What Makes a Good Plant Invader?
Abstract
:1. Introduction
2. Traits Important for Successful Plant Invasion
3. Interactions between Genetic Traits and Environmental Conditions Promoting Plant Invasion
4. Allelopathy and Herbivory Affecting Invasion Success
5. Pathways to Successful Plant Invasion
6. A Case Study Comparing the Dispersal and Life Histories of Invasive Plants Varying in Their Prevalence
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Nagy, A.-M.; Korpelainen, H. Population genetics of Himalayan balsam (Impatiens glandulifera): Comparison of native and introduced populations. Plant Ecol. Div. 2014, 8, 317–321. [Google Scholar] [CrossRef]
- Bertelsmeier, C.; Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 2018, 33, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.L.; Hodkinson, T.R.; Villellas, J.; Catford, J.A.; Csergő, A.M.; Blomberg, S.P.; Crone, E.E.; Ehrlén, J.; Garcia, M.B.; Laine, A.-L. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc. Nat. Acad. Sci. USA 2020, 117, 4218–4227. [Google Scholar] [CrossRef] [Green Version]
- Catford, J.A.; Bode, M.; Tilman, D. Introduced species that overcome life history tradeoffs can cause native extinctions. Nat. Comm. 2018, 9, 2131. [Google Scholar] [CrossRef] [Green Version]
- Parra-Tabla, V.; Arceo-Gómez, G. Impacts of plant invasions in native plant–pollinator networks. New Phytol. 2021, 230, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Pyšek, P.; Pergl, J.; Essl, F.; Lenzner, B.; Dawson, W.; Kreft, H.; Weigelt, P.; Winter, M.; Kartesz, J.; Nishino, M.; et al. Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 2017, 89, 203–274. [Google Scholar] [CrossRef]
- van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Tabassum, S.; Leishman, M.R. Have your cake and eat it too: Greater dispersal ability and faster germination towards range edges of an invasive plant species in eastern Australia. Biol. Invasions 2018, 20, 1199–1210. [Google Scholar] [CrossRef]
- Baker, H.G. Characteristics and Modes of Origin of Weeds. In The Genetics of Colonizing Species; Baker, H.G., Stebbins, G.L., Eds.; Academic Press: New York, NY, USA, 1965; pp. 147–169. [Google Scholar]
- Hiatt, D.; Flory, S.L. Populations of a widespread invader and co-occurring native species vary in phenotypic plasticity. New Phytol. 2020, 225, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Rathee, S.; Ahmad, M.; Sharma, P.; Singh, H.P.; Batish, D.R.; Kaur, S.; Kaur, A.; Yadav, S.S.; Kohli, R.K. Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation. Environ. Exp. Bot. 2021, 184, 104392. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Ding, J. Phenotypic plasticity in resource allocation to sexual trait of alligatorweed in wetland and terrestrial habitats. Sci. Total Environ. 2021, 757, 143819. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Lorenzo, P.; González, L. Phenotypic plasticity of invasive Carpobrotus edulis modulates tolerance against herbivores. Biol. Invasions 2021, 23, 1859–1875. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, C.; He, Q.; Qiu, S.; Zhang, Y.; Yang, J.; Li, B.; Nie, M. Phenotypic plasticity of light use favors a plant invader in nitrogen-enriched ecosystems. Ecology 2022, 103, e3665. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, X.; Zheng, Y.; Guo, H.; Hu, S. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol. Invasions 2019, 21, 2679–2692. [Google Scholar] [CrossRef]
- Wan, J.S.H.; Fazlioglu, F.; Bonser, S.P. Loss of plasticity in life-history strategy associated with secondary invasion into stressful environments in invasive narrowleaf plantain (Plantago lanceolata L.). Austral Ecol. 2018, 43, 752–762. [Google Scholar] [CrossRef]
- Phillips, B.L.; Brown, G.P.; Shine, R. Life-history evolution in range-shifting populations. Ecology 2010, 91, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- van Boheemen, L.A.; Atwater, D.Z.; Hodgins, K.A. Rapid and repeated local adaptation to climate in an invasive plant. New Phytol. 2019, 222, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Burton, O.J.; Phillips, B.L.; Travis, M.J. Trade-offs and the evolution of life histories during range expansion. Ecol. Lett. 2010, 13, 1210–1220. [Google Scholar] [CrossRef]
- Kilkenny, F.F.; Galloway, L.F. Adaptive divergence at the margin of an invaded range. Evolution 2013, 67, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, M.; Deane, D.C.; Li, S.; Wu, Y.; Sui, X.; Xu, H.; Chu, C.; He, F.; Fang, S. Invasion success and impacts depend on different characteristics in non-native plants. Div. Distrib. 2021, 27, 1194–1207. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Wang, J.; Zhang, Y. Does the effect of flowering time on biomass allocation across latitudes differ between invasive and native salt marsh grass Spartina alterniflora? Ecol. Evol. 2022, 12, e8681. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, A.; Stevens, C.J.; Peltzer, D.A.; Ostle, N.J.; Orwin, K.H. Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia 2018, 186, 577–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, C.; de Blois, S.; Brisson, J. Management of invasive plants through ecological resistance. Biol. Invasions 2018, 20, 13–27. [Google Scholar] [CrossRef]
- Lustenhouwer, N.; Williams, J.L.; Levine, J.M. Evolution during population spread affects plant performance in stressful environments. J. Ecol. 2019, 107, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008, 17, 431–449. [Google Scholar] [CrossRef]
- Schrieber, K.; Lachmuth, S. The genetic paradox of invasions revisited: The potential role of inbreeding × environment interactions in invasion success. Biol. Rev. 2017, 92, 939–952. [Google Scholar] [CrossRef]
- Jelbert, K.; Buss, D.; McDonald, J.; Townley, S.; Franco, M.; Stott, I.; Jones, O.; Salguero-Gómez, R.; Buckley, Y.; Knight, T.; et al. Demographic amplification is a predictor of invasiveness among plants. Nat. Commun. 2019, 10, 5602. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.A.; Shea, K. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 2021, 102, e03219. [Google Scholar] [CrossRef]
- Campoy, J.G.; Lema, M.; Fenollosa, E.; Munné-Bosch, S.; Retuerto, R. Functional responses to climate change may increase invasive potential of Carpobrotus edulis. Am. J. Bot. 2021, 108, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Bajwa, A.A.; Adkins, S. A superweed in the making: Adaptations of Parthenium hysterophorus to a changing climate. A review. Agron. Sustain. Dev. 2021, 41, 47. [Google Scholar] [CrossRef]
- Lopez, B.E.; Allen, J.M.; Dukes, J.S.; Lenoir, J.; Vilà, M.; Blumenthal, D.M.; Beaury, E.M.; Fusco, E.J.; Laginhas, B.B.; Morelli, T.L.; et al. Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proc. Natl. Acad. Sci. USA 2022, 119, e2117389119. [Google Scholar] [CrossRef]
- Hierro, J.L.; Callaway, R.M. The ecological importance of allelopathy. Ann. Rev. Ecol. Evol. Syst. 2021, 52, 25–45. [Google Scholar] [CrossRef]
- Schandry, N.; Becker, C. Allelopathic plants: Models for studying plant-interkingdom interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an invasive plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and allelochemicals of Leucaena leucocephala as an invasive plant species. Plants 2022, 11, 1672. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants 2020, 9, 766. [Google Scholar] [CrossRef]
- Kalisz, S.; Kivlin, S.N.; Bialic-Murphy, L. Allelopathy is pervasive in invasive plants. Biol. Invasions 2021, 23, 367–371. [Google Scholar] [CrossRef]
- Uesugi, A.; Kessler, A. Herbivore release drives parallel patterns of evolutionary divergence in invasive plant phenotypes. J. Ecol. 2016, 104, 876–886. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Huang, B.; Yu, H.; Peng, S. Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis. J. Ecol. 2019, 107, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Colomer-Ventura, F.; Martínez-Vilalta, J.; Zuccarini, P.; Escolà, A.; Armengot, L.; Castells, E. Contemporary evolution of an invasive plant is associated with climate but not with herbivory. Funct. Ecol. 2015, 29, 1475–1485. [Google Scholar] [CrossRef] [Green Version]
- Joshi, J.; Vrieling, K. The enemy release and EICA hypothesis revisited: Incorporating the fundamental difference between specialist and generalist herbivores. Ecol. Lett. 2005, 8, 704–714. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, X.; Blumenthal, D.; van Kleunen, M.; Liu, M.; Li, B. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 2018, 99, 866–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucero, J.E.; Callaway, R.M. Native granivores reduce the establishment of native grasses but not invasive Bromus tectorum. Biol. Invasions 2018, 20, 3491–3497. [Google Scholar] [CrossRef]
- Helsen, K.; Hagenblad, J.; Acharya, K.P.; Brunet, J.; Cousins, S.A.O.; Decocq, G.; De Frenne, P.; Kimberley, A.; Kolb, A.; Michaelis, J.; et al. No genetic erosion after five generations for Impatiens glandulifera populations across the invaded range in Europe. BMC Genet. 2019, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Skalova, H.; Havlickova, V.; Pysek, P. Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe. Ann. Bot. 2012, 110, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Wang, Y.; Li, K.; Wang, Y.Q. Genetic variation and population structure of clonal Zingiber zerumbet at a fine geographic scale: A comparison with two closely related selfing and outcrossing Zingiber species. BMC Ecol. Evol. 2021, 21, 116. [Google Scholar] [CrossRef]
- Lavergne, S.; Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Nat. Acad. Sci. USA 2001, 104, 3883–3888. [Google Scholar] [CrossRef]
- Moura, R.F.; Queiroga, D.; Vilela, E.; Moraes, A.P. Polyploidy and high environmental tolerance increase the invasive success of plants. J. Plant Res. 2021, 134, 105–114. [Google Scholar] [CrossRef]
- Stapley, J.; Santure, A.W.; Dennis, S.R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 2015, 24, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Mounger, J.; Ainouche, M.L.; Bossdorf, O.; Cavé-Radet, A.; Li, B.; Parepa, M.; Salmon, A.; Yang, J.; Richards, C.L. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. 2021, B376, 20200117. [Google Scholar] [CrossRef] [PubMed]
- Lombaert, E.; Guillemaud, T.; Cornuet, J.-M.; Malausa, T.; Facon, B.; Estoup, A. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 2010, 5, e9743. [Google Scholar] [CrossRef] [PubMed]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Teisher, J.K.; Clark, L.G.; Barberá, P.; Gillespie, L.J.; Zuloaga, F.O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 2017, 55, 259–290. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.; Schrire, B.; Mackinder, B.; Lock, M. (Eds.) Legumes of the World; Royal Botanic Gardens, Kew: Richmond, UK, 2005. [Google Scholar]
- Rolnik, A.; Olas, B. The plants of the Asteraceae family as agents in the protection of human health. Int. J. Mol. Sci. 2021, 22, 3009. [Google Scholar] [CrossRef]
- Potter, D.; Eriksson, T.; Evans, R.C.; Oh, S.; Smedmark, J.E.E.; Morgan, D.R.; Kerr, M.; Robertson, K.R.; Arsenault, M.; Dickinson, T.A.; et al. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 2007, 266, 5–43. [Google Scholar] [CrossRef]
- Knapp, S.; Bohs, L.; Nee, M.; Spooner, D.M. Solanaceae—A model for linking genomics with biodiversity. Comp. Funct. Genom. 2004, 5, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The population biology of invasive species. Ann. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Philbrick, C.T.; Les, D.H. Evolution of aquatic angiosperm reproductive systems: What is the balance between sexual and asexual reproduction in aquatic angiosperms? BioScience 1996, 46, 813–826. [Google Scholar] [CrossRef] [Green Version]
- Eli, S.; Loomis, E.S.; Fishman, L. A continent-wide clone: Population genetic variation of the invasive plant Hieracium aurantiacum (Orange Hawkweed; Asteraceae) in North America. Int. J. Plant Sci. 2009, 170, 759–765. [Google Scholar]
- Novoa, A.; González, L. Impacts of Carpobrotus edulis (L.) N.E.Br. on the germination, establishment and survival of native plants: A clue for assessing its competitive strength. PLoS ONE 2014, 9, e107557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait | Worst Invasive | Other Invasive |
---|---|---|
Dispersal and Distribution | ||
Strongly human-assisted dispersal | 30 (86%) | 392 (91%) |
Multicontinental original distribution | 2 (6%) | 93 (22%) |
Multicontinental present distribution | 22 (63%) | 253 (59%) |
Typically in disturbed habitats (excl. aquatic taxa) | 30 (94%) | 325 (80%) |
Uses | ||
Mainly ornamental | 21 (60%) | 229 (53%) |
Other known uses | 8 (23%) | 103 (24%) |
No known use | 6 (17%) | 100 (23%) |
Life History and Reproduction | ||
Perennial | 35 (100%) | 388 (90%) |
Mainly/only sexual | 8 (23%) | 171 (40%) |
Mainly/only asexual | 7 (20%) | 44 (10%) |
Commonly sexual and asexual | 20 (57%) | 217 (50%) |
Distribution of Sexual Function (incl. angiosperms) | ||
Hermaphroditic (excl. monoecious) | 25 (80%) | 263 (64%) |
Dioecious | 6 (20%) | 82 (20%) |
Monoecious | 0 (0%) | 66 (16%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korpelainen, H.; Pietiläinen, M. What Makes a Good Plant Invader? Life 2023, 13, 1596. https://doi.org/10.3390/life13071596
Korpelainen H, Pietiläinen M. What Makes a Good Plant Invader? Life. 2023; 13(7):1596. https://doi.org/10.3390/life13071596
Chicago/Turabian StyleKorpelainen, Helena, and Maria Pietiläinen. 2023. "What Makes a Good Plant Invader?" Life 13, no. 7: 1596. https://doi.org/10.3390/life13071596
APA StyleKorpelainen, H., & Pietiläinen, M. (2023). What Makes a Good Plant Invader? Life, 13(7), 1596. https://doi.org/10.3390/life13071596