis disease progression. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Holz, E.M.; Botrel, L.; Kaufmann, T.; Kübler, A. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: A case study. Arch. Phys. Med. Rehabil. 2015, 96, S16–S26. [Google Scholar] [CrossRef]
- Le, D.N.; Van Le, C.; Tromp, J.G.; Nguyen, G.N. Emerging Technologies for Health and Medicine: Virtual Reality, Augmented Reality, Artificial Intelligence, Internet of Things, Robotics, Industry 4.0; Wiley-Scrivener: Willie, CO, USA, 2018. [Google Scholar]
- de Oliveira Junior, W.G.; de Oliveira, J.M.; Munoz, R.; de Albuquerque, V.H.C. A proposal for Internet of Smart Home Things based on BCI system to aid patients with amyotrophic lateral sclerosis. Neural Comput. Appl. 2020, 32, 11007–11017. [Google Scholar] [CrossRef]
- Hosni, S.; Borgheai, S.; McLinden, J.; Shahriari, Y. An fNIRS-based motor imagery BCI for ALS: A subject-specific data-driven approach. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3063–3073. [Google Scholar] [CrossRef]
- Guy, V.; Soriani, M.H.; Bruno, M.; Papadopoulo, T.; Desnuelle, C.; Clerc, M. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis. Ann. Phys. Rehabil. Med. 2018, 61, 5–11. [Google Scholar] [CrossRef]
- Okahara, Y.; Takano, K.; Nagao, M.; Kondo, K.; Iwadate, Y.; Birbaumer, N.; Kansaku, K. Long-term use of a neural prosthesis in progressive paralysis. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Vaughan, T.M. Brain-computer interfaces for people with amyotrophic lateral sclerosis. Handb. Clin. Neurol. 2020, 168, 33–38. [Google Scholar]
- Callahan, A.; Shah, N.H. Machine learning in healthcare. In Key Advances in Clinical Informatics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 279–291. [Google Scholar]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 1–25. [Google Scholar] [CrossRef]
- Watson, D.S.; Krutzinna, J.; Bruce, I.N.; Griffiths, C.E.; McInnes, I.B.; Barnes, M.R.; Floridi, L. Clinical applications of machine learning algorithms: Beyond the black box. BMJ 2019, 364, l886. [Google Scholar]
- Safdar, N.M.; Banja, J.D.; Meltzer, C.C. Ethical considerations in artificial intelligence. Eur. J. Radiol. 2020, 122, 108768. [Google Scholar] [CrossRef] [PubMed]
- Vayena, E.; Blasimme, A.; Cohen, I.G. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018, 15, e1002689. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Strauss, A.T.; Martinez, D.A.; Hinson, J.S.; Levin, S.; Lin, G.; Klein, E.Y. Machine learning and artificial intelligence: Applications in healthcare epidemiology. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e28. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Bernal, D.; Balderas, D.; Ponce, P.; Rojas, M.; Molina, A. Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases—A Review. Life 2023, 13, 1031. https://doi.org/10.3390/life13041031
Lopez-Bernal D, Balderas D, Ponce P, Rojas M, Molina A. Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases—A Review. Life. 2023; 13(4):1031. https://doi.org/10.3390/life13041031
Chicago/Turabian StyleLopez-Bernal, Diego, David Balderas, Pedro Ponce, Mario Rojas, and Arturo Molina. 2023. "Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases—A Review" Life 13, no. 4: 1031. https://doi.org/10.3390/life13041031
APA StyleLopez-Bernal, D., Balderas, D., Ponce, P., Rojas, M., & Molina, A. (2023). Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases—A Review. Life, 13(4), 1031. https://doi.org/10.3390/life13041031