Hypolipidemic and Antihyperlipidemic Effects of Holarrhena pubescens Methanolic Extract Is Mediated through Inhibition of Lipase Activity and Lipid Accumulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Liquid Chromatography–Mass Spectrometry Analysis of the Extract
2.3. Animals
2.4. Hypolipidemic Activity
2.5. Anti-Hyperlipidemic Effect
2.6. Lipid Accumulation in 3T3L1-Preadipocytes
2.7. Dipeptidyl Peptidase-4 (DPP-IV) Inhibition
2.8. Lipase Inhibition Activity
2.9. Statistical Analysis
3. Results
3.1. Preliminary Phytochemical Analysis
3.2. Hypolipidemic Activity in Normal Animals
3.3. Antihyperlipidemic Effect
3.4. Lipid Accumulation in 3T3L1-Preadipocytes Cell Line
3.5. DPP-IV Inhibition Activity
3.6. Lipase Inhibition Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rauf, A.; Akram, M.; Anwar, H.; Daniyal, M.; Munir, N.; Bawazeer, S.; Bawazeer, S.; Rebezov, M.; Bouyahya, A.; Shariati, M.A.; et al. Therapeutic Potential of Herbal Medicine for the Management of Hyperlipidemia: Latest Updates. Environ. Sci. Pollut. Res. 2022, 29, 40281–40301. [Google Scholar] [CrossRef]
- Hunter, P.M.; Hegele, R.A. Functional Foods and Dietary Supplements for the Management of Dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef]
- Rouhi-Boroujeni, H.; Rouhi-Boroujeni, H.; Heidarian, E.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Herbs with Anti-Lipid Effects and Their Interactions with Statins as a Chemical Anti- Hyperlipidemia Group Drugs: A Systematic Review. ARYA Atheroscler. 2015, 11, 244. [Google Scholar] [PubMed]
- Sham, T.T.; Chan, C.O.; Wang, Y.H.; Yang, J.M.; Mok, D.K.W.; Chan, S.W. A Review on the Traditional Chinese Medicinal Herbs and Formulae with Hypolipidemic Effect. BioMed Res. Int. 2014, 2014, 925302. [Google Scholar] [CrossRef]
- Zahara, K.; Panda, S.K.; Swain, S.S.; Luyten, W. Metabolic Diversity and Therapeutic Potential of Holarrhena Pubescens: An Important Ethnomedicinal Plant. Biomolecules 2020, 10, 1341. [Google Scholar] [CrossRef]
- Cheenpracha, S.; Boapun, P.; Limtharakul (née Ritthiwigrom), T.; Laphookhieo, S.; Pyne, S.G. Antimalarial and Cytotoxic Activities of Pregnene-Type Steroidal Alkaloids from Holarrhena Pubescens Roots. Nat. Prod. Res. 2019, 33, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Patra, N.; Sahoo, G.; Bastia, A.K.; Dutta, S.K. Anti-Diarrheal Activities of Medicinal Plants of Similipal Biosphere Reserve, Odisha, India. Int. J. Med. Aromat. Plants 2012, 2, 123–134. [Google Scholar]
- Usmanghani, K.; Sarwar, M.; Mohiuddin, E. Clinical Evaluation of Some Herbal Medicine for Amoebiasis. Pak. J. Pharmacol. 2006, 23, 9–12. [Google Scholar]
- Daniel, M. Medicinal Plants: Chemistry and Properties; Science Publishers: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Alyahya, A.A.I.; Asad, M.; Alhussaini, M.S.; Abdelsalam, K.E.A.; Alenezi, E.A. The Antidiabetic Effect of Methanolic Extract of Holarrhena Pubescens Seeds Is Mediated through Multiple Mechanisms of Action. Saudi Pharm. J. 2023, 31, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Y.; Manral, M.S.; Kathait, V.; Kumar, R. Computation of In Vivo Antidiabetic Activity of Holarrhena Antidysenterica Seeds Extracts in Streptozotocin-Induced-Diabetic Rats. Pharm. Biosci. J. 2013, 1, 11–17. [Google Scholar] [CrossRef]
- Ali, K.M.; Chatterjee, K.; De, D.; Jana, K.; Bera, T.K.; Ghosh, D. Inhibitory Effect of Hydro-Methanolic Extract of Seed of Holarrhena Antidysenterica on Alpha-Glucosidase Activity and Postprandial Blood Glucose Level in Normoglycemic Rat. J. Ethnopharmacol. 2011, 135, 194–196. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–784. [Google Scholar] [CrossRef]
- Collister, J.P.; Hornfeldt, B.J.; Osborn, J.W. Hypotensive Response to Losartan in Normal Rats. Hypertension 1996, 27, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Asdaq, S.M.; Inamdar, M.N.; Asad, M. Effect of Conventional Antihypertensive Drugs on Hypolipidemic Action of Garlic in Rats. Indian J. Exp. Biol. 2009, 47, 176–181. [Google Scholar] [PubMed]
- Haney, E.M.; Huffman, L.H.; Bougatsos, C.; Freeman, M.; Fu, R.; Steiner, R.D.; Helfand, M.; Nelson, H.D. Appendix 2. Units of Measure Conversion Formulas. In Screening for Lipid Disorders in Children and Adolescents; Agency for Healthcare Research and Quality (US): Newark, DE, USA, 2007. [Google Scholar]
- Oyedemi, S.; Bradley, G.; Afolayan, A. Antidiabetic Activities of Aqueous Stem Bark Extract of Strychnoshenningsii Gilg in Streptozotocin-Nicotinamide Type 2 Diabetic Rats. Iran. J. Pharm. Res. IJPR 2012, 11, 221. [Google Scholar]
- Al-Masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of Dipeptidyl Peptidase IV (DPP IV) Is One of the Mechanisms Explaining the Hypoglycemic Effect of Berberine. J. Enzyme Inhib. Med. Chem. 2009, 24, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.R.; Liu, D.J. Direct Measurement of Lipase Inhibition by Orlistat Using a Dissolution Linked In Vitro Assay. Clin. Pharmacol. Biopharm. 2012, 1, 1000103. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Sharma, A.; Reddy, P.H.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of Phytochemical and Pharmacological Aspects of Holarrhena Antidysenterica (Wall.): A Comprehensive Review. J. Pharm. Res. 2013, 6, 488–492. [Google Scholar] [CrossRef]
- Ferrario, C.M. Use of Angiotensin II Receptor Blockers in Animal Models of Atherosclerosis. Am. J. Hypertens. 2002, 15, 9S–13S. [Google Scholar] [CrossRef] [PubMed]
- Sultana, R.; Rahman, S.; Banu, L.A.; Any, O.H. Antiatherogenic Effect of Losartan in the Hyperlipidemic Rat. J. Shaheed Suhrawardy Med. Coll. 2013, 5, 99–102. [Google Scholar] [CrossRef]
- Park, E.; Lee, C.G.; Kim, J.; Yeo, S.; Kim, J.A.; Choi, C.W.; Jeong, S.Y. Antiobesity Effects of Gentiana Lutea Extract on 3T3-L1 Preadipocytes and a High-Fat Diet-Induced Mouse Model. Molecules 2020, 25, 2453. [Google Scholar] [CrossRef]
- Choi, D.H.; Han, J.H.; Yu, K.H.; Hong, M.; Lee, S.Y.; Park, K.H.; Lee, S.U.; Kwon, T.H. Antioxidant and Anti-Obesity Activities of Polygonum Cuspidatum Extract through Alleviation of Lipid Accumulation on 3T3-L1 Adipocytes. J. Microbiol. Biotechnol. 2020, 30, 21–30. [Google Scholar] [CrossRef]
- Pal, P.; Kanaujiya, J.K.; Lochab, S.; Tripathi, S.B.; Sanyal, S.; Behre, G.; Trivedi, A.K. Proteomic Analysis of Rosiglitazone and Guggulsterone Treated 3T3-L1 Preadipocytes. Mol. Cell. Biochem. 2013, 376, 81–93. [Google Scholar] [CrossRef]
- Cave, E.; Crowther, N.J. The Use of 3T3-L1 Murine Preadipocytes as a Model of Adipogenesis. Methods Mol. Biol. 2019, 1916, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Monami, M.; Lamanna, C.; Desideri, C.M.; Mannucci, E. DPP-4 Inhibitors and Lipids: Systematic Review and Meta-Analysis. Adv. Ther. 2012, 29, 14–25. [Google Scholar] [CrossRef]
- Monami, M.; Vitale, V.; Ambrosio, M.L.; Bartoli, N.; Toffanello, G.; Ragghianti, B.; Monami, F.; Marchionni, N.; Mannucci, E. Effects on Lipid Profile of Dipeptidyl Peptidase 4 Inhibitors, Pioglitazone, Acarbose, and Sulfonylureas: Meta-Analysis of Placebo-Controlled Trials. Adv. Ther. 2012, 29, 736–746. [Google Scholar] [CrossRef]
- Ahmadi, A.; Bagheri Ekta, M.; Sahebkar, A. Mechanisms of Antidiabetic Drugs and Cholesterol Efflux: A Clinical Perspective. Drug Discov. Today 2022, 27, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Kharma, A.; Hassawi, D. The Antimicrobial Activity and the Genetic Relationship of Achillea Species. Biotechnology 2006, 5, 501–507. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, S. Pancreatic Lipase Inhibitors: The Road Voyaged and Successes. Life Sci. 2021, 271, 119115. [Google Scholar] [CrossRef]
- Pant, A.; Rondini, E.A.; Kocarek, T.A. Farnesol Induces Fatty Acid Oxidation and Decreases Triglyceride Accumulation in Steatotic HepaRG Cells. Toxicol. Appl. Pharmacol. 2019, 365, 61. [Google Scholar] [CrossRef]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic Acid Exhibits Anti-Obesity Property and Improves Lipid Metabolism in High-Fat Diet-Induced-Obese Mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, H.; Miao, J.; Sheng, Q.; Xu, J.; Gao, Z.; Zhang, X.; Song, Y.; Chen, K. The Natural Flavone Acacetin Protects against High-Fat Diet-Induced Lipid Accumulation in the Liver via the Endoplasmic Reticulum Stress/Ferroptosis Pathway. Biochem. Biophys. Res. Commun. 2023, 640, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.; Nguyen, T.T.; Zimmerman, B.R. Hyperlipidemia and Diabetes Mellitus. Mayo Clin. Proc. 1998, 73, 969–976. [Google Scholar] [CrossRef] [PubMed]
Contents | Percentage |
---|---|
Crude Protein | 18.18% |
Crude Fat | 3.20% |
Crude Fibers | 5.00% |
Total Ash | 5.45% |
Calcium | 1.26% |
Salts | 0.5% |
Phosphorus | 0.54% |
Vitamin A | 20 IU/mg |
Vitamin B | 20 IU/mg |
Vitamin E | 2.2 IU/mg |
Number | Compound Name | Formula | Ion | Observed Mass |
---|---|---|---|---|
1. | 4-(Methylsulfinyl)butylglucosinolate | C20H41NO4 | Positive | 359.303 |
2. | 7-Hydroxy-4-methylcoumarin | C10H8O3 | Positive | 176.047 |
3. | Canthaxanthin | C20H41NO4 | Positive | 359.303 |
4. | Chlorogenic acid Hemihydrate | C16H18O9 | Positive | 354.095 |
5. | Cystathionine | C20H41NO4 | Positive | 359.303 |
6. | DL-Dihydrozeatin | C13H20O3 | Positive | 224.141 |
7. | Esculin sesquihydrate | C16H18O9 | Positive | 354.095 |
8. | Farnesol (mixture of isomers) | C13H20O3 | Positive | 224.141 |
9. | Fusaric acid | C10H13NO2 | Positive | 179.094 |
10. | Methyl Jasmonate | C13H20O3 | Positive | 224.141 |
11. | N-Acetyl-Phytosphingosine | C20H41NO4 | Positive | 359.303 |
12. | Rape seed mixture glucosinolates | C23H24O13 | Positive | 347.22 |
13. | Scoulerin | C19H21NO4 | Positive | 327.147 |
14. | Sodium Deoxycholate | C24H40O4 | Positive | 392.292 |
15. | 1-Myristoyl-2-Hydroxy-sn-Glycero-3-Phosphate (Sodium Salt) | C17H35O7P | Negative | 381.2724 |
16. | 2′-Deoxycytidine | C9H13N3O4 | Negative | 227.2955 |
17. | 6-Phosphogluconic acid Barium salt hydrate | C6H13O10P | Negative | 279.3961 |
18. | Acacetin | C16H12O5 | Negative | 281.3870 |
19. | alpha-D-Galactose-1-phosphate Dipotassium Salt | C6H13O9P | Negative | 255.3365 |
20. | D-(-)-Quinic acid | C7H12O6 | Negative | 191.0891 |
21. | D-Glucosamine-6-phosphate sodium salt | C6H14NO8P | Negative | 253.3457 |
22. | D-Glucuronic acid | C6H10O7 | Negative | 193.1474 |
23. | Lignoceric Acid | C24H48O2 | Negative | 367.2342 |
24. | Uridine-5′-monophosphate | C9H13N2O9P | Negative | 325.3563 |
25. | Xanthosine | C10H12N4O6 | Negative | 283.4454 |
26. | Xanthosine-5′-monophosphate disodium salt | C10H13N4O9P | Negative | 367.2679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyahya, A.A.I.; Asad, M.; Alrouji, M.; Abdelsalam, K.E.A.; Al-Mutairi, A.M.R.; Ahmed, M.A.I. Hypolipidemic and Antihyperlipidemic Effects of Holarrhena pubescens Methanolic Extract Is Mediated through Inhibition of Lipase Activity and Lipid Accumulation. Life 2023, 13, 1435. https://doi.org/10.3390/life13071435
Alyahya AAI, Asad M, Alrouji M, Abdelsalam KEA, Al-Mutairi AMR, Ahmed MAI. Hypolipidemic and Antihyperlipidemic Effects of Holarrhena pubescens Methanolic Extract Is Mediated through Inhibition of Lipase Activity and Lipid Accumulation. Life. 2023; 13(7):1435. https://doi.org/10.3390/life13071435
Chicago/Turabian StyleAlyahya, AbdulRahman A. I., Mohammed Asad, Mohammed Alrouji, Kamal Eldin Ahmed Abdelsalam, Adel Mashan Rashed Al-Mutairi, and Monjid Ahmed Ibrahim Ahmed. 2023. "Hypolipidemic and Antihyperlipidemic Effects of Holarrhena pubescens Methanolic Extract Is Mediated through Inhibition of Lipase Activity and Lipid Accumulation" Life 13, no. 7: 1435. https://doi.org/10.3390/life13071435
APA StyleAlyahya, A. A. I., Asad, M., Alrouji, M., Abdelsalam, K. E. A., Al-Mutairi, A. M. R., & Ahmed, M. A. I. (2023). Hypolipidemic and Antihyperlipidemic Effects of Holarrhena pubescens Methanolic Extract Is Mediated through Inhibition of Lipase Activity and Lipid Accumulation. Life, 13(7), 1435. https://doi.org/10.3390/life13071435