Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Collections
2.2. DNA Extraction, Polymerase Chain Reaction (PCR) and Sequencing
2.3. Phylogenetic Analyses
2.4. Taxonomy Study
2.5. Optimal Agar Medium for Mycelium Growth
2.6. Optimal Temperature and pH for Mycelium Growth
2.7. Effect of Spawn Production
2.8. Fruiting Test of Thai Wild Ganoderma in Bags and Field Cultivation
2.9. Statistical Analysis
2.10. Proximate Analysis
2.11. The α-Glucosidase Inhibitory Assay
3. Results
3.1. Phylogenetic Analyses
3.2. Taxonomy
3.3. Optimal Conditions for The Growth of The Mycelium of Wild Ganoderma from Thailand
3.4. Effect of Spawn Production
3.5. Fruiting Test of Thai Wild Ganoderma in Bags and Field Cultivation
3.6. Nutrition Values of Thai Wild Ganoderma
3.7. The α-Glucosidase Inhibitory Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karsten, P.A. Enumeratio Boletinarum et Polyporarum Fennicarum systematae novo dispositorum. Rev. Mycol. 1881, 3, 16–19. [Google Scholar]
- Justo, A.; Miettinen, O.; Floudaas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemela, D.; Nakasone, K.; Niemelö, T.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
- Cui, B.K.; Li, H.J.; Ji, X.; Zhou, J.L.; Song, J.; Si, J.; Yang, Z.L.; Dai, Y.C. Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. Int. J. Mycol. 2019, 97, 137–392. [Google Scholar] [CrossRef]
- Moncalvo, J.M.; Ryvarden, L. A Nomenclatural Study of the Ganodermataceae Donk; Fungiflora: Oslo, Norway, 1997; Volume 11, 114p, Available online: https://www.fungiflora.no/_files/ugd/b2cc6b_c203c189159b4c47862b64d1feb6e934.pdf (accessed on 23 January 2023).
- Núñez, M.; Ryvarden, L. East Asian Polypores: Ganodermataceae and Hymenochaetaceae; Fungiflora: Oslo, Norway, 2000; p. 168. Available online: www.mykoweb.com/systematics/literature/East%20Asian%20Polypores%20Vol%202.pdf (accessed on 23 January 2023).
- Ryvarden, L. Neotropical Polypores Part 1 Introduction, Ganodermataceae & Hymenochaetaceae; Fungiflora: Oslo, Norway, 2004; Volume 19, 229p, Available online: https://www.fungiflora.no/_files/ugd/b2cc6b_f5908c953a45494189c48f11f272b001.pdf (accessed on 23 January 2023).
- Index Fungorum. 2023. Available online: http://www.indexfungorum.org/names/names.asp (accessed on 20 June 2023).
- Luangharn, T.; Karunarathna, S.C.; Khan, S.; Xu, J.C.; Mortimer, P.E.; Hyde, K.D. Antibacterial activity, optimal culture conditions and cultivation of the medicinal Ganoderma australe, new to Thailand. Mycosphere 2017, 8, 1108–1123. [Google Scholar] [CrossRef]
- Luangharn, T.; Karunarathna, S.C.; Mortimer, P.E.; Hyde, K.D.; Thongklang, N.; Xu, J. A new record of Ganoderma tropicum (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 2019, 51, 65–83. [Google Scholar] [CrossRef]
- Thawthong, A.; Hapuarachchi, K.K.; Wen, T.C.; Raspé, O.; Thongklang, N.; Kang, J.C.; Hyde, K.D. Ganoderma sichuanense (Ganodermataceae, Polyporales) new to Thailand. MycoKeys 2017, 22, 27–43. [Google Scholar] [CrossRef]
- Cilerdzic, J.; Kosanic, M.; Stajić, M.; Vukojevic, J.; Ranković, B. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent. Int. J. Med. Mushrooms 2016, 18, 397–404. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, H.S. Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data. Mycol. Prog. 2013, 12, 121–126. [Google Scholar] [CrossRef]
- Pilotti, C.A. Stem rots of oil palm caused by Ganoderma boninense: Pathogen biology and epidemiology. Mycopathologia 2005, 159, 129–137. [Google Scholar] [CrossRef]
- Li, M.J.; Yuan, H.S. Type studies on Amauroderma species described by J.D. Zhao et al. and the phylogeny of species in China. Mycotaxon 2015, 130, 79–89. [Google Scholar] [CrossRef]
- Tchotet-Tchoumi, J.M.; Coetzee, M.P.A.; Rajchenberg, M.; Wingfield, M.J.; Roux, J. Three Ganoderma species, including Ganoderma dunense sp. nov., associated with dying Acacia cyclops trees in South Africa. Australas. Plant Pathol. 2018, 47, 431–447. [Google Scholar] [CrossRef]
- Pilotti, C.A.; Sanderson, F.R.; Aitken, E.A.B.; Armstrong, W. Morphological variation and host range of two Ganoderma species from Papua New Guinea. Mycopathologia 2004, 158, 251–265. [Google Scholar] [CrossRef]
- Dai, Y.C.; Yang, Z.L.; Cui, B.K.; Yu, C.J.; Zhou, L.W. Species Diversity and Utilization of Medicinal Mushrooms and Fungi in China (Review). Int. J. Med. Mushrooms 2009, 11, 287–302. [Google Scholar] [CrossRef]
- Hapuarachchi, K.K.; Karunarathna, S.C.; McKenzie, E.H.C.; Wu, X.L.; Kakumyan, P.; Hyde, K.D.; Wen, T.C. High phenotypic plasticity of Ganoderma sinense (Ganodermataceae, Polyporales) in China. Asian J. Mycol. 2018, 2, 1–47. Available online: https://asianjournalofmycology.org/pdf/AJOM_2_1_1.pdf (accessed on 8 February 2023). [CrossRef]
- Teng, B.S.; Wang, C.D.; Yang, H.J.; Wu, J.S.; Zhang, D.; Zheng, M.; Fan, Z.H.; Pan, D.; Zhou, P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J. Agric. Food Chem. 2011, 59, 6492–6500. [Google Scholar] [CrossRef]
- De Silva, D.D.; Rapior, S.; Fons, F.; Bahkali, A.H.; Hyde, K.D. Medicinal mushrooms in supportive cancer therapies: An approach to anti-cancer effects and putative mechanisms of action. Fungal Divers. Int. J. Mycol. 2012, 55, 1–35. [Google Scholar] [CrossRef]
- De Silva, D.D.; Rapior, S.; Sudarman, E.; Stadler, M.; Xu, J.C.; Alias, S.A.; Hyde, K.D. Bioactive metabolites from macrofungi: Ethnopharmacology, Biological activities, Chemistry. Fungal Divers. Int. J. Mycol. 2013, 62, 1–40. [Google Scholar] [CrossRef]
- Richter, C.; Wittstein, K.; Kirk, P.M.; Stadler, M. An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers. Int. J. Mycol. 2015, 71, 1–15. [Google Scholar] [CrossRef]
- Hapuarachchi, K.K.; Karunarathna, S.C.; Phengsintham, P.; Kakumyan, P.; Hyde, K.D.; Wen, T.C. Amauroderma (Ganodermataceae, Polyporales)—Bioactive compounds, beneficial properties and two new records from Laos. Asian J. Mycol. 2018, 1, 121–136. [Google Scholar] [CrossRef]
- Chang, S.T.; Buswell, J.A. Ganoderma lucidum (Curt.: Fr.) P. Karst. (Aphyllophoromycetideae)-A Mushrooming Medicinal Mushroom. Int. J. Med. Mushrooms 1999, 1, 139–146. [Google Scholar] [CrossRef]
- Lai, T.; Gao, Y.; Zhou, S. Global marketing of medicinal ling zhi mushroom Ganoderma lucidum (W. Curt.: Fr.) Lloyd (Aphyllophoromycetideae) products and safety concerns. Int. J. Med. Mushrooms 2004, 6, 189–194. [Google Scholar] [CrossRef]
- Singh, S.K.; Doshi, A.; Pancholy, A.; Pathak, R. Biodiversity in wood–decay macro–fungi associated with declining arid zone trees of India as revealed by nuclear rDNA analysis. Eur. J. Plant Pathol. 2013, 136, 373–382. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 38, 315–322. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.W.; Cao, Y.; Wu, S.H.; Vlasák, J.; Li, D.W.; Li, M.J.; Dai, Y.C. Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 2015, 114, 7–15. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. Available online: https://www.academia.edu/download/29520866/1999hall1.pdf (accessed on 8 February 2023).
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) 2002, Version 4.0 Beta Version 10. Sinauer Associates. Available online: https://www.researchgate.net/publication/271205405_PAUP_Phylogenetic_Analysis_Using_Parsimony_and_Other_Methods_Version_40b10 (accessed on 8 February 2023).
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Nylander, J.A. MrModeltest 2.0. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Rambaut A Fig Tree Version 1.4.0. 2012. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 24 January 2023).
- Sun, Y.F.; Xing, J.H.; He, X.L.; Wu, D.M.; Song, C.G.; Liu, S.; Vlasák, J.; Gates, G.; Gibertoni, T.B.; Cui, B.K. Species diversity, systematic revision and molecular phylogeny of Ganodermataceae (Polyporales, Basidiomycota) with an emphasis on Chinese collections. Stud. Mycol. 2022, 101, 287–415. [Google Scholar] [CrossRef]
- Xing, H.; Sun, Y.F.; Han, Y.L.; Cui, B.K.; Dai, Y.C. Morphological and molecular identification of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys 2018, 34, 93–108. Available online: https://mycokeys.pensoft.net/article/22593/download/pdf/ (accessed on 8 February 2023). [CrossRef] [PubMed]
- Wu, S.H.; Chern, C.L.; Wei, C.L.; Chen, Y.P.; Akiba, M.; Hattori, T. Ganoderma bambusicola sp. nov. (Polyporales, Basidiomycota) from southern Asia. Phytotxa 2020, 456, 75–85. [Google Scholar] [CrossRef]
- Luangharn, T.; Karunarathna, S.C.; Dutta, A.K.; Paloi, S.; Promputtha, I.; Hyde, K.D.; Xu, J.C.; Mortimer, P.E. Ganoderma (Ganodermataceae, Basidiomycota) species from the greater Mekong subregion. J. Fungi 2021, 7, 819. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M.P.A.; Marincowitz, S.; Muthelo, V.G.; Wingfield, M.J. Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South Africa. IMA Fungus 2015, 6, 249–256. [Google Scholar] [CrossRef]
- He, J.; Luo, Z.L.; Tang, S.M.; Li, Y.J.; Li, S.H.; Su, H. Phylogenetic analyses and morphological characters reveal two new species of Ganoderma from Yunnan province, China. MycoKeys 2021, 84, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Tchotet-Tchoumi, J.M.; Coetzee, M.P.A.; Rajchenberg, M.; Roux, J. Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 2019, 111, 730–747. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Richardson, D.M.; Leroux, J.J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.W.; Heykoop, M.; et al. Fungal planet description sheets: 400–468. Persoonia 2016, 36, 316–458. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Xing, J.H.; Decock, C.; He, X.L.; Cui, B.K. Molecular phylogeny and morphology reveal a new species of Amaurderma (Basidiomycota) from China. Phytotaxa 2016, 260, 47–56. [Google Scholar] [CrossRef]
- Xing, J.H.; Song, J.; Decock, C.; Cui, B.K. Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 2016, 266, 115–124. [Google Scholar] [CrossRef]
- Wang, D.M.; Wu, S.H.; Yao, Y.J. Clarification of the concept of Ganoderma orbiforme with high morphological plasticity. PLoS ONE 2014, 9, e98733. [Google Scholar] [CrossRef]
- Hapuarachchi, K.K.; Karunarathna, S.C.; Phengsintham, P.; Yang, H.D.; Kakumyan, P.; Hyde, K.D.; Wen, T.C. Ganodermataceae (Polyporales): Diversity in Greater Mekong Subregion countries (China, Laos, Myanmar, Thailand and Vietnam). Mycosphere 2019, 10, 221–309. [Google Scholar] [CrossRef]
- Kinge, T.R.; Mih, A.M. Ganoderma ryvardense sp. nov. Associated with Basal Stem Rot (BSR) Dis. Oil Palm Cameroon. Mycosphere 2011, 2, 179–188. Available online: https://www.mycosphere.org/pdfs/MC2_2_No8.pdf (accessed on 15 January 2023).
- Liu, H.; Guo, L.J.; Li, S.L.; Fan, L. Ganoderma shanxiense, a new species from northern China based on morphological and molecular evidence. Phytotaxa 2019, 406, 129–136. [Google Scholar] [CrossRef]
- Raja, H.A.; Baker, T.; Little, J.G.; Oberlies, N.F. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chem. 2017, 214, 383–392. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, S.H.; Dai, Y.C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 2012, 56, 49–62. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Roux, J.J.L.; Richardson, D.M.; Strasberg, D.; Shivas, R.G.; Alvarado, P.; Edwards, J.; Moreno, G.; Sharma, R.; et al. Fungal Planet Description Sheets: 371–399; Naturalis Biodiversity Center: Leiden, The Netherlands, 2015; pp. 371–399. [Google Scholar] [CrossRef]
- Lodge, D.J.; Ammirati, F.J.; O’Dell, T.E.; Mueller, G.M. Collecting and Describing Macrofungi. In Biodiversity of Fungi Inventory and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Elsevier Academic Press: London, UK, 2004; pp. 128–154. Available online: https://www.fpl.fs.usda.gov/documnts/pdf2004/fpl_2004_lodge001.pdf (accessed on 15 January 2023).
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour 1978; Eyre Methuen: Methuen, MA, USA, 1981. [Google Scholar]
- Miettinen, O.; Larsson, K.H. Trechispora elongata Species Nova from North Europe. Mycotaxon 2006, 96, 193–198. Available online: https://helda.helsinki.fi/bitstream/handle/10138/42882/Miettinen2006Trechispora_elongata.pdf?sequence=2 (accessed on 16 February 2023).
- Tulloss, R.E. Amaniteae: Amanita, Limacella, & Torrendia. By Pierre Neville & Serge Poumarat, etc. Book Review. Mycotaxon 2005, 92, 474–484. [Google Scholar]
- Thongklang, N.; Keokanngeun, L.; Taliam, W.; Hyde, K.D. Cultivation of a wild strain of Auricularia cornea from Thailand. Curr. Res. Environ. Appl. Mycol. 2020, 10, 120–130. [Google Scholar] [CrossRef]
- Royse, D.J. Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield. Bioresour. Technol. 2010, 101, 188–192. [Google Scholar] [CrossRef]
- Thongklang, N.; Sysouphanthong, P.; Callac, P.; Hyde, K.D. First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens. Mycosphere 2014, 5, 814–820. [Google Scholar] [CrossRef]
- Abdul Razak, D.L.; Abdullah, N.; Johari, N.M.K.; Vikineswary, S. Comparative study of mycelia growth and sporophore yield of Auricularia polytricha (Mont) Sacc on selected palm oil wastes as fruiting substrate. Appl. Microbiol. Biotechnol. 2013, 97, 3207–3213. [Google Scholar] [CrossRef]
- Liang, C.H.; Wu, C.Y.; Lu, P.L.; Kuo, Y.C.; Liang, Z.C. Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate 129 supplement with different proportions of grass plants. Saudi J. Biol. Sci. 2019, 26, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.D.; Xu, L.W.; Zhang, X.Q. Taxonomic studies on the family Ganodermataceae of China II. Acta Mycol. Sin. 1983, 2, 159–167. (In Chinese) [Google Scholar]
- Lloyd, J.U. The cultivation of hydrastis. J. Am. Pharmaceut. Assoc. 1912, 1, 5–12. [Google Scholar] [CrossRef]
- Moncalvo, J.M. Systematics of Ganoderma. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Egham, M., Eds.; CABI Bioscience: Wallingford, UK, 2000; pp. 23–45. [Google Scholar]
- Thawthong, A.; Karunarathna, S.C.; Thongklang, N.; Chukeatirote, E.; Kakumyam, P.; Chamyuang, S.; Rizal, L.M.; Mortimer, P.E.; Xu, J.; Callac, P.; et al. Discovering and Domesticating Wild Tropical Cultivatable Mushrooms. Chiang Mai J. Sci. 2014, 41, 731–764. Available online: https://www.researchgate.net/publication/266022771_Discovering_and_Domesticating_Wild_Tropical_Cultivatable_Mushrooms (accessed on 4 March 2023).
- Zervakis, G.; Philippoussis, A.; Ioannidou, S.; Diamantopoulou, P. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol. 2001, 46, 231–234. [Google Scholar] [CrossRef]
- Thongklang, N.; Lumyong, S.; Bussaban, B.; Hyde, K.D. Potential to cultivate Phlebopus portentosus; optimal conditions for mycelia growth and inoculum production. Maejo Int. J. Sci. Technol. 2010, 5, 413–425. Available online: https://mijst.mju.ac.th/vol5/413-425.pdf (accessed on 8 February 2023).
- Kapoor, P.; Sharma, B.M. Studies on Different Growth Parameters of Ganoderma lucidum. Int. J. Sci. Environ. Tech. 2014, 3, 1515–1524. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a6c5e137ce012d991bd1f544ed36c042413a7722 (accessed on 4 March 2023).
- Mendonça, M.D.; Kasuya, M.C.; Cadorin, A.; Vieira, A.J. Agaricus blazei Cultivation for a Living in Brazil. In Mushroom Growers’ Handbook 2: Shiitake Cultivation; MushWorld-Heineart Inc: Seoul, Republic of Korea, 2005; Available online: https://www.goba.eu/wp-content/uploads/2015/06/Mushroom_Growers_Handbook_2_-_Shiitake_Cultivation.pdf (accessed on 4 March 2023).
- Sharma, V.P.; Kumar, S. Spawn production technology. In Mushrooms: Cultivation, Marketing and Consumption; Singh, M., Vijay, B., Kamal, S., Wakchaure, G.C., Eds.; Directorate of Mushroom Research (ICAR): Himachal Pradesh, India, 2011; pp. 31–42. Available online: https://www.academia.edu/download/48415834/spawn.pdf (accessed on 12 March 2023).
- Thongklang, N.; Luangharn, T. Testing agricultural wastes for the production of Pleurotus ostreatus. Mycosphere 2016, 7, 766–772. [Google Scholar] [CrossRef]
- Alheeti, A.; Muslat, M.M.; Ayyash, L.M.; There, R.M. Isolation, Identification and Organic Production of Mushrooms Ganoderma lucidum (Curt.:Fr) Karst (Reishi). Indian J. Ecol. 2020, 47, 231–235. Available online: https://www.researchgate.net/publication/349699150_Isolation_Identification_and_Organic_Production_of_Mushrooms_Ganoderma_lucidum_CurtFr_Karst_Reishi (accessed on 12 March 2023).
- Luangharn, T.; Mortimer, P.E.; Karunarathna, S.C.; Hyde, K.D.; Xu, J. Domestication of Ganoderma leucocontextum, G. resinaceum, and G. gibbosum collected from Yunnan Province, China. Biosci. Biotechnol. Res. Asia 2020, 17, 7–26. [Google Scholar] [CrossRef]
- Ozcariz-Fermoselle, M.V.; Fraile-Fabero, R.; Girbés-Juan, T.; Arce-Cervantes, O.; Oria de Rueda-Salgueiro, J.A.; Azul, A.M. Use of lignocellulosic wastes of pecan (Carya illinoinensis) in the cultivation of Ganoderma lucidum. Rev. Iberoam. Micol. 2018, 35, 103–109. [Google Scholar] [CrossRef]
- Rashad, F.M.; Kattan, M.H.E.; Fathy, H.M.; El-Fattah, D.A.A.; Tohamy, M.E.; Farahat, A.A. Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag. 2019, 88, 147–159. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Singh, R.; Ghumman, N.K.; Shri, R.; Singh, A.P.; Dhingra, G.S. Proximate composition and element contents of selected species of Ganoderma with reference to dietary intakes. Environ Monit Assess 2020, 192, 270. [Google Scholar] [CrossRef]
- Fatmawati, S.; Shimizua, K.; Kondo, R. Ganoderol B: A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 2011, 18, 1053–1055. [Google Scholar] [CrossRef]
- Dai, Y.C.; Cui, B.K.; Yuan, H.S.; Li, B.D. Pathogenic wood–decaying fungi in China. For. Pathol. 2007, 37, 105–120. [Google Scholar] [CrossRef]
- Chen, X.Q.; Zhao, J.; Chen, L.X.; Wang, S.F.; Wang, Y.; Li, S.P. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry 2018, 149, 103–115. [Google Scholar] [CrossRef]
- Wang, S.M.; Han, J.J.; Ma, K.; Jin, T.; Bao, L.; Pei, Y.F.; Liu, H.W. New α-glucosidase inhibitors with p-terphenyl skeleton from the mushroom Hydnellum concrescens. Fitoterapia 2015, 98, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.F.; Yan, J.J.; Lang, H.Y.; Jin, L.C.; Qiu, F.J.; Wang, Y.J.; Xi, Z.F.; Shan, W.G.; Zhan, Z.J.; Ying, Y.M. Bioassay-guided isolation of lanostane-type triterpenoids as alpha-glucosidase inhibitors from Ganoderma hainanense. Phytochem. Lett. 2019, 29, 154–159. [Google Scholar] [CrossRef]
- Costa, T.M.; Mayer, D.A.; Siebert, D.A.; Micke, G.A.; Alberton, M.D.; Tavares, L.B.B.; de Oliveira, D. Kinetics analysis of the inhibitory effects of alpha-glucosidase and identification of compounds from Ganoderma lipsiense mycelium. Appl. Biochem. Biotechnol. 2020, 191, 996–1009. [Google Scholar] [CrossRef] [PubMed]
Fungal Species | Voucher | GenBank Accession No. | References | ||
---|---|---|---|---|---|
ITS | LSU | RPB2 | |||
Ganoderma acaciicola | Cui 16815 | MZ354895 | MZ355005 | MZ245384 | [40] |
G. acontextum | JV 0611 21G | KF605667 | - | - | [41] |
G. angustisporum | Cui 13817 | MG279170 | - | - | [41] |
G. angustisporum | Cui 14578 | MG279171 | - | - | [41] |
G. bambusicola | Wu1207-151 | MN957781 | - | LC517944 | [42] |
G. calidophilum | MFLU 19-2174 | MN398337 | - | - | [43] |
G. casuarinicola | Dai 16336 | MG279173 | - | - | [41] |
G. casuarinicola | HKAS 104639 | MK817650 | MK817654 | MK840868 | [9] |
G. destructans | CBS 139793 | NR 132919 | - | - | [44] |
G. destructans | Dai 16431 | MG279177 | - | MG367512 | [41] |
G. dianzhongense | L4230 | MW750236 | - | - | [45] |
G. dianzhongense | L4231 | MW750237 | - | MZ467043 | [45] |
G. dunense | CMW42157 | MG020255 | - | - | [46] |
G. ecuadoriense | ASL799 | KU128524 | KX228350 | - | [47] |
G. ecuadoriense | PMC126 | KU128525 | KU128529 | - | [47] |
G. eickeri | CMW 49692 | MH571690 | - | - | [46] |
G. enigmaticum | Dai 15970 | KU572486 | - | MG367513 | [48] |
G. esculentum | L4935 | MW750242 | - | MW839004 | [45] |
G. esculentum | L4946 | MW750243 | - | - | [45] |
G. gibbosum | MFLU 19-2176 | MN396311 | - | MN423118 | [43] |
G. hochiminhense | MFLU 19-2224 | MN398324 | MN396390 | - | [43] |
G. hochiminhense | MFLU 19-2225 | MN396662 | MN396391 | - | [43] |
G. knysnamense | CMW 47755 | MH571681 | - | - | [46] |
G. knysnamense | CMW 47756 | MH571684 | - | - | [46] |
G. leucocontextum | Dai 15601 | KU572485 | - | MG367516 | [49] |
G. leucocontextum | GDGM 44303 | KJ027607 | - | - | [14] |
G. lucidum | Cui 14404 | MG279181 | - | MG367519 | [41] |
G. lucidum | MFLU 19-2162 | MN396341 | - | MN423138 | [43] |
G. mastoporum | TNM F0018835 | JX840351 | - | - | [50] |
G. mastoporum | TNM-F0018783 | JX840352 | - | - | [50] |
G. multipileum | CWN 04670 | KJ143913 | - | KJ143972 | [30] |
G. multipileum | Dai 9447 | KJ143914 | - | KJ143973 | [30] |
G. myanmarense | MFLU19-2167 | MN396330 | MN428672 | - | [43] |
G. myanmarense | MFLU19-2169 | - | MN398325 | - | [43] |
G. orbiforme | MFLUCC 22-0066 | OP303318 | OP303348 | OP407740 | This study |
G. orbiforme | TH15061260 | MK345448 | - | - | [51] |
G. orbiforme | GACP14081185 | MK313109 | - | - | [51] |
G. ryvardenii | HKAS 58053 | HM138671 | - | - | [52] |
G. ryvardenii | HKAS 58054 | HM138672 | - | - | [52] |
G. shanxiense | BJTC FM423 | MK764268 | - | MK783940 | [53] |
G. shanxiense | HSA539 | MK764269 | - | MK789681 | [53] |
G. sichuanense | MFLUCC 22-0064 | MW246109 | OP303349 | - | This study |
G. sichuanense | MFLUCC 22-0065 | MW246111 | OP303350 | - | This study |
G. sichuanense | B1 1406706 | KT693255 | - | - | [54] |
G. sichuanense | Dai3583 | JQ781868 | - | - | [55] |
G. sichuanense | Dai12374 | JQ781867 | - | - | [55] |
G. subflexipes | Cui 17257 | MZ354922 | MZ355129 | MZ245396 | [40] |
G. subflexipes | Cui 16804 | MZ354973 | - | MZ345747 | [40] |
G. thailandicum | HKAS104640 | MK848681 | MK849879 | MK875831 | [9] |
G. thailandicum | HKAS104641 | MK848682 | MK849880 | MK875832 | [9] |
G. tongshanense | Cui 17168 | MZ354975 | MZ355024 | - | [40] |
G. tropicum | Yuan 3490 | JQ781880 | - | - | [55] |
G. tropicum | HKAS 97486 | MH823539 | - | - | [43] |
G. wiiroense | UMN-20-GHA | KT952361 | - | - | [56] |
G. wiiroense | UMN-21-GHA | KT952363 | - | - | [56] |
G. williamsianum | Dai 16809 | MG279183 | - | - | [41] |
G. yunlingense | Cui 16288 | MZ354915 | MZ355077 | - | [40] |
Tomophagus colossus | TC-02 | KJ143923 | - | - | [30] |
Parameter | G. sichuanense | G. orbiforme | ||
---|---|---|---|---|
MFLUCC 22-0064 | MFLUCC 22-0065 | MFLUCC 22-0066 | ||
Agar medium | PDA | 0.0692 ± 0.0110 b | 0.0640 ± 0.0099 b | 0.1186 ± 0.0095 b |
PSA | 0.1241 ± 0.0029 a | 0.1414 ± 0.0217 a | 0.0415 ± 0.0124 d | |
CMA | 0.0313 ± 0.0051 c | 0.0567 ± 0.0050 bc | 0.0156 ± 0.0079 e | |
OMA | 0.0363 ± 0.0028 c | 0.0392 ± 0.0056 c | 0.1496 ± 0.0118 a | |
MEA | 0.0666 ± 0.0030 b | 0.0676 ± 0.0088 b | 0.0819 ± 0.0058 c | |
Temperature (°C) | 20 | 0.0352 ± 0.0033 bc | 0.0478 ± 0.0073 c | 0.0224 ± 0.0005 b |
25 | 0.0861 ± 0.0192 ab | 0.1282 ± 0.0064 b | 0.0707 ± 0.0246 a | |
30 | 0.1295 ± 0.0611 a | 0.1721 ± 0.0235 a | 0.0512 ± 0.0006 a | |
40 | 0.0028 ± 0.0002 c | 0.0021 ± 0.0003 d | 0.0005 ± 0.0002 b | |
pH | 2 | 0.0421 ± 0.0022 d | 0.0390 ± 0.0063 c | 0.1147 ± 0.0451 c |
4 | 0.1899 ± 0.0172 a | 0.2063 ± 0.0335 a | 0.4495 ± 0.0236 a | |
6 | 0.1264 ± 0.0186 c | 0.1282 ± 0.0218 b | 0.4333 ± 0.0129 a | |
7 | 0.1433 ± 0.0242 bc | 0.1807 ± 0.0500 a | 0.0575 ± 0.0126 c | |
8 | 0.1570 ± 0.0298 b | 0.2221 ± 0.0219 a | 0.3185 ± 0.1238 b | |
Spawn Production | C. lacryma-jobi | 9.0000 ± 0.5244 a | 8.3400 ± 0.5273 a | 10.2600 ± 0.5367 a |
H. vulgare | 7.5600 ± 1.2681 a | 6.8000 ± 1.4124 a | 10.4000 ± 0.2236 a | |
O. sativa | 10.5000 ± 0.0000 a | 8.7200 ± 3.7579 a | 8.2200 ± 4.0801 a | |
T. aestivum | 7.8400 ± 2.0852 a | 9.2400 ± 1.4690 a | 8.3000 ± 0.5431 a | |
Z. mays | 3.7800 ± 4.3672 b | 8.2200 ± 3.4745 a | 4.2000 ± 1.8574 b |
Content | G. sichuanense | G. orbiforme | |
---|---|---|---|
MFLUCC 22-0064 | MFLUCC 22-0065 | MFLUCC 22-0066 | |
Primordia after inoculation (days) | 44–61 | 35–62 | 41–58 |
Average weight (g/bag) | 29.43 ± 4.72 | 33.92 ± 6.98 | 16.21 ± 3.51 |
Yield data (g/kg−1) | 36.79 | 42.41 | 20.26 |
Biological efficiency (B.E.) | 132.19 ± 4.72 | 152.35 ± 6.98 | 72.79 ± 3.51 |
Ganoderma Species | Proximate Analysis (%) | |||
---|---|---|---|---|
Protein | Fat | Fiber | Carbohydrates | |
MFLUCC 22-0064 | 12.80 ± 0.15 | 5.70 ± 0.56 | 48.61 ± 0.67 | 4.02 ± 0.11 |
MFLUCC 22-0065 | 13.74 ± 0.48 | 5.11 ± 0.11 | 47.90 ± 0.39 | 3.72 ± 0.31 |
MFLUCC 22-0066 | 14.67 ± 0.25 | 4.90 ± 0.56 | 52.45 ± 0.18 | 3.16 ± 0.43 |
Ganoderma Species | Fruiting Bodies | Mycelium | ||
---|---|---|---|---|
EtOH Extract | Water Extract | Acetone Extract | Water Extract | |
IC50 (µg/mL) | IC50 (µg/mL) | |||
MFLUCC 22-0064 | 126.94 ± 0.87 | inactive | inactive | inactive |
MFLUCC 22-0065 | 171.68 ± 2.78 | inactive | inactive | inactive |
MFLUCC 22-0066 | 105.97 ± 1.36 | 124.40 ± 3.18 | inactive | inactive |
Acarbose (µg/mL) | 168.18 ± 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannasawang, N.; Luangharn, T.; Thawthong, A.; Charoensup, R.; Jaidee, W.; Tongdeesoontorn, W.; Hyde, K.D.; Thongklang, N. Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life 2023, 13, 1887. https://doi.org/10.3390/life13091887
Wannasawang N, Luangharn T, Thawthong A, Charoensup R, Jaidee W, Tongdeesoontorn W, Hyde KD, Thongklang N. Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life. 2023; 13(9):1887. https://doi.org/10.3390/life13091887
Chicago/Turabian StyleWannasawang, Naruemon, Thatsanee Luangharn, Anan Thawthong, Rawiwan Charoensup, Wuttichai Jaidee, Wirongrong Tongdeesoontorn, Kevin D. Hyde, and Naritsada Thongklang. 2023. "Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity" Life 13, no. 9: 1887. https://doi.org/10.3390/life13091887
APA StyleWannasawang, N., Luangharn, T., Thawthong, A., Charoensup, R., Jaidee, W., Tongdeesoontorn, W., Hyde, K. D., & Thongklang, N. (2023). Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life, 13(9), 1887. https://doi.org/10.3390/life13091887