Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis
Abstract
:1. Background
2. Materials and Methods
3. Epidemiology and Clinical Syndromes
4. Microbiology
5. Diagnosis
6. Treatment
7. Conclusions
8. Recommendation
Author Contributions
Funding
Conflicts of Interest
References
- Hamory, B.H.; Parisi, J.T. Staphylococcus epidermidis: A significant nosocomial pathogen. Am. J. Infect. Control 1987, 15, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Saffari, F.; Widerström, M.; Gurram, B.K.; Edebro, H.; Hojabri, Z.; Monsen, T. Molecular and Phenotypic Characterization of Multidrug-Resistant Clones of Staphylococcus epidermidis in Iranian Hospitals: Clonal Relatedness to Healthcare-Associated Methicillin-Resistant Isolates in Northern Europe. Microb. Drug Resist. 2016, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.E.; Deshpande, L.M.; Costello, A.; Farrell, D.J.; Jones, R.N. Analysis of the Molecular Epidemiology of Staphylococcus epidermidis Clinical Isolates from USA Hospitals. Antimicrob. Agents Chemother. 2012, 56, 4656–4661. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrand, E.; Svensson, K.; Persson, L.; Tidefelt, U.; Söderquist, B. Glycopeptide resistance in coagulase-negative staphylococci isolated in blood cultures from patients with hematological malignancies during three decades. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. Diversity and genetic lineages of environmental Staphylococci: A surface water overview. FEMS Microbiol. Ecol. 2020, 96, fiaa191. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E. Nosocomial bloodstream infections. In Hospital Epidemiology and Infection Control, 3rd ed.; Mayhall, C.G., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2004; Volume 1, pp. 253–266. [Google Scholar]
- O’Brien, T.; Collin, J. Prosthetic vascular graft infection. Br. J. Surg. 1992, 79, 1262–1267. [Google Scholar] [CrossRef]
- Rogers, K.L.; Fey, P.D.; Rupp, M.E. Coagulase-Negative Staphylococcal Infections. Infect. Dis. Clin. N. Am. 2009, 23, 73–98. [Google Scholar] [CrossRef]
- Lalani, T.; Kanafani, Z.A.; Chu, V.H.; Moore, L.; Corey, G.R.; Pappas, P.; Woods, C.W.; Cabell, C.H.; Hoen, B.; Selton-Suty, C.; et al. Prosthetic valve endocarditis due to coagulase-negative staphylococci: Findings from the International Collaboration on Endocarditis Merged Database. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 365–368. [Google Scholar] [CrossRef]
- Chu, V.H.; Woods, C.W.; Miro, J.M.; Hoen, B.; Cabell, C.H.; Pappas, P.A.; Federspiel, J.; Athan, E.; Stryjewski, M.; Nacinovich, F.; et al. Emergence of Coagulase-Negative Staphylococci as a Cause of Native Valve Endocarditis. Clin. Infect. Dis. 2008, 46, 232–242. [Google Scholar] [CrossRef]
- Gandelman, G.; Frishman, W.H.; Wiese, C.; Green-Gastwirth, V.; Hong, S.; Aronow, W.S.; Horowitz, H.W. Intravascular device infections: Epidemiology, diagnosis, and management. Cardiol. Rev. 2007, 15, 13–23. [Google Scholar] [CrossRef]
- Rupp, M.E. Pathogenesis of Staphylococcus epidermidis prosthetic joint infection: Adherence and biofilm formation. Semin. Arthroplast. 1998, 9, 274–280. [Google Scholar]
- Gentry, L.O. Osteomyelitis and other infections of bones and joints. In The Staphylococci in Human Disease, 1st ed.; Crossley, K.B., Archer, G.L., Eds.; Churchill Livingstone: New York, NY, USA, 1997; pp. 455–473. [Google Scholar]
- Tunkel, A.R.; Kaufman, B.A. Cerebrospinal fluid shunt infections. In Principles and Practice of Infectious Diseases, 6th ed.; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Elsevier: Philadelphia, PA, USA, 2005; pp. 1126–1132. [Google Scholar]
- Kestle, J.R.; Garton, H.J.; Whitehead, W.E.; Drake, J.M.; Kulkarni, A.V.; Cochrane, D.D.; Muszynski, C.; Walker, M.L. Management of shunt infections: A multicenter pilot study. J. Neurosurg. 2006, 105 (Suppl. 3), 177–181. [Google Scholar] [CrossRef] [PubMed]
- Schreffler, R.T.; Schreffler, A.J.; Wittler, R.R. Treatment of cerebrospinal fluid shunt infections: A decision analysis. Pediatr. Infect. Dis. J. 2002, 21, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Conen, A.; Walti, L.N.; Merlo, A.; Fluckiger, U.; Battegay, M.; Trampuz, A. Characteristics and Treatment Outcome of Cerebrospinal Fluid Shunt–Associated Infections in Adults: A Retrospective Analysis over an 11-Year Period. Clin. Infect. Dis. 2008, 47, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.S. Surgical site infections. In Hospital Epidemiology and Infection Control; Mayhall, C.G., Ed.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2004; Volume 1, pp. 287–306. [Google Scholar]
- Gebremariam, N.M.; Bitew, A.; Tsige, E.; Woldesenbet, D.; Tola, M.A. A High Level of Antimicrobial Resistance in Gram-Positive Cocci Isolates from Different Clinical Samples among Patients Referred to Arsho Advanced Medical Laboratory, Addis Ababa, Ethiopia. Infect. Drug Resist. 2022, 15, 4203–4212. [Google Scholar] [CrossRef]
- Anday, E.K.; Talbot, G.H. Coagulase-negative Staphylococcus bacteremia—A rising threat in the newborn infant. Ann. Clin. Lab. Sci. 1985, 15, 246–251. [Google Scholar]
- Krediet, T.G.; Mascini, E.M.; van Rooij, E.; Vlooswijk, J.; Paauw, A.; Gerards, L.J.; Fleer, A. Molecular Epidemiology of Coagulase-Negative Staphylococci Causing Sepsis in a Neonatal Intensive Care Unit over an 11-Year Period. J. Clin. Microbiol. 2004, 42, 992–995. [Google Scholar] [CrossRef]
- Conlan, S.; Mijares, L.A.; Becker, J.; Blakesley, R.W.; Bouffard, G.G.; Brooks, S.; Coleman, H.; Gupta, J.; Gurson, N.; Park, M.; et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol. 2012, 13, R64. [Google Scholar] [CrossRef]
- Galkowska, H.; Podbielska, A.; Olszewski, W.L.; Stelmach, E.; Luczak, M.; Rosinski, G.; Karnafel, W. Epidemiology and preva-lence of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in patients with diabetic foot ulcers: Focus on the differences between species isolated from individuals with ischemic vs. neuropathic foot ulcers. Diabetes Res. Clin. Pract. 2009, 84, 187–193. [Google Scholar] [CrossRef]
- Widerström, M.; Monsen, T.; Karlsson, C.; Wiström, J. Molecular epidemiology of meticillin-resistant coagulase-negative staphylococci in a Swedish county hospital: Evidence of intra- and interhospital clonal spread. J. Hosp. Infect. 2006, 64, 177–183. [Google Scholar] [CrossRef]
- May, L.; Klein, E.Y.; Rothman, R.E.; Laxminarayan, R. Trends in Antibiotic Resistance in Coagulase-Negative Staphylococci in the United States, 1999 to 2012. Antimicrob. Agents Chemother. 2014, 58, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Moellering, J.R.C. The Rationale for Revising the Clinical and Laboratory Standards Institute Vancomycin Minimal Inhibitory Concentration Interpretive Criteria for Staphylococcus aureus. Clin. Infect. Dis. 2007, 44, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Gazzola, S.; Pietta, E.; Bassi, D.; Fontana, C.; Puglisi, E.; Cappa, F.; Cocconcelli, P.S. Draft genome sequence of van-comycin-heteroresistant Staphylococcus epidermidis strain UC7032, isolated from food. Genome Announc. 2013, 1, e00709-13. [Google Scholar] [CrossRef] [PubMed]
- Sieradzki, K.; Roberts, R.B.; Serur, D.; Hargrave, J.; Tomasz, A. Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J. Clin. Microbiol. 1999, 37, 3739–3744. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.X.; Wang, E.H.; Liu, Y.; Luo, E.J. Antibiotic susceptibility of coagulase-negative staphylococci (CoNS): Emergence of teicoplanin-non-susceptible CoNS strains with inducible resistance to vancomycin. J. Med. Microbiol. 2011, 60, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Eladli, M.G.; Alharbi, N.S.; Khaled, J.M.; Kadaikunnan, S.; Alobaidi, A.S.; Alyahya, S.A. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J. Biol. Sci. 2019, 26, 1285–1290. [Google Scholar] [CrossRef]
- Bowden, M.G.; Chen, W.; Singvall, J.; Xu, Y.; Peacock, S.J.; Valtulina, V.; Speziale, P.; Höök, M. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology 2005, 151 Pt 5, 1453–1464. [Google Scholar] [CrossRef]
- Brescó, M.S.; Harris, L.G.; Thompson, K.; Stanic, B.; Morgenstern, M.; O’Mahony, L.; Richards, R.G.; Moriarty, T.F. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front. Microbiol. 2017, 8, 1401. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Le, K.Y.; Park, M.D.; Otto, M. Immune Evasion Mechanisms of Staphylococcus epidermidis Biofilm Infection. Front. Microbiol. 2018, 9, 359. [Google Scholar] [CrossRef]
- Bowden, M.G.; Visai, L.; Longshaw, C.M.; Holland, K.T.; Speziale, P.; Höök, M. Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J. Biol. Chem. 2002, 277, 43017–43023. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Vaudaux, P.D.; Pittet, R.A.; Lew, P.D.; Schumacher-Perdreau, F.; Peters, G.; Waldvogel, F.A. Fibron-ectin, fibrinogen and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 1988, 158, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Montelius, M.N.; Paulsson, M.; Gouda, I.; Larm, O.; Montelius, L.; Ljungh, A. Adhesion of a coagulase-negative Staphylococci and adsorption of plasma proteins to heparinized polymer surfaces. Biomaterials 1994, 15, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Mack, D.; Fischer, W.; Krokotsch, A.; Leopold, K.; Hartmann, R.; Egge, H.; Laufs, R. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 1996, 178, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Gotz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Da, F.; Fisher, E.L.; Tan, D.C.S.; Nguyen, T.H.; Fu, C.-L.; Tan, V.Y.; McCausland, J.W.; Sturdevant, D.E.; Joo, H.-S.; et al. Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis. PLoS Pathog. 2017, 13, e1006153. [Google Scholar] [CrossRef]
- Argemi, X.; Nanoukon, C.; Affolabi, D.; Keller, D.; Hansmann, Y.; Riegel, P.; Baba-Moussa, L.; Prévost, G. Comparative Genomics and Identification of an Enterotoxin-Bearing Pathogenicity Island, SEPI-1/SECI-1, in Staphylococcus epidermidis Pathogenic Strains. Toxins 2018, 10, 93. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef]
- Miragaia, M.; Couto, I.; Pereira, S.F.F.; Kristinsson, K.G.; Westh, H.; Jarløv, J.O.; Carriço, J.; Almeida, J.; Santos-Sanches, I.; de Lencastre, H. Molecular Characterization of Methicillin-Resistant Staphylococcus epidermidis Clones: Evidence of Geographic Dissemination. J. Clin. Microbiol. 2002, 40, 430–438. [Google Scholar] [CrossRef]
- Månsson, E.; Tevell, S.; Nilsdotter-Augustinsson, Å.; Johannesen, T.B.; Sundqvist, M.; Stegger, M.; Söderquist, B. Methicillin-Resistant Staphylococcus epidermidis Lineages in the Nasal and Skin Microbiota of Patients Planned for Arthroplasty Surgery. Microorganisms 2021, 9, 265. [Google Scholar] [CrossRef]
- Côrtes, M.F.; André, C.; Simões, P.M.; Corvec, S.; Caillon, J.; Tristan, A.; Bes, M.; Vandenesch, F.; Figueiredo, A.M.S.; Dupieux, C.; et al. Persistence of a multidrug-resistant worldwide-disseminated methicillin-resistant Staphylococcus epidermidis clone harbouring the cfr linezolid resistance gene in a French hospital with evidence of interspecies transfer to several Staphylococcus aureus lineages. J. Antimicrob. Chemother. 2022, 77, 1838–1846. [Google Scholar] [CrossRef] [PubMed]
- Månsson, E.; Johannesen, T.B.; Nilsdotter-Augustinsson, Å.; Söderquist, B.; Stegger, M. Comparative genomics of Staphylococcus epidermidis from prosthetic-joint infections and nares highlights genetic traits associated with antimicrobial resistance, not virulence. Microb. Genom. 2021, 7, 000504. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Sun, B.; Shi, X.; Xu, Y.; Gu, Y.; Gu, X.; Ma, X.; Wan, T.; Xu, J.; Su, J.; et al. Comparative Genomic and Pan-Genomic Characterization of Staphylococcus epidermidis from Different Sources Unveils the Molecular Basis and Potential Biomarkers of Pathogenic Strains. Front. Microbiol. 2021, 12, 3419. [Google Scholar] [CrossRef] [PubMed]
- Kloos, W.E.; Schleifer, K.H. Simplified scheme for routine identification of human Staphylococcus species. J. Clin. Microbiol. 1975, 1, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.C.; Reid, J.L.; Thornberg, A.; Whitfield, N.N.; Trainor, D.; Lewis, S.; Wakefield, T.; Davis, T.E.; Church, K.G.; Samuel, L.; et al. Clinical Performance of the Novel GenMark Dx ePlex Blood Culture ID Gram-Positive Panel. J. Clin. Microbiol. 2020, 58, e01730-19. [Google Scholar] [CrossRef]
- Buchan, B.W.; Ginocchio, C.C.; Manii, R.; Cavagnolo, R.; Pancholi, P.; Swyers, L.; Thomson, R.B., Jr.; Anderson, C.; Kaul, K.; Ledeboer, N.A. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test. PLoS Med. 2013, 10, e1001478. [Google Scholar] [CrossRef]
- Altun, O.; Almuhayawi, M.; Ullberg, M.; Özenci, V. Rapid Identification of Microorganisms from Sterile Body Fluids by Use of FilmArray. J. Clin. Microbiol. 2015, 53, 710–712. [Google Scholar] [CrossRef]
- Micó, M.; Navarro, F.; De Miniac, D.; González, Y.; Brell, A.; Lopez, C.; Sanchez-Reus, F.; Mirelis, B.; Coll, P. Efficacy of the FilmArray blood culture identification panel for direct molecular diagnosis of infectious diseases from samples other than blood. J. Med. Microbiol. 2015, 64, 1481–1488. [Google Scholar] [CrossRef]
- Vasoo, S.; Cunningham, S.A.; Greenwood-Quaintance, K.E.; Mandrekar, J.N.; Hanssen, A.D.; Abdel, M.P.; Osmon, D.R.; Berbari, E.F.; Patel, R. Evaluation of the FilmArray Blood Culture ID Panel on Biofilms Dislodged from Explanted Arthroplasties for Prosthetic Joint Infection Diagnosis. J. Clin. Microbiol. 2015, 53, 2790–2792. [Google Scholar] [CrossRef]
- Finkelstein, R.; Fusman, R.; Oren, I.; Kassis, I.; Hashman, N. Clinical and epidemiologic significance of coagulase-negative staphylococci bacteremia in a tertiary care university Israeli hospital. Am. J. Infect. Control 2002, 30, 21–25. [Google Scholar] [CrossRef]
- Mirrett, S.; Weinstein, M.P.; Reimer, L.G.; Wilson, M.L.; Reller, L.B. Relevance of the Number of Positive Bottles in Determining Clinical Significance of Coagulase-Negative Staphylococci in Blood Cultures. J. Clin. Microbiol. 2001, 39, 3279–3281. [Google Scholar] [CrossRef] [PubMed]
- Herwaldt, L.A.; Geiss, M.; Kao, C.; Pfaller, M.A. The Positive Predictive Value of Isolating Coagulase-Negative Staphylococci from Blood Cultures. Clin. Infect. Dis. 1996, 22, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Elzi, L.; Babouee, B.; Vögeli, N.; Laffer, R.; Dangel, M.; Frei, R.; Battegay, M.; Widmer, A. How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: A prospective study with 654 patients. Clin. Microbiol. Infect. 2012, 18, E355–E361. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332, Erratum in Am. J. Infect. Control 2008, 36, 655. [Google Scholar] [CrossRef]
- Beekmann, S.E.; Diekema, D.; Doern, G.V. Determining the Clinical Significance of Coagulase-Negative Staphylococci Isolated from Blood Cultures. Infect. Control. Hosp. Epidemiol. 2005, 26, 559–566. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, E.; Fernández-Rufete, A.; Hernandez-Torres, A.; Canteras, M.; Ruiz, J.; Gómez, J. When is coagulase-negative Staphylococcus bacteraemia clinically significant? Scand. J. Infect. Dis. 2013, 45, 664–671. [Google Scholar] [CrossRef]
- Ishak, M.A.; Gröschel, D.H.; Mandell, G.L.; Wenzel, R.P. Association of slime with pathogenicity of coagulase-negative staphylococci causing nosocomial septicemia. J. Clin. Microbiol. 1985, 22, 1025–1029. [Google Scholar] [CrossRef]
- Uyanik, M.H.; Yazgi, H.; Özden, K.; Erdil, Z.; Ayyildiz, A. Comparison of Coagulase-Negative Staphylococci Isolated from Blood Cultures as a True Bacteremia Agent and Contaminant in Terms of Slime Production and Methicillin Resistance. Eurasian J. Med. 2014, 46, 115–119. [Google Scholar] [CrossRef]
- VanAken, S.M.; Newton, D.; VanEpps, J.S. Improved diagnostic prediction of the pathogenicity of bloodstream isolates of Staphylococcus epidermidis. PLoS ONE 2021, 16, e0241457. [Google Scholar] [CrossRef]
- Cherifi, S.; Byl, B.; Deplano, A.; Nonhoff, C.; Denis, O.; Hallin, M. Comparative Epidemiology of Staphylococcus epidermidis Isolates from Patients with Catheter-Related Bacteremia and from Healthy Volunteers. J. Clin. Microbiol. 2013, 51, 1541–1547. [Google Scholar] [CrossRef]
- Cherifi, S.; Byl, B.; Deplano, A.; Nagant, C.; Nonhoff, C.; Denis, O.; Hallin, M. Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian hospital. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-Resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835. [Google Scholar] [PubMed]
- Tufariello, J.M.; Lowy, F.D. Infection Due to Coagulase-Negative Staphylococci: Treatment; Post, T.W., Ed.; UpToDate Inc.: Waltham, MA, USA, 2017; Available online: http://www.uptodate.com (accessed on 17 December 2020).
- Chambers, H.F. Methicillin-resistant Staphylococci. Clin. Microbiol. Rev. 1988, 1, 173. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.J. The comparative efficacy and safety of teicoplanin and vancomycin. J. Antimicrob. Chemother. 1996, 37, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, C.; Rabitsch, W.; Hirschl, A.M.; Graninger, W.; Presterl, E. In vitro activity of daptomycin and tigecycline against coagulase-negative staphylococcus blood isolates from bone marrow transplant recipients. Eur. J. Haematol. 2007, 79, 405–409. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children: Executive Summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef]
- Figueroa, D.A.; Mangini, E.; Amodio-Groton, M.; Vardianos, B.; Melchert, A.; Fana, C.; Wehbeh, W.; Urban, C.M.; Segal-Maurer, S. Safety of High-Dose Intravenous Daptomycin Treatment: Three-Year Cumulative Experience in a Clinical Program. Clin. Infect. Dis. 2009, 49, 177–180. [Google Scholar] [CrossRef]
- Rybak, M.J.; Cappelletty, D.M.; Moldovan, T.; Aeschlimann, J.R.; Kaatz, G.W. Comparative in vitro activities and postantibiotic effects of the oxazoli-dinone compounds eperezolid (PNU-100592) and linezolid (PNU-100766) versus vancomycin against Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus faecalis, and Enterococcus faecium. Antimicrob. Agents Chemother. 1998, 42, 721. [Google Scholar]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef]
- Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Sader, H.S.; Flamm, R.K.; Castanheira, M.; Smart, J.I.; Mendes, R.E. In Vitro Activity of Telavancin against Clinically Important Gram-Positive Pathogens from 69 U.S. Medical Centers (2015): Potency Analysis by U.S. Census Divisions. Microb. Drug Resist. 2017, 23, 718. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Seifert, H.; Canton, R.; Nordmann, P.; Stefani, S.; MacGowan, A.; Janes, R.; Knight, D. Activity of oritavancin against methicillin-resistant Staphylococci, vancomy-cin-resistant enterococci and β-haemolytic streptococci collected from western European countries in 2011. J. Antimicrob. Chemother. 2013, 68, 164. [Google Scholar] [CrossRef] [PubMed]
- Sakoulas, G.; Moise, P.A.; Casapao, A.M.; Nonejuie, P.; Olson, J.; Okumura, C.Y.; Rybak, M.J.; Kullar, R.; Dhand, A.; Rose, W.E.; et al. Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clin. Ther. 2014, 36, 1317–1333. [Google Scholar] [CrossRef] [PubMed]
- Matthews, P.C.; Berendt, A.R.; McNally, M.A.; Byren, I. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1. [Google Scholar]
Treatment | Adult Dose |
---|---|
Vancomycin | 15 to 20 mg/kg/dose every 8 to 12 h |
Teicoplanina | 6–12 mg/kg every 12 h for the first 3 doses (loading dose) and then 6–12 mg/kg every 24 h |
Daptomycin | 8 to 10 mg/kg every 24 h |
Linezolid | 600 mg orally or IV every 12 h |
Tedizolid | 200 mg once orally or IV every 24 h |
Telavancin | 10 mg/kg every 24 h |
Dalbavancin | 1500 mg as a single dose or 1000 mg as a single dose initially, followed by 500 mg as a single dose 1 week later |
Ceftaroline | 600 mg every 12 h |
Treatment | Adult Dose |
---|---|
TMP/SMX 1 | one double-strength tablet every 12 h |
doxycycline | 100 mg orally every 12 h |
clindamycin | 300 to 450 mg orally every 6 h |
linezolid | 600 mg orally every 12 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliano, V.; Passerotto, R.A.; Chiuchiarelli, M.; Leanza, G.M.; Ojetti, V. Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life 2023, 13, 1126. https://doi.org/10.3390/life13051126
Siciliano V, Passerotto RA, Chiuchiarelli M, Leanza GM, Ojetti V. Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life. 2023; 13(5):1126. https://doi.org/10.3390/life13051126
Chicago/Turabian StyleSiciliano, Valentina, Rosa Anna Passerotto, Marta Chiuchiarelli, Gabriele Maria Leanza, and Veronica Ojetti. 2023. "Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis" Life 13, no. 5: 1126. https://doi.org/10.3390/life13051126
APA StyleSiciliano, V., Passerotto, R. A., Chiuchiarelli, M., Leanza, G. M., & Ojetti, V. (2023). Difficult-to-Treat Pathogens: A Review on the Management of Multidrug-Resistant Staphylococcus epidermidis. Life, 13(5), 1126. https://doi.org/10.3390/life13051126