The Role of Renin–Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. The Renin–Angiotensin System and the Heart
3.1. Local Cardiac RAS
3.2. Endothelial Function and the Role of Ang II and Ang-(1-7) in Cardiac Remodeling
4. Renin–Angiotensin System and Its Associations with Type 2 Diabetes Mellitus
4.1. Insulin Resistance
4.2. Endothelial Function and Oxidative Stress
5. Diabetic Cardiomyopathy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bragazzi, N.L.; Zhong, W.; Shu, J.; Abu Much, A.; Lotan, D.; Grupper, A.; Younis, A.; Dai, H. Burden of Heart Failure and Underlying Causes in 195 Countries and Territories from 1990 to 2017. Eur. J. Prev. Cardiol. 2021, 28, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Prado, A.; Hominal, M.A.; Zaidman, C.J.; Cursack, G.; MacKinnon, I.; Zapata, G.; Rojas, D.G.; Duran, R.G.; Vilamajo, O.G.; et al. Global Variations in Heart Failure Etiology, Management, and Outcomes. JAMA 2023, 329, 1650. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Dillmann, W.H. Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Regan, T.J.; Lyons, M.M.; Ahmed, S.S.; Levinson, G.E.; Oldewurtel, H.A.; Ahmad, M.R.; Haider, B. Evidence for Cardiomyopathy in Familial Diabetes Mellitus. J. Clin. Investig. 1977, 60, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Whaley-Connell, A.; Sowers, J.R. Diabetic Cardiomyopathy: A Hyperglycaemia- and Insulin-Resistance-Induced Heart Disease. Diabetologia 2018, 61, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Kenny, H.C.; Abel, E.D. Heart Failure in Type 2 Diabetes Mellitus. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef]
- Zhang, M.; Sui, W.; Xing, Y.; Cheng, J.; Cheng, C.; Xue, F.; Zhang, J.; Wang, X.; Zhang, C.; Hao, P.; et al. Angiotensin IV Attenuates Diabetic Cardiomyopathy via Suppressing FoxO1-Induced Excessive Autophagy, Apoptosis and Fibrosis. Theranostics 2021, 11, 8624–8639. [Google Scholar] [CrossRef]
- Hu, L.; Ding, M.; Tang, D.; Gao, E.; Li, C.; Wang, K.; Qi, B.; Qiu, J.; Zhao, H.; Chang, P.; et al. Targeting Mitochondrial Dynamics by Regulating Mfn2 for Therapeutic Intervention in Diabetic Cardiomyopathy. Theranostics 2019, 9, 3687–3706. [Google Scholar] [CrossRef]
- Evangelista, I.; Nuti, R.; Picchioni, T.; Dotta, F.; Palazzuoli, A. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2019, 20, 3264. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Xu, W.; Zhang, W.; Wang, W.; Liu, T.; Zhou, X. LncRNA DCRF Regulates Cardiomyocyte Autophagy by Targeting MiR-551b-5p in Diabetic Cardiomyopathy. Theranostics 2019, 9, 4558–4566. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Y.; Zhao, J.; Wang, H.; Tan, J.; Yang, M.; Li, Y.; Deng, S.; Gao, S.; Li, H.; et al. Distinct Cardiac Energy Metabolism and Oxidative Stress Adaptations between Obese and Non-Obese Type 2 Diabetes Mellitus. Theranostics 2020, 10, 2675–2695. [Google Scholar] [CrossRef] [PubMed]
- Kajstura, J.; Fiordaliso, F.; Andreoli, A.M.; Li, B.; Chimenti, S.; Medow, M.S.; Limana, F.; Nadal-Ginard, B.; Leri, A.; Anversa, P. IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress. Diabetes 2001, 50, 1414–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Oliveira, A., Jr.; Nogueira, A.I.; Pereira, R.M.; Boas, W.W.V.; Dos Santos, R.A.S.; Simões e Silva, A.C. The Renin–Angiotensin System and Diabetes: An Update. Vasc. Health Risk Manag. 2008, 4, 787–803. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.A.S.; Ferreira, A.J.; Simões e Silva, A.C. Recent Advances in the Angiotensin-Converting Enzyme 2-Angiotensin(1-7)-Mas Axis. Exp. Physiol. 2008, 93, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Simões e Silva, A.; Silveira, K.; Ferreira, A.; Teixeira, M. ACE2, Angiotensin-(1-7) and Mas Receptor Axis in Inflammation and Fibrosis. Br. J. Pharmacol. 2013, 169, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A Human Homolog of Angiotensin-Converting Enzyme. J. Biol. Chem. 2000, 275, 33238–33243. [Google Scholar] [CrossRef] [Green Version]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Santos, R.A.S.; e Silva, A.C.S.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; et al. Angiotensin-(1–7) Is an Endogenous Ligand for the G Protein-Coupled Receptor Mas. Proc. Natl. Acad. Sci. USA 2003, 100, 8258–8263. [Google Scholar] [CrossRef]
- Trask, A.J.; Ferrario, C.M. The Renin–Angiotensin System and the Heart. In Textbook of Nephro-Endocrinology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 43–55. [Google Scholar]
- Effects of Ramipril on Cardiovascular and Microvascular Outcomes in People with Diabetes Mellitus: Results of the HOPE Study and MICRO-HOPE Substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000, 355, 253–259. [Google Scholar]
- Jan Danser, A.H. Local Renin–Angiotensin Systems: The Unanswered Questions. Int. J. Biochem. Cell Biol. 2003, 35, 759–768. [Google Scholar] [CrossRef]
- Danser, A.H.; van Kats, J.P.; Admiraal, P.J.; Derkx, F.H.; Lamers, J.M.; Verdouw, P.D.; Saxena, P.R.; Schalekamp, M.A. Cardiac Renin and Angiotensins. Uptake from Plasma versus in Situ Synthesis. Hypertension 1994, 24, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunapuli, S.P.; Kumar, A. Molecular Cloning of Human Angiotensinogen CDNA and Evidence for the Presence of Its MRNA in Rat Heart. Circ. Res. 1987, 60, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Sawa, H.; Tokuchi, F.; Mochizuki, N.; Endo, Y.; Furuta, Y.; Shinohara, T.; Takada, A.; Kawaguchi, H.; Yasuda, H.; Nagashima, K. Expression of the Angiotensinogen Gene and Localization of Its Protein in the Human Heart. Circulation 1992, 86, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, C.M. Cardiac Remodelling and RAS Inhibition. Ther. Adv. Cardiovasc. Dis. 2016, 10, 162–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Nair, S. Role of MicroRNA in Diabetic Cardiomyopathy: From Mechanism to Intervention. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2017, 1863, 2070–2077. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.; Jacobs-Cacha, C.; Llorens-Cebria, C.; Ortiz, A.; Martinez-Diaz, I.; Martos, N.; Dominguez-Báez, P.; Van den Bosch, M.M.; Bermejo, S.; Pieper, M.P.; et al. Enhanced Cardiorenal Protective Effects of Combining SGLT2 Inhibition, Endothelin Receptor Antagonism and RAS Blockade in Type 2 Diabetic Mice. Int. J. Mol. Sci. 2022, 23, 12823. [Google Scholar] [CrossRef]
- Li, L.; Yiming, W.; Li, Z.; Zhao, L.; Yu, Y.; Li, D.; Xia, C.; Liu, J.; Su, D. Local RAS and Inflammatory Factors Are Involved in Cardiovascular Hypertrophy in Spontaneously Hypertensive Rats. Pharmacol. Res. 2008, 58, 196–201. [Google Scholar] [CrossRef]
- Paul, M.; Wagner, D.; Metzger, R.; Ganten, D.; Lang, R.E.; Suzuki, F.; Murakami, K.; Burbach, J.H.P.; Ludwig, G. Quantification of Renin MRNA in Various Mouse Tissues by a Novel Solution Hybridization Assay. J. Hypertens. 1988, 6, 247–252. [Google Scholar] [CrossRef]
- Paul, M.; Wagner, J.; Dzau, V.J. Gene Expression of the Renin-Angiotensin System in Human Tissues. Quantitative Analysis by the Polymerase Chain Reaction. J. Clin. Investig. 1993, 91, 2058–2064. [Google Scholar] [CrossRef]
- von Lutterotti, N.; Catanzaro, D.F.; Sealey, J.E.; Laragh, J.H. Renin Is Not Synthesized by Cardiac and Extrarenal Vascular Tissues. A Review of Experimental Evidence. Circulation 1994, 89, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, R.; Pitarresi, T.; Sigmund, C.D.; Gross, K.W.; Sealey, J.E.; Laragh, J.H.; Catanzaro, D.F. Kidney Is the Only Source of Human Plasma Renin in 45-Kb Human Renin Transgenic Mice. Circ. Res. 1998, 83, 1279–1288. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Buikema, H.; van Gilst, W.H.; Scholtens, E.; van Geel, P.-P.; de Graeff, P.A.; Wagner, J.; Paul, M. Cardiovascular End-Organ Damage in Ren-2 Transgenic Rats Compared to Spontaneously Hypertensive Rats. J. Mol. Med. 1997, 75, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Varagic, J.; Groban, L.; Dell’Italia, L.J.; Nagata, S.; Kon, N.D.; Ferrario, C.M. Angiotensin-(1-12): A Chymase-Mediated Cellular Angiotensin II Substrate. Curr. Hypertens. Rep. 2014, 16, 429. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S.; Kato, J.; Sasaki, K.; Minamino, N.; Eto, T.; Kitamura, K. Isolation and Identification of Proangiotensin-12, a Possible Component of the Renin–Angiotensin System. Biochem. Biophys. Res. Commun. 2006, 350, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Ocaranza, M.P.; Michea, L.; Chiong, M.; Lagos, C.F.; Lavandero, S.; Jalil, J.E. Recent Insights and Therapeutic Perspectives of Angiotensin-(1–9) in the Cardiovascular System. Clin. Sci. 2014, 127, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.M. ACE2: More of Ang-(1–7) or Less Ang II? Curr. Opin. Nephrol. Hypertens. 2011, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Villarreal, F.J.; Kim, N.N.; Ungab, G.D.; Printz, M.P.; Dillmann, W.H. Identification of Functional Angiotensin II Receptors on Rat Cardiac Fibroblasts. Circulation 1993, 88, 2849–2861. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.E.; Katwa, L.C. Angiotensin II Stimulated Expression of Transforming Growth Factor-Β1in Cardiac Fibroblasts and Myofibroblasts. J. Mol. Cell. Cardiol. 1997, 29, 1947–1958. [Google Scholar] [CrossRef]
- Tallant, E.A.; Ferrario, C.M.; Gallagher, P.E. Angiotensin-(1–7) Inhibits Growth of Cardiac Myocytes through Activation of the mas Receptor. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H1560–H1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, M.; Cowling, R.T.; Gurantz, D.; Moore, C.; Zhang, S.; Yuan, J.X.-J.; Greenberg, B.H. Angiotensin-(1–7) Binds to Specific Receptors on Cardiac Fibroblasts to Initiate Antifibrotic and Antitrophic Effects. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H2356–H2363. [Google Scholar] [CrossRef] [PubMed]
- Zisman, L.S.; Keller, R.S.; Weaver, B.; Lin, Q.; Speth, R.; Bristow, M.R.; Canver, C.C. Increased Angiotensin-(1-7)–Forming Activity in Failing Human Heart Ventricles. Circulation 2003, 108, 1707–1712. [Google Scholar] [CrossRef] [Green Version]
- Zisman, L.S.; Meixell, G.E.; Bristow, M.R.; Canver, C.C. Angiotensin-(1-7) Formation in the Intact Human Heart. Circulation 2003, 108, 1679–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Knudson, J.D.; Setty, S.; Araiza, A.; Dincer, Ü.D.; Kuo, L.; Tune, J.D. Coronary Arteriolar Vasoconstriction to Angiotensin II Is Augmented in Prediabetic Metabolic Syndrome via Activation of AT1 Receptors. Am. J. Physiol.-Heart Circ. Physiol. 2005, 288, H2154–H2162. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chappell, M.C.; Ferrario, C.M.; Brosnihan, K.B. Angiotensin-(1–7) Augments Bradykinin-Induced Vasodilation by Competing With ACE and Releasing Nitric Oxide. Hypertension 1997, 29, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Brosnihan, K.B.; Li, P.; Ferrario, C.M. Angiotensin-(1-7) Dilates Canine Coronary Arteries Through Kinins and Nitric Oxide. Hypertension 1996, 27, 523–528. [Google Scholar] [CrossRef]
- Almeida, A.P.; Frábregas, B.C.; Madureira, M.M.; Santos, R.J.S.; Campagnole-Santos, M.J.; Santos, R.A.S. Angiotensin-(1-7) Potentiates the Coronary Vasodilatatory Effect of Bradykinin in the Isolated Rat Heart. Braz. J. Med. Biol. Res. 2000, 33, 709–713. [Google Scholar] [CrossRef] [Green Version]
- Ganten, D.; Marquez-Julio, A.; Granger, P.; Hayduk, K.; Peter Karsunky, K.; Boucher, R.; Genest, J. Renin in Dog Brain. Am. J. Physiol. 1971, 221, 1733–1737. [Google Scholar] [CrossRef] [Green Version]
- Pörsti, I.; Bara, A.T.; Busse, R.; Hecker, M. Release of Nitric Oxide by Angiotensin-(1-7) from Porcine Coronary Endothelium: Implications for a Novel Angiotensin Receptor. Br. J. Pharmacol. 1994, 111, 652–654. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Babiker, F.; Akhtar, U.A.; Benter, I.F. Mitigating Cardiotoxicity of Dendrimers: Angiotensin-(1-7) via Its Mas Receptor Ameliorates PAMAM-Induced Cardiac Dysfunction in the Isolated Mammalian Heart. Pharmaceutics 2022, 14, 2673. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wu, D.; Wang, Z.; Zhang, H.; Du, Y.; Wang, G. Diminazene Aceturate Mitigates Cardiomyopathy by Interfering with Renin-Angiotensin System in a Septic Rat Model. BMC Pharmacol. Toxicol. 2022, 23, 44. [Google Scholar] [CrossRef]
- Chen, X.-S.; Cui, J.-R.; Meng, X.-L.; Wang, S.-H.; Wei, W.; Gao, Y.-L.; Shou, S.-T.; Liu, Y.-C.; Chai, Y.-F. Angiotensin-(1–7) Ameliorates Sepsis-Induced Cardiomyopathy by Alleviating Inflammatory Response and Mitochondrial Damage through the NF-ΚB and MAPK Pathways. J. Transl. Med. 2023, 21, 2. [Google Scholar] [CrossRef]
- Sykora, M.; Kratky, V.; Kopkan, L.; Tribulova, N.; Szeiffova Bacova, B. Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart. Int. J. Mol. Sci. 2023, 24, 3490. [Google Scholar] [CrossRef] [PubMed]
- Sernia, C. A Critical Appraisal of the Intrinsic Pancreatic Angiotensin-Generating System. JOP 2001, 2, 50–55. [Google Scholar]
- Spät, A.; Hunyady, L. Control of Aldosterone Secretion: A Model for Convergence in Cellular Signaling Pathways. Physiol. Rev. 2004, 84, 489–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, A.H.; Schauser, K.H.; Poulsen, K. Current Topic: The Uteroplacental Renin–Angiotensin System. Placenta 2000, 21, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the Renin-Angiotensin System—An Endocrine and Paracrine System. Endocrinology 2003, 144, 2179–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, M.; Takai, S. Tissue Angiotensin II Generating System by Angiotensin-Converting Enzyme and Chymase. J. Pharmacol. Sci. 2006, 100, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Underwood, P.C.; Adler, G.K. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Curr. Hypertens. Rep. 2013, 15, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, E.J.; Prasannarong, M. The Role of the Renin-Angiotensin System in the Development of Insulin Resistance in Skeletal Muscle. Mol. Cell. Endocrinol. 2013, 378, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, T.; Asano, T.; Ando, K.; Chiba, Y.; Sakoda, H.; Anai, M.; Shojima, N.; Ono, H.; Onishi, Y.; Fujishiro, M.; et al. Angiotensin II–Induced Insulin Resistance Is Associated With Enhanced Insulin Signaling. Hypertension 2002, 40, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Chai, W.; Wang, W.; Liu, J.; Barrett, E.J.; Carey, R.M.; Cao, W.; Liu, Z. Angiotensin II Type 1 and Type 2 Receptors Regulate Basal Skeletal Muscle Microvascular Volume and Glucose Use. Hypertension 2010, 55, 523–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond-Stanic, M.K.; Henriksen, E.J. Direct Inhibition by Angiotensin II of Insulin-Dependent Glucose Transport Activity in Mammalian Skeletal Muscle Involves a ROS-Dependent Mechanism. Arch. Physiol. Biochem. 2010, 116, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamerson, K.A.; Nesbitt, S.D.; Amerena, J.V.; Grant, E.; Julius, S. Angiotensin Mediates Forearm Glucose Uptake by Hemodynamic Rather Than Direct Effects. Hypertension 1996, 27, 854–858. [Google Scholar] [CrossRef]
- Richey, J.M.; Ader, M.; Moore, D.; Bergman, R.N. Angiotensin II Induces Insulin Resistance Independent of Changes in Interstitial Insulin. Am. J. Physiol.-Endocrinol. Metab. 1999, 277, E920–E926. [Google Scholar] [CrossRef]
- Blendea, M.C.; Jacobs, D.; Stump, C.S.; McFarlane, S.I.; Ogrin, C.; Bahtyiar, G.; Stas, S.; Kumar, P.; Sha, Q.; Ferrario, C.M.; et al. Abrogation of Oxidative Stress Improves Insulin Sensitivity in the Ren-2 Rat Model of Tissue Angiotensin II Overexpression. Am. J. Physiol.-Endocrinol. Metab. 2005, 288, E353–E359. [Google Scholar] [CrossRef]
- Luther, J.M.; Brown, N.J. The Renin–Angiotensin–Aldosterone System and Glucose Homeostasis. Trends Pharmacol. Sci. 2011, 32, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Archuleta, T.L.; Lemieux, A.M.; Saengsirisuwan, V.; Teachey, M.K.; Lindborg, K.A.; Kim, J.S.; Henriksen, E.J. Oxidant Stress-Induced Loss of IRS-1 and IRS-2 Proteins in Rat Skeletal Muscle: Role of P38 MAPK. Free Radic. Biol. Med. 2009, 47, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, P.-O.; Berne, C.; Jansson, L. Angiotensin II and the Endocrine Pancreas: Effects on Islet Blood Flow and Insulin Secretion in Rats. Diabetologia 1998, 41, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Jansson, L.; Sjöholm, Å. Vasoactive Drugs Enhance Pancreatic Islet Blood Flow, Augment Insulin Secretion and Improve Glucose Tolerance in Female Rats. Clin. Sci. 2007, 112, 69–76. [Google Scholar] [CrossRef] [Green Version]
- van der Zijl, N.J.; Moors, C.C.M.; Goossens, G.H.; Hermans, M.M.H.; Blaak, E.E.; Diamant, M. Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism. Diabetes Care 2011, 34, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowers, J.R.; Raij, L.; Jialal, I.; Egan, B.M.; Ofili, E.O.; Samuel, R.; Zappe, D.H.; Purkayastha, D.; Deedwania, P.C. Angiotensin Receptor Blocker/Diuretic Combination Preserves Insulin Responses in Obese Hypertensives. J. Hypertens. 2010, 28, 1761–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, J.D.; Johnson, N.D.; Haroldson, T.A.; Brintnall, J.A.; Herrera, J.E.; Katz, S.A.; Bernlohr, D.A. Regulated Renin Release from 3T3-L1 Adipocytes. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E1383–E1391. [Google Scholar] [CrossRef] [Green Version]
- Marcus, Y.; Shefer, G.; Stern, N. Adipose Tissue Renin–Angiotensin–Aldosterone System (RAAS) and Progression of Insulin Resistance. Mol. Cell. Endocrinol. 2013, 378, 46–52. [Google Scholar] [CrossRef]
- Lee, M.H.; Song, H.K.; Ko, G.J.; Kang, Y.S.; Han, S.Y.; Han, K.H.; Kim, H.K.; Han, J.Y.; Cha, D.R. Angiotensin Receptor Blockers Improve Insulin Resistance in Type 2 Diabetic Rats by Modulating Adipose Tissue. Kidney Int. 2008, 74, 890–900. [Google Scholar] [CrossRef] [Green Version]
- Sarzani, R.; Marcucci, P.; Salvi, F.; Bordicchia, M.; Espinosa, E.; Mucci, L.; Lorenzetti, B.; Minardi, D.; Muzzonigro, G.; Dessì-Fulgheri, P.; et al. Angiotensin II Stimulates and Atrial Natriuretic Peptide Inhibits Human Visceral Adipocyte Growth. Int. J. Obes. 2008, 32, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, G.H.; Moors, C.C.M.; van der Zijl, N.J.; Venteclef, N.; Alili, R.; Jocken, J.W.E.; Essers, Y.; Cleutjens, J.P.; Clément, K.; Diamant, M.; et al. Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial. PLoS ONE 2012, 7, e39930. [Google Scholar] [CrossRef] [Green Version]
- Conn, J.W. Hypertension, the Potassium Ion and Impaired Carbohydrate Tolerance. N. Engl. J. Med. 1965, 273, 1135–1143. [Google Scholar] [CrossRef]
- Conn, J.W.; Knopf, R.F.; Nesbit, R.M. Clinical Characteristics of Primary Aldosteronism from an Analysis of 145 Cases. Am. J. Surg. 1964, 107, 159–172. [Google Scholar] [CrossRef]
- Luther, J.M. Effects of Aldosterone on Insulin Sensitivity and Secretion. Steroids 2014, 91, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitomi, H.; Kiyomoto, H.; Nishiyama, A.; Hara, T.; Moriwaki, K.; Kaifu, K.; Ihara, G.; Fujita, Y.; Ugawa, T.; Kohno, M. Aldosterone Suppresses Insulin Signaling Via the Downregulation of Insulin Receptor Substrate-1 in Vascular Smooth Muscle Cells. Hypertension 2007, 50, 750–755. [Google Scholar] [CrossRef] [Green Version]
- Šindelka, G.; Widimský, J.; Haas, T.; Prázný, M.; Hilgertová, J.; Škrha, J. Insulin Action in Primary Hyperaldosteronism before and after Surgical or Pharmacological Treatment. Exp. Clin. Endocrinol. Diabetes 2012, 108, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Widimský, J.; Sindelka, G.; Haas, T.; Prázný, M.; Hilgertová, J.; Skrha, J. Impaired Insulin Action in Primary Hyperaldosteronism. Physiol. Res. 2000, 49, 241–244. [Google Scholar]
- Catena, C.; Lapenna, R.; Baroselli, S.; Nadalini, E.; Colussi, G.; Novello, M.; Favret, G.; Melis, A.; Cavarape, A.; Sechi, L.A. Insulin Sensitivity in Patients with Primary Aldosteronism: A Follow-Up Study. J. Clin. Endocrinol. Metab. 2006, 91, 3457–3463. [Google Scholar] [CrossRef]
- Giacchetti, G.; Ronconi, V.; Turchi, F.; Agostinelli, L.; Mantero, F.; Rilli, S.; Boscaro, M. Aldosterone as a Key Mediator of the Cardiometabolic Syndrome in Primary Aldosteronism: An Observational Study. J. Hypertens. 2007, 25, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Raheja, P.; Price, A.; Wang, Z.; Arbique, D.; Adams-Huet, B.; Auchus, R.J.; Vongpatanasin, W. Spironolactone Prevents Chlorthalidone-Induced Sympathetic Activation and Insulin Resistance in Hypertensive Patients. Hypertension 2012, 60, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widimský, J.; Strauch, B.; Sindelka, G.; Skrha, J. Can Primary Hyperaldosteronism Be Considered as a Specific Form of Diabetes Mellitus? Physiol. Res. 2001, 50, 603–607. [Google Scholar]
- Strauch, B.; Widimský, J.; Sindelka, G.; Skrha, J. Does the Treatment of Primary Hyperaldosteronism Influence Glucose Tolerance? Physiol. Res. 2003, 52, 503–506. [Google Scholar]
- Sampaio, W.O.; Henrique de Castro, C.; Santos, R.A.S.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) Counterregulates Angiotensin II Signaling in Human Endothelial Cells. Hypertension 2007, 50, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.I.; Souza Santos, R.A.; Simões e Silva, A.C.; Cabral, A.C.V.; Vieira, R.L.P.; Drumond, T.C.; Machado, L.J.D.C.; Freire, C.M.V.; Ribeiro-Oliveira, A. The Pregnancy-Induced Increase of Plasma Angiotensin-(1–7) Is Blunted in Gestational Diabetes. Regul. Pept. 2007, 141, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Soro-Paavonen, A.; Gordin, D.; Forsblom, C.; Rosengard-Barlund, M.; Waden, J.; Thorn, L.; Sandholm, N.; Thomas, M.C.; Groop, P.-H. Circulating ACE2 Activity Is Increased in Patients with Type 1 Diabetes and Vascular Complications. J. Hypertens. 2012, 30, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Yamamoto, K.; Takemura, Y.; Takeshita, H.; Hongyo, K.; Kawai, T.; Hanasaki-Yamamoto, H.; Oguro, R.; Takami, Y.; Tatara, Y.; et al. Loss of ACE2 Exaggerates High-Calorie Diet–Induced Insulin Resistance by Reduction of GLUT4 in Mice. Diabetes 2013, 62, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, S.H.S.; Fernandes, L.R.; Mario, E.G.; Ferreira, A.V.M.; Pôrto, L.C.J.; Alvarez-Leite, J.I.; Botion, L.M.; Bader, M.; Alenina, N.; Santos, R.A.S. Mas Deficiency in FVB/N Mice Produces Marked Changes in Lipid and Glycemic Metabolism. Diabetes 2008, 57, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholm, L.H.; Ibsen, H.; Dahlöf, B.; Devereux, R.B.; Beevers, G.; de Faire, U.; Fyhrquist, F.; Julius, S.; Kjeldsen, S.E.; Kristiansson, K.; et al. Cardiovascular Morbidity and Mortality in Patients with Diabetes in the Losartan Intervention For Endpoint Reduction in Hypertension Study (LIFE): A Randomised Trial against Atenolol. Lancet 2002, 359, 1004–1010. [Google Scholar] [CrossRef]
- Heart Outcomes Prevention Evaluation Study Investigators; Yusuf, S.; Sleight, P.; Pogue, J.; Bosch, J.; Davies, R.; Dagenais, G. Effects of an Angiotensin-Converting–Enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [CrossRef]
- NAVIGATOR Study Group; McMurray, J.J.; Holman, R.R.; Haffner, S.M.; Bethel, M.; Holzhauer, B.; Hua, T.A.; Belenkov, Y.; Boolell, M.; Buse, J.B.; et al. Effect of Valsartan on the Incidence of Diabetes and Cardiovascular Events. N. Engl. J. Med. 2010, 362, 1477–1490. [Google Scholar] [CrossRef] [Green Version]
- DREAM Trial Investigators; Bosch, J.; Yusuf, S.; Gerstein, H.C.; Pogue, J.; Sheridan, P.; Dagenais, G.; Diaz, R.; Avezum, A.; Lanas, F.; et al. Effect of Ramipril on the Incidence of Diabetes. N. Engl. J. Med. 2006, 355, 1551–1562. [Google Scholar] [CrossRef]
- Murtaza, G.; Virk, H.U.H.; Khalid, M.; Lavie, C.J.; Ventura, H.; Mukherjee, D.; Ramu, V.; Bhogal, S.; Kumar, G.; Shanmugasundaram, M.; et al. Diabetic Cardiomyopathy—A Comprehensive Updated Review. Prog. Cardiovasc. Dis. 2019, 62, 315–326. [Google Scholar] [CrossRef]
- Bouthoorn, S.; Valstar, G.B.; Gohar, A.; den Ruijter, H.M.; Reitsma, H.B.; Hoes, A.W.; Rutten, F.H. The Prevalence of Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction in Men and Women with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diab Vasc. Dis. Res. 2018, 15, 477–493. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of Diabetic Cardiomyopathy and Potential Therapeutic Strategies: Preclinical and Clinical Evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Brunvand, L.; Heier, M.; Brunborg, C.; Hanssen, K.F.; Fugelseth, D.; Stensaeth, K.H.; Dahl-Jørgensen, K.; Margeirsdottir, H.D. Advanced Glycation End Products in Children with Type 1 Diabetes and Early Reduced Diastolic Heart Function. BMC Cardiovasc. Disord. 2017, 17, 133. [Google Scholar] [CrossRef]
- Hölscher, M.; Bode, C.; Bugger, H. Diabetic Cardiomyopathy: Does the Type of Diabetes Matter? Int. J. Mol. Sci. 2016, 17, 2136. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nat. Rev. Endocrinol. 2016, 12, 144–153. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ruiz-Ortega, M.; Lorenzo, O.; Ruperez, M.; Esteban, V.; Egido, J. Inflammation and Angiotensin II. Int. J. Biochem. Cell Biol. 2003, 35, 881–900. [Google Scholar] [CrossRef]
- Joseph, J.J.; Echouffo Tcheugui, J.B.; Effoe, V.S.; Hsueh, W.A.; Allison, M.A.; Golden, S.H. Renin-Angiotensin-Aldosterone System, Glucose Metabolism and Incident Type 2 Diabetes Mellitus: MESA. J. Am. Heart Assoc. 2018, 7, e009890. [Google Scholar] [CrossRef] [PubMed]
- Rangaswami, J.; Bhalla, V.; Blair, J.E.A.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef] [PubMed]
- Clementi, A.; Virzì, G.M.; Brocca, A.; de Cal, M.; Vescovo, G.; Granata, A.; Ronco, C. Cardiorenal Syndrome Type 4: Management. Blood Purif. 2013, 36, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Mori, J.; Patel, V.B.; Abo Alrob, O.; Basu, R.; Altamimi, T.; DesAulniers, J.; Wagg, C.S.; Kassiri, Z.; Lopaschuk, G.D.; Oudit, G.Y. Angiotensin 1–7 Ameliorates Diabetic Cardiomyopathy and Diastolic Dysfunction in Db/Db Mice by Reducing Lipotoxicity and Inflammation. Circ. Heart Fail. 2014, 7, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; et al. Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef]
- Papinska, A.M.; Mordwinkin, N.M.; Meeks, C.J.; Jadhav, S.S.; Rodgers, K.E. Angiotensin-(1-7) Administration Benefits Cardiac, Renal and Progenitor Cell Function in Db/Db Mice. Br. J. Pharmacol. 2015, 172, 4443–4453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, M.; Oikawa, O.; Okada, K.; Soma, M. Urinary Angiotensin-Converting Enzyme 2 Increases in Diabetic Nephropathy by Angiotensin II Type 1 Receptor Blocker Olmesartan. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Reference Number | Study Design | Sample | Main Findings | Conclusion/Knowledge Gaps |
---|---|---|---|---|---|
Mori et al. | [110] | Experimental | Mice | Angiotensin-(1-7) reduced cardiac hypertrophy, lipotoxicity, and adipose tissue inflammation. The heptapeptide also produced the upregulation of adipose triglyceride lipase and completely rescued the diastolic dysfunction. | Ang-(1-7) represents a promising therapy for diabetic cardiomyopathy associated with type 2 diabetes mellitus. |
Crackower et al. | [111] | Experimental | Mice | Targeted disruption of angiotensin-converting enzyme 2 (ACE2) resulted in severe cardiac contractility defect, increased angiotensin II levels, and produced the upregulation of hypoxia-induced genes in the heart. Genetic deletion of angiotensin-converting enzyme (ACE) on an ACE2 mutant background completely recovered the cardiac dysfunction. | Genetic data for ACE2 show that the enzyme is an essential regulator of heart function in vivo. |
Papinska et al. | [112] | Experimental | Mice | An improvement in heart function was observed in Ang-(1-7)-treated mice. Reduced cardiomyocyte hypertrophy, fibrosis, and inflammatory-cell infiltration were also observed. These changes were blocked by antagonists of the MAS1, AT2, and bradykinin receptors. | Short-term administration of angiotensin-(1-7) in young db/db mice improved heart function and reduced kidney damage. |
Abe et al. | [113] | Open-label, interventional study | 31 individuals | The treatment with olmesartan increased urinary ACE2 levels and reduced albuminuria, urinary liver-type fatty acid binding protein (L-FABP), and plasma aldosterone levels. | Olmesartan may increase urinary ACE2 levels. However, whether this contributes to olmesartan’s renoprotective effect must be examined further. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, J.P.T.; Faria, A.O.V.d.; Ribeiro, T.F.S.; Simões e Silva, A.C. The Role of Renin–Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life 2023, 13, 1598. https://doi.org/10.3390/life13071598
Batista JPT, Faria AOVd, Ribeiro TFS, Simões e Silva AC. The Role of Renin–Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life. 2023; 13(7):1598. https://doi.org/10.3390/life13071598
Chicago/Turabian StyleBatista, João Pedro Thimotheo, André Oliveira Vilela de Faria, Thomas Felipe Silva Ribeiro, and Ana Cristina Simões e Silva. 2023. "The Role of Renin–Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review" Life 13, no. 7: 1598. https://doi.org/10.3390/life13071598
APA StyleBatista, J. P. T., Faria, A. O. V. d., Ribeiro, T. F. S., & Simões e Silva, A. C. (2023). The Role of Renin–Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life, 13(7), 1598. https://doi.org/10.3390/life13071598