Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy
Abstract
:1. Introduction
2. Cancer, Inflammation, and Thrombosis
2.1. Role of Inflammation in Cancer
2.2. Role of Inflammation in Thrombosis
3. Indications for Anticoagulant Therapy in Cancer Patients
3.1. Treatment and Secondary Prevention of Venous Thromboembolism
3.2. Primary Prevention of Venous Thromboembolism
3.3. Atrial Fibrillation
4. Anti-Inflammatory Effects of DOACs
4.1. Rivaroxaban
Author | Protocol | Target | Disease Model | Results |
---|---|---|---|---|
Bukowska [75] | Pre-clinical in vitro | Human atrial tissue cells | Atrial tissue cultivated with Fxa and stimulated with 4 Hz pacing | ↓ PARs ↓ ICAM-1 ↓ IL-8 |
Ishibashi [76] | Pre-clinical in vitro | HUVECs | Citrated human plasma-induced ROS generation and adhesion molecules expression | ↓ MCP-1 ↓ ICAM-1 |
Ishibashi [77] | Pre-clinical in vitro | Human proximal tubular cells | AGE exposition | ↓ MCP-1 |
Ellinghaus [78] | Pre-clinical in vitro | HUVECs | Thrombin exposition and recalcified plasma incubation | ↓ VCAM-1, ICAM-1, MCP-1 ↓ IL-8 ↓ CXCL1, CXCL2 ↓ TF |
Zhou [79] | Pre-clinical in vivo | ApoE-deficient mice | Atherosclerosis of innominate artery | ↓ MCP-1 ↓ IL-6, TNF-α |
Hara [80] | Pre-clinical in vivo | C57BL/6 mice | Atherosclerosis of aortic arch | ↓ IL-1β, TNF-α |
Imano [81] | Pre-clinical in vivo | Male C57BL/6 J mice | Intermittent hypoxia | ↓ NF-kB |
Daci [82] | Pre-clinical in vivo | Wistar rats | LPS-induced acute inflammation | ↓ MCP-1 ↓ IL-6 |
Abdelzaher [83] | Pre-clinical in vivo | Adult male Wistar rats | CUMS-induced depression | ↓ NF-kB |
Martins [84] | Observational study | 127 AF patients | - | ↓ IL-2, IL-4, IL-10, TNF-α |
Kirchhof [85] | Post-hoc analysis of RCT | 918 AF patients | - | ↓ IL-6 |
Russo [87] | Observational study | 44 CAD/PAD patients | - | ↓ IL-6 ↓ fibrinogen |
4.2. Apixaban
4.3. Edoxaban
4.4. Dabigatran
5. Anticancer Effects of DOACs
5.1. Dabigatran
5.2. Apixaban
5.3. Rivaroxaban
5.4. Edoxaban
6. Anti-inflammatory and Anticancer Effects of Heparins
7. Clinical Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulder, F.I.; Horváth-Puhó, E.; Van Es, N.; Van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous Thromboembolism in Cancer Patients: A Population-Based Cohort Study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism Is a Leading Cause of Death in Cancer Patients Receiving Outpatient Chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.Y.; Levine, M.N.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.; Rickles, F.R.; Julian, J.A.; Haley, S.; Kovacs, M.J.; et al. Low-Molecular-Weight Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2003, 349, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Kirkilesis, G.I.; Kakkos, S.K.; Tsolakis, I.A. Editor’s Choice—A Systematic Review and Meta-Analysis of the Efficacy and Safety of Anticoagulation in the Treatment of Venous Thromboembolism in Patients with Cancer. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 685–701. [Google Scholar] [CrossRef]
- Khorana, A.A.; McCrae, K.R.; Milentijevic, D.; Fortier, J.; Nelson, W.W.; Laliberté, F.; Crivera, C.; Lefebvre, P.; Yannicelli, D.; Schein, J. Current Practice Patterns and Patient Persistence with Anticoagulant Treatments for Cancer-associated Thrombosis. Res. Pract. Thromb. Haemost. 2017, 1, 14–22. [Google Scholar] [CrossRef]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; Fauchier, L.; Filippatos, G.; et al. The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the Efficacy and Safety of New Oral Anticoagulants with Warfarin in Patients with Atrial Fibrillation: A Meta-Analysis of Randomised Trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- Russo, V.; Cattaneo, D.; Giannetti, L.; Bottino, R.; Laezza, N.; Atripaldi, U.; Clementi, E. Pharmacokinetics of Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Extreme Obesity. Clin. Ther. 2021, 43, e255–e263. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Papa, A.; Meo, F.; Attena, E.; Golino, P.; D’Onofrio, A.; Nigro, G. Use of Non–Vitamin K Antagonist Oral Anticoagulants in Atrial Fibrillation Patients with Malignancy: Clinical Practice Experience in a Single Institution and Literature Review. Semin. Thromb. Hemost. 2018, 44, 370–376. [Google Scholar] [CrossRef]
- Russo, V.; Bottino, R.; Rago, A.; Micco, P.; D’Onofrio, A.; Liccardo, B.; Golino, P.; Nigro, G. Atrial Fibrillation and Malignancy: The Clinical Performance of Non–Vitamin K Oral Anticoagulants—A Systematic Review. Semin. Thromb. Hemost. 2019, 45, 205–214. [Google Scholar] [CrossRef]
- Melillo, E.; Carbone, A.; Rago, A.; Papa, A.A.; Onofrio, A.D.; Nigro, G.; Golino, P.; Russo, V. Update on Direct Oral Anticoagulants in Atrial Fibrillation Patients Undergoing Cardiac Interventional Procedures: From Clinical Trials to Real-World Evidence. J. Cardiovasc. Pharmacol. 2020, 75, 185–199. [Google Scholar] [CrossRef]
- Carbone, A.; Santelli, F.; Bottino, R.; Attena, E.; Mazzone, C.; Parisi, V.; D’Andrea, A.; Golino, P.; Nigro, G.; Russo, V. Prevalence and Clinical Predictors of Inappropriate Direct Oral Anticoagulant Dosage in Octagenarians with Atrial Fibrillation. Eur. J. Clin. Pharmacol. 2022, 78, 879–886. [Google Scholar] [CrossRef]
- Carbone, A.; Bottino, R.; Attena, E.; Parisi, V.; Conte, M.; D’Andrea, A.; Imbalzano, E.; Golino, P.; Russo, V. Clinical Impact of Oral Anticoagulation among Octogenarians with Atrial Fibrillation and Anaemia. J. Thromb. Thrombolysis 2022, 55, 222–227. [Google Scholar] [CrossRef]
- Russo, V.; Attena, E.; Di Maio, M.; Carbone, A.; Parisi, V.; Rago, A.; Grieco, F.V.; Buonauro, A.; Golino, P.; Nigro, G. Non-vitamin K vs Vitamin K Oral Anticoagulants in Patients Aged > 80 Year with Atrial Fibrillation and Low Body Weight. Eur. J. Clin. Investig 2020, 50, e13335. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Attena, E.; Di Maio, M.; Mazzone, C.; Carbone, A.; Parisi, V.; Rago, A.; D’Onofrio, A.; Golino, P.; Nigro, G. Clinical Profile of Direct Oral Anticoagulants versus Vitamin K Anticoagulants in Octogenarians with Atrial Fibrillation: A Multicentre Propensity Score Matched Real-World Cohort Study. J. Thromb. Thrombolysis 2020, 49, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Attena, E.; Mazzone, C.; Esposito, F.; Parisi, V.; Bancone, C.; Rago, A.; Nigro, G.; Sangiuolo, R.; D’ Onofrio, A. Nonvitamin K Antagonist Oral Anticoagulants Use in Patients with Atrial Fibrillation and Bioprosthetic Heart Valves/Prior Surgical Valve Repair: A Multicenter Clinical Practice Experience. Semin. Thromb. Hemost. 2018, 44, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Carbone, A.; Attena, E.; Rago, A.; Mazzone, C.; Proietti, R.; Parisi, V.; Scotti, A.; Nigro, G.; Golino, P.; et al. Clinical Benefit of Direct Oral Anticoagulants Versus Vitamin K Antagonists in Patients with Atrial Fibrillation and Bioprosthetic Heart Valves. Clin. Ther. 2019, 41, 2549–2557. [Google Scholar] [CrossRef]
- Melillo, E.; Rago, A.; Proietti, R.; Attena, E.; Carrella, M.; Golino, P.; D’Onofrio, A.; Nigro, G.; Russo, V. Atrial Fibrillation and Mitral Regurgitation: Clinical Performance of Direct Oral Anticoagulants in a Real-World Setting. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 564–569. [Google Scholar] [CrossRef]
- Russo, V.; Attena, E.; Baroni, M.; Trotta, R.; Manu, M.C.; Kirchhof, P.; De Caterina, R. Clinical Performance of Oral Anticoagulants in Elderly with Atrial Fibrillation and Low Body Weight: Insight into Italian Cohort of PREFER-AF and PREFER-AF Prolongation Registries. J. Clin. Med. 2022, 11, 3751. [Google Scholar] [CrossRef]
- Carbone, A.; Bottino, R.; D’Andrea, A.; Russo, V. Direct Oral Anticoagulants for Stroke Prevention in Special Populations: Beyond the Clinical Trials. Biomedicines 2023, 11, 131. [Google Scholar] [CrossRef]
- Russo, V.; Carbone, A.; Rago, A.; Golino, P.; Nigro, G. Direct Oral Anticoagulants in Octogenarians with Atrial Fibrillation: It Is Never Too Late. J. Cardiovasc. Pharmacol. 2019, 73, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; Van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). JCO 2018, 36, 2017–2023. [Google Scholar] [CrossRef]
- McBane, R.D.; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and Dalteparin in Active Malignancy-associated Venous Thromboembolism: The ADAM VTE Trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Planquette, B.; Bertoletti, L.; Charles-Nelson, A.; Laporte, S.; Grange, C.; Mahé, I.; Pernod, G.; Elias, A.; Couturaud, F.; Falvo, N.; et al. Rivaroxaban vs Dalteparin in Cancer-Associated Thromboembolism. Chest 2022, 161, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. JCO 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 Guidelines for Management of Venous Thromboembolism: Prevention and Treatment in Patients with Cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Rossi, J.-F.; Lu, Z.Y.; Massart, C.; Levon, K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front. Immunol. 2021, 12, 595722. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Rogovskii, V. Modulation of Inflammation-Induced Tolerance in Cancer. Front. Immunol. 2020, 11, 1180. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Sig. Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Murata, M. Inflammation and Cancer. Environ. Health Prev. Med. 2018, 23, 50. [Google Scholar] [CrossRef]
- Xiao, L.; Li, X.; Cao, P.; Fei, W.; Zhou, H.; Tang, N.; Liu, Y. Interleukin-6 Mediated Inflammasome Activation Promotes Oral Squamous Cell Carcinoma Progression via JAK2/STAT3/Sox4/NLRP3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2022, 41, 166. [Google Scholar] [CrossRef]
- Crusz, S.M.; Balkwill, F.R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef]
- Wang, L.; Lan, J.; Tang, J.; Luo, N. MCP-1 Targeting: Shutting off an Engine for Tumor Development (Review). Oncol. Lett. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-C. The Non-Canonical NF-ΚB Pathway in Immunity and Inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Tegowski, M.; Baldwin, A. Noncanonical NF-ΚB in Cancer. Biomedicines 2018, 6, 66. [Google Scholar] [CrossRef]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef]
- Stark, K.; Massberg, S. Interplay between Inflammation and Thrombosis in Cardiovascular Pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous Thromboembolism: Thrombosis, Inflammation, and Immunothrombosis for Clinicians. J. Thromb. Thrombolysis 2017, 44, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.J.; Kubes, P. Intravascular Immunity: The Host–Pathogen Encounter in Blood Vessels. Nat. Rev. Immunol. 2009, 9, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Battinelli, E.M.; Hartwig, J.H.; Italiano, J.E. Delivering New Insight into the Biology of Megakaryopoiesis and Thrombopoiesis. Curr. Opin. Hematol. 2007, 14, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. The Interactions between Inflammation and Coagulation. Br. J. Haematol. 2005, 131, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.M.; Lin, E.; Mick, E.; Koupenova, M.; Weinberg, E.O.; Kramer, C.D.; Genco, C.A.; Tanriverdi, K.; Larson, M.G.; Benjamin, E.J.; et al. Interleukin 1 Receptor 1 and Interleukin 1β Regulate Megakaryocyte Maturation, Platelet Activation, and Transcript Profile During Inflammation in Mice and Humans. ATVB 2014, 34, 552–564. [Google Scholar] [CrossRef]
- Cognasse, F.; Duchez, A.C.; Audoux, E.; Ebermeyer, T.; Arthaud, C.A.; Prier, A.; Eyraud, M.A.; Mismetti, P.; Garraud, O.; Bertoletti, L.; et al. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front. Immunol. 2022, 13, 825892. [Google Scholar] [CrossRef]
- Esmon, C.T. The Regulation of Natural Anticoagulant Pathways. Science 1987, 235, 1348–1352. [Google Scholar] [CrossRef]
- Minami, T.; Sugiyama, A.; Wu, S.-Q.; Abid, R.; Kodama, T.; Aird, W.C. Thrombin and Phenotypic Modulation of the Endothelium. ATVB 2004, 24, 41–53. [Google Scholar] [CrossRef]
- Ossovskaya, V.S.; Bunnett, N.W. Protease-Activated Receptors: Contribution to Physiology and Disease. Physiol. Rev. 2004, 84, 579–621. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Andersen, H.; Whitmore, T.E.; Presnell, S.R.; Yee, D.P.; Ching, A.; Gilbert, T.; Davie, E.W.; Foster, D.C. Cloning and Characterization of Human Protease-Activated Receptor 4. Proc. Natl. Acad. Sci. USA 1998, 95, 6642–6646. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-S.; Yang, L.; Rezaie, A.R. Factor X/Xa Elicits Protective Signaling Responses in Endothelial Cells Directly via PAR-2 and Indirectly via Endothelial Protein C Receptor-Dependent Recruitment of PAR-1. J. Biol. Chem. 2010, 285, 34803–34812. [Google Scholar] [CrossRef] [PubMed]
- Riewald, M.; Kravchenko, V.V.; Petrovan, R.J.; O’Brien, P.J.; Brass, L.F.; Ulevitch, R.J.; Ruf, W. Gene Induction by Coagulation Factor Xa Is Mediated by Activation of Protease-Activated Receptor 1. Blood 2001, 97, 3109–3116. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, N.-P.; Tanaka, K.A.; Levy, J.H.; Guyton, R.A.; Zhao, Z.-Q.; Vinten-Johansen, J. Factor Xa Induces Tissue Factor Expression in Endothelial Cells by P44/42 MAPK and NF-ΚB-Dependent Pathways. J. Surg. Res. 2011, 169, 319–327. [Google Scholar] [CrossRef]
- Busch, G.; Seitz, I.; Steppich, B.; Hess, S.; Eckl, R.; Schömig, A.; Ott, I. Coagulation Factor Xa Stimulates Interleukin-8 Release in Endothelial Cells and Mononuclear Leukocytes: Implications in Acute Myocardial Infarction. ATVB 2005, 25, 461–466. [Google Scholar] [CrossRef]
- Chen, D.; Carpenter, A.; Abrahams, J.; Chambers, R.C.; Lechler, R.I.; McVey, J.H.; Dorling, A. Protease-Activated Receptor 1 Activation Is Necessary for Monocyte Chemoattractant Protein 1–Dependent Leukocyte Recruitment in Vivo. J. Exp. Med. 2008, 205, 1739–1746. [Google Scholar] [CrossRef]
- Sébert, M.; Sola-Tapias, N.; Mas, E.; Barreau, F.; Ferrand, A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front. Endocrinol. 2019, 10, 717. [Google Scholar] [CrossRef]
- Scotton, C.J.; Krupiczojc, M.A.; Königshoff, M.; Mercer, P.F.; Lee, Y.C.G.; Kaminski, N.; Morser, J.; Post, J.M.; Maher, T.M.; Nicholson, A.G.; et al. Increased Local Expression of Coagulation Factor X Contributes to the Fibrotic Response in Human and Murine Lung Injury. J. Clin. Investig. 2009, 119, 2550–2563. [Google Scholar] [CrossRef] [PubMed]
- Borensztajn, K.; Stiekema, J.; Nijmeijer, S.; Reitsma, P.H.; Peppelenbosch, M.P.; Spek, C.A. Factor Xa Stimulates Proinflammatory and Profibrotic Responses in Fibroblasts via Protease-Activated Receptor-2 Activation. Am. J. Pathol. 2008, 172, 309–320. [Google Scholar] [CrossRef]
- Heuberger, D.M.; Franchini, A.G.; Madon, J.; Schuepbach, R.A. Thrombin Cleaves and Activates the Protease-Activated Receptor 2 Dependent on Thrombomodulin Co-Receptor Availability. Thromb. Res. 2019, 177, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Efficacy and Safety of Enoxaparin versus Unfractionated Heparin for Prevention of Deep Vein Thrombosis in Elective Cancer Surgery: A Double-Blind Randomized Multicentre Trial with Venographic Assessment: PREVENTION OF DEEP VEIN THROMBOSIS IN CANCER SURGERY. Br. J. Surg. 1997, 84, 1099–1103. [CrossRef]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; Van Es, N. The Khorana Score for Prediction of Venous Thromboembolism in Cancer Patients: A Systematic Review and Meta-Analysis. Haematologica 2019, 104, 1277–1287. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I.; on behalf of the COMPASS–CAT Working Group. A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective COMPASS–Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, R.; Khorana, A.A.; Lee, A.Y.Y.; Soff, G. Cancer-associated Venous Thromboembolism: Treatment and Prevention with Rivaroxaban. Res. Pract. Thromb. Haemost. 2020, 4, 532–549. [Google Scholar] [CrossRef]
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, e125–e151. [Google Scholar] [CrossRef]
- Boriani, G.; Lee, G.; Parrini, I.; Lopez-Fernandez, T.; Lyon, A.R.; Suter, T.; Van Der Meer, P.; Cardinale, D.; Lancellotti, P.; Zamorano, J.L.; et al. Anticoagulation in Patients with Atrial Fibrillation and Active Cancer: An International Survey on Patient Management. Eur. J. Prev. Cardiol. 2021, 28, 611–621. [Google Scholar] [CrossRef]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous Thromboembolism in Cancer Patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef]
- Farmakis, D.; Papakotoulas, P.; Angelopoulou, E.; Bischiniotis, T.; Giannakoulas, G.; Kliridis, P.; Richter, D.; Paraskevaidis, I. Anticoagulation for Atrial Fibrillation in Active Cancer (Review). Oncol. Lett. 2022, 23, 124. [Google Scholar] [CrossRef] [PubMed]
- Bansilal, S.; Bloomgarden, Z.; Halperin, J.L.; Hellkamp, A.S.; Lokhnygina, Y.; Patel, M.R.; Becker, R.C.; Breithardt, G.; Hacke, W.; Hankey, G.J.; et al. Efficacy and Safety of Rivaroxaban in Patients with Diabetes and Nonvalvular Atrial Fibrillation: The Rivaroxaban Once-Daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial). Am. Heart J. 2015, 170, 675–682.e8. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, P.O.; Pokorney, S.D.; Lopes, R.D.; Wojdyla, D.M.; Gersh, B.J.; Giczewska, A.; Carnicelli, A.; Lewis, B.S.; Hanna, M.; Wallentin, L.; et al. Efficacy and Safety of Apixaban vs Warfarin in Patients with Atrial Fibrillation and Prior Bioprosthetic Valve Replacement or Valve Repair: Insights from the ARISTOTLE Trial. Clin. Cardiol. 2019, 42, 568–571. [Google Scholar] [CrossRef]
- Kato, E.T.; Giugliano, R.P.; Ruff, C.T.; Koretsune, Y.; Yamashita, T.; Kiss, R.G.; Nordio, F.; Murphy, S.A.; Kimura, T.; Jin, J.; et al. Efficacy and Safety of Edoxaban in Elderly Patients with Atrial Fibrillation in the ENGAGE AF–TIMI 48 Trial. J. Am. Heart Assoc. 2016, 5, e003432. [Google Scholar] [CrossRef]
- Bukowska, A.; Zacharias, I.; Weinert, S.; Skopp, K.; Hartmann, C.; Huth, C.; Goette, A. Coagulation Factor Xa Induces an Inflammatory Signalling by Activation of Protease-Activated Receptors in Human Atrial Tissue. Eur. J. Pharmacol. 2013, 718, 114–123. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Ueda, S.; Fukami, K.; Yamagishi, S. Advanced Glycation End Products Potentiate Citrated Plasma-Evoked Oxidative and Inflammatory Reactions in Endothelial Cells by up-Regulating Protease-Activated Receptor-1 Expression. Cardiovasc. Diabetol. 2014, 13, 60. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Fukami, K.; Ueda, S.; Okuda, S.; Yamagishi, S. Rivaroxaban Inhibits Oxidative and Inflammatory Reactions in Advanced Glycation End Product-Exposed Tubular Cells by Blocking Thrombin/Protease-Activated Receptor-2 System. Thromb. Res. 2015, 135, 770–773. [Google Scholar] [CrossRef]
- Ellinghaus, P.; Perzborn, E.; Hauenschild, P.; Gerdes, C.; Heitmeier, S.; Visser, M.; Summer, H.; Laux, V. Expression of Pro-Inflammatory Genes in Human Endothelial Cells: Comparison of Rivaroxaban and Dabigatran. Thromb. Res. 2016, 142, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Bea, F.; Preusch, M.; Wang, H.; Isermann, B.; Shahzad, K.; Katus, H.A.; Blessing, E. Evaluation of Plaque Stability of Advanced Atherosclerotic Lesions in Apo E-Deficient Mice after Treatment with the Oral Factor Xa Inhibitor Rivaroxaban. Mediat. Inflamm. 2011, 2011, 432080. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Nishimoto, S.; Yagi, S.; Yamada, H.; Soeki, T.; Wakatsuki, T.; et al. Rivaroxaban, a Novel Oral Anticoagulant, Attenuates Atherosclerotic Plaque Progression and Destabilization in ApoE-Deficient Mice. Atherosclerosis 2015, 242, 639–646. [Google Scholar] [CrossRef]
- Imano, H.; Kato, R.; Tanikawa, S.; Yoshimura, F.; Nomura, A.; Ijiri, Y.; Yamaguchi, T.; Izumi, Y.; Yoshiyama, M.; Hayashi, T. Factor Xa Inhibition by Rivaroxaban Attenuates Cardiac Remodeling Due to Intermittent Hypoxia. J. Pharmacol. Sci. 2018, 137, 274–282. [Google Scholar] [CrossRef]
- Daci, A.; Da Dalt, L.; Alaj, R.; Shurdhiqi, S.; Neziri, B.; Ferizi, R.; Danilo Norata, G.; Krasniqi, S. Rivaroxaban Improves Vascular Response in LPS-Induced Acute Inflammation in Experimental Models. PLoS ONE 2020, 15, e0240669. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, W.Y.; Mohammed, H.H.; Welson, N.N.; Batiha, G.E.-S.; Baty, R.S.; Abdel-Aziz, A.M. Rivaroxaban Modulates TLR4/Myd88/NF-Kβ Signaling Pathway in a Dose-Dependent Manner with Suppression of Oxidative Stress and Inflammation in an Experimental Model of Depression. Front. Pharmacol. 2021, 12, 715354. [Google Scholar] [CrossRef]
- Martins, G.L.; Duarte, R.C.F.; Vieira, É.L.M.; Rocha, N.P.; Figueiredo, E.L.; Silveira, F.R.; Caiaffa, J.R.S.; Lanna, R.P.; Carvalho, M.D.G.; Palotás, A.; et al. Comparison of Inflammatory Mediators in Patients with Atrial Fibrillation Using Warfarin or Rivaroxaban. Front. Cardiovasc. Med. 2020, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Ezekowitz, M.D.; Purmah, Y.; Schiffer, S.; Meng, I.L.; Camm, A.J.; Hohnloser, S.H.; Schulz, A.; Wosnitza, M.; Cappato, R. Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial. TH Open 2020, 04, e20–e32. [Google Scholar] [CrossRef] [PubMed]
- Ek, L.; Gezelius, E.; Bergman, B.; Bendahl, P.O.; Anderson, H.; Sundberg, J.; Wallberg, M.; Falkmer, U.; Verma, S.; Belting, M. Swedish Lung Cancer Study Group (SLUSG). Randomized phase III trial of low-molecular-weight heparin enoxaparin in addition to standard treatment in small-cell lung cancer: The RASTEN trial. Ann. Oncol. 2018, 29, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Fabiani, D.; Leonardi, S.; Attena, E.; D’Alterio, G.; Cotticelli, C.; Rago, A.; Sarpa, S.; Maione, B.; D’Onofrio, A.; et al. Dual Pathway Inhibition with Rivaroxaban and Aspirin Reduces Inflammatory Biomarkers in Atherosclerosis. J. Cardiovasc. Pharmacol. 2023, 81, 129–133. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Matsui, T.; Yamagishi, S. Apixaban Exerts Anti-Inflammatory Effects in Mesangial Cells by Blocking Thrombin/Protease-Activated Receptor-1 System. Thromb. Res. 2014, 134, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
- Torramade-Moix, S.; Palomo, M.; Vera, M.; Jerez, D.; Moreno-Castaño, A.B.; Zafar, M.U.; Rovira, J.; Diekmann, F.; Garcia-Pagan, J.C.; Escolar, G.; et al. Apixaban Downregulates Endothelial Inflammatory and Prothrombotic Phenotype in an In Vitro Model of Endothelial Dysfunction in Uremia. Cardiovasc. Drugs Ther. 2021, 35, 521–532. [Google Scholar] [CrossRef]
- Nakase, T.; Moroi, J.; Ishikawa, T. Anti-inflammatory and Antiplatelet Effects of Non-vitamin K Antagonist Oral Anticoagulants in Acute Phase of Ischemic Stroke Patients. Clin. Transl. Med. 2018, 7, 2. [Google Scholar] [CrossRef]
- Fang, L.; Ohashi, K.; Ogawa, H.; Otaka, N.; Kawanishi, H.; Takikawa, T.; Ozaki, Y.; Takahara, K.; Tatsumi, M.; Takefuji, M.; et al. Factor Xa Inhibitor, Edoxaban Ameliorates Renal Injury after Subtotal Nephrectomy by Reducing Epithelial-mesenchymal Transition and Inflammatory Response. Physiol. Rep. 2022, 10, e15218. [Google Scholar] [CrossRef]
- Candido, S.; Lumera, G.; Barcellona, G.; Vetri, D.; Tumino, E.; Platania, I.; Frazzetto, E.; Privitera, G.; Incognito, C.; Gaudio, A.; et al. Direct Oral Anticoagulant Treatment of Deep Vein Thrombosis Reduces IL-6 Expression in Peripheral Mono-nuclear Blood Cells. Exp. Ther. Med. 2020, 20, 237. [Google Scholar] [CrossRef] [PubMed]
- Almengló, C.; Mosquera-Garrote, N.; González-Peteiro, M.; González-Juanatey, J.R.; Álvarez, E. Edoxaban’s Contribution to Key Endothelial Cell Functions. Biochem. Pharmacol. 2020, 178, 114063. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Sanchez, A.; Yin, X.; Luo, J.; Martinez, J.; Grammas, P. Thrombin, a Mediator of Cerebrovascular Inflammation in AD and Hypoxia. Front. Aging Neurosci. 2013, 5, 19. [Google Scholar] [CrossRef]
- Mahmoud, N.I.; Messiha, B.A.S.; Salehc, I.G.; Abo-Saif, A.A.; Abdel-Bakky, M.S. Interruption of Platelets and Thrombin Function as a New Approach against Liver Fibrosis Induced Experimentally in Rats. Life Sci. 2019, 231, 116522. [Google Scholar] [CrossRef]
- Saifi, M.A.; Annaldas, S.; Godugu, C. A Direct Thrombin Inhibitor, Dabigatran Etexilate Protects from Renal Fibrosis by Inhibiting Protease Activated Receptor-1. Eur. J. Pharmacol. 2021, 893, 173838. [Google Scholar] [CrossRef]
- Song, K.; Wang, Y.; Sheng, J.; Ma, C.; Li, H. Effects of Dabigatran Regulates No-reflow Phenomenon in Acute Myocardial Infarction Mice through Anti-inflammatory and Anti-oxidative Activities and Connective Tissue Growth Factor Expression. Mol. Med. Rep. 2017, 18, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Rahadian, A.; Fukuda, D.; Salim, H.M.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Shimabukuro, M.; Sata, M. Thrombin Inhibition by Dabigatran Attenuates Endothelial Dysfunction in Diabetic Mice. Vasc. Pharmacol. 2020, 124, 106632. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, S.; Tsukahara, K.; Sakamaki, K.; Morita, Y.; Takamura, T.; Fukui, K.; Endo, T.; Shimizu, M.; Sawada, R.; Sugano, T.; et al. Comparison of Anti-Inflammatory Effects of Rivaroxaban vs. Dabigatran in Patients with Non-Valvular Atrial Fibrillation (RIVAL-AF Study): Multicenter Randomized Study. Heart Vessel. 2019, 34, 1002–1013. [Google Scholar] [CrossRef]
- Han, N.; Jin, K.; He, K.; Cao, J.; Teng, L. Protease-Activated Receptors in Cancer: A Systematic Review. Oncol. Lett. 2011, 2, 599–608. [Google Scholar] [CrossRef]
- DeFeo, K.; Hayes, C.; Chernick, M.; Van Ryn, J.; Gilmour, S.K. Use of Dabigatran Etexilate to Reduce Breast Cancer Progression. Cancer Biol. Ther. 2010, 10, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.T.; Minton, A.R.; Hayes, C.S.; Goss, A.; Van Ryn, J.; Gilmour, S.K. Thrombin Inhibition and Cyclophosphamide Synergistically Block Tumor Progression and Metastasis. Cancer Biol. Ther. 2015, 16, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.T.; Minton, A.R.; Peters, M.C.; Van Ryn, J.; Gilmour, S.K. Thrombin Inhibition and Cisplatin Block Tumor Progression in Ovarian Cancer by Alleviating the Immunosuppressive Microenvironment. Oncotarget 2016, 7, 85291–85305. [Google Scholar] [CrossRef]
- Vianello, F.; Sambado, L.; Goss, A.; Fabris, F.; Prandoni, P. Dabigatran Antagonizes Growth, Cell-cycle Progression, Migration, and Endothelial Tube Formation Induced by Thrombin in Breast and Glioblastoma Cell Lines. Cancer Med. 2016, 5, 2886–2898. [Google Scholar] [CrossRef]
- Shi, K.; Damhofer, H.; Daalhuisen, J.; Ten Brink, M.; Richel, D.J.; Spek, C.A. Dabigatran Potentiates Gemcitabine-Induced Growth Inhibition of Pancreatic Cancer in Mice. Mol. Med. 2017, 23, 13–23. [Google Scholar] [CrossRef]
- Yavuz, C.; Caliskan, A.; Karahan, O.; Yazici, S.; Guclu, O.; Demirtas, S.; Mavitas, B. Investigation of the Antiangiogenic Behaviors of Rivaroxaban and Low Molecular Weight Heparins. Blood Coagul. Fibrinolysis 2014, 25, 303–308. [Google Scholar] [CrossRef]
- Graf, C.; Wilgenbus, P.; Pagel, S.; Pott, J.; Marini, F.; Reyda, S.; Kitano, M.; Macher-Göppinger, S.; Weiler, H.; Ruf, W. Myeloid Cell–Synthesized Coagulation Factor X Dampens Antitumor Immunity. Sci. Immunol. 2019, 4, eaaw8405. [Google Scholar] [CrossRef]
- Guasti, L.; Squizzato, A.; Moretto, P.; Vigetti, D.; Ageno, W.; Dentali, F.; Maresca, A.M.; Campiotti, L.; Grandi, A.M.; Passi, A. In Vitro Effects of Apixaban on 5 Different Cancer Cell Lines. PLoS ONE 2017, 12, e0185035. [Google Scholar] [CrossRef] [PubMed]
- Kubat, E.; Onur, M.A.; Gürpınar, Ö.A. Cytotoxic Activity of Apixaban on HeLa Cells: An In Vitro Study. Hacet. J. Biol. Chem. 2018, 3, 395–402. [Google Scholar] [CrossRef]
- Featherby, S.; Madkhali, Y.; Maraveyas, A.; Ettelaie, C. Apixaban Suppresses the Release of TF-Positive Microvesicles and Restrains Cancer Cell Proliferation through Directly Inhibiting TF-FVIIa Activity. Thromb. Haemost. 2019, 119, 1419–1432. [Google Scholar] [CrossRef]
- Hiramoto, K.; Akita, N.; Nishioka, J.; Suzuki, K. Edoxaban, a Factor Xa-Specific Direct Oral Anticoagulant, Significantly Suppresses Tumor Growth in Colorectal Cancer Colon26-Inoculated BALB/c Mice. TH Open 2023, 07, e1–e13. [Google Scholar] [CrossRef]
- Salmi, S.; Hälinen, K.; Lin, A.; Suikkanen, S.; Jokelainen, O.; Rahunen, E.; Siiskonen, H.; Pasonen-Seppänen, S. The Association of CD8+ Cytotoxic T Cells and Granzyme B+ Lymphocytes with Immunosuppressive Factors, Tumor Stage and Prognosis in Cutaneous Melanoma. Biomedicines 2022, 10, 3209. [Google Scholar] [CrossRef]
- Roberts, E.W.; Broz, M.L.; Binnewies, M.; Headley, M.B.; Nelson, A.E.; Wolf, D.M.; Kaisho, T.; Bogunovic, D.; Bhardwaj, N.; Krummel, M.F. Critical Role for CD103+/CD141+ Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 2016, 30, 324–336. [Google Scholar] [CrossRef]
- Casu, B.; Vlodavsky, I.; Sanderson, R.D. Non-Anticoagulant Heparins and Inhibition of Cancer. Pathophysiol. Haemos. Thromb. 2007, 36, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Borsig, L. Heparin as an Inhibitor of Cancer Progression. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2010; Volume 93, pp. 335–349. ISBN 978-0-12-381282-7. [Google Scholar]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Hostettler, N.; Naggi, A.; Torri, G.; Ishai-Michaeli, R.; Casu, B.; Vlodavsky, I.; Borsig, L. P-selectin- and Heparanase-dependent Antimetastatic Activity of Non-anticoagulant Heparins. FASEB J. 2007, 21, 3562–3572. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.J.; Boehme, B.; Podda, M.; Henschler, R.; Jager, E.; Tandi, C.; Boehncke, W.-H.; Zollner, T.M.; Kaufmann, R.; Gille, J. Endothelial P-Selectin as a Target of Heparin Action in Experimental Melanoma Lung Metastasis. Cancer Res. 2004, 64, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, X.; Duan, J.; Yuan, L.; Fan, S.; Fan, J.; Xiaokaiti, Y.; Yang, H.; Wang, Y.; Li, X. Enoxaparin Sensitizes Human Non–Small-Cell Lung Carcinomas to Gefitinib by Inhibiting DOCK1 Expression, Vimentin Phosphorylation, and Akt Activation. Mol. Pharmacol. 2015, 87, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Pfankuchen, D.B.; Baltes, F.; Batool, T.; Li, J.-P.; Schlesinger, M.; Bendas, G. Heparin Antagonizes Cisplatin Resistance of A2780 Ovarian Cancer Cells by Affecting the Wnt Signaling Pathway. Oncotarget 2017, 8, 67553–67566. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Ye, K.H.; Zhang, H.W.; Luo, Y.R.; Ren, X.D.; Xiong, A.H.; Situ, R. Effect of Heparin on Apoptosis in Human Nasopharyngeal Carcinoma CNE2 Cells. Cell Res. 2001, 11, 311–315. [Google Scholar] [CrossRef]
- Shen, X.; Fang, J.; Lv, X.; Pei, Z.; Wang, Y.; Jiang, S.; Ding, K. Heparin Impairs Angiogenesis through Inhibition of MicroRNA-10b. J. Biol. Chem. 2011, 286, 26616–26627. [Google Scholar] [CrossRef]
- Ilan, N.; Elkin, M.; Vlodavsky, I. Regulation, Function and Clinical Significance of Heparanase in Cancer Metastasis and Angiogenesis. Int. J. Biochem. Cell Biol. 2006, 38, 2018–2039. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.L.; Ma, K.X.; Qu, J.M. Efficacy and safety of adjunctive anticoagulation in patients with lung cancer without indication for anticoagulants: A systematic review and meta-analysis. Thorax 2013, 68, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Falco, L.; Tessitore, V.; Ciccarelli, G.; Malvezzi, M.; D’Andrea, A.; Imbalzano, E.; Golino, P.; Russo, V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants 2023, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.; Fabiani, D. Put out the Fire: The Pleiotropic Anti-Inflammatory Action of Non-Vitamin K Oral Anticoagulants. Pharmacol. Res. 2022, 182, 106335. [Google Scholar] [CrossRef] [PubMed]
Author | Protocol | Target | Disease Model | Results |
---|---|---|---|---|
Ishibashi [88] | Pre-clinical in vitro | Human kidney mesangial cells | Citrated human plasma-induced ROS generation and adhesion molecule expression | ↓ MCP-1, ICAM-1 |
Nakase [90] | OPS | 44 patients with ICS | - | ↓ IL-6, hs CRP |
Torramade-Moix [89] | Pre-clinical in vitro | HUVECs and HMEC-1 | Exposition to serum from uremic patients undergoing peritoneal dialysis | ↓ ICAM-1, VCAM-1 |
Author | Protocol | Target | Disease Model | Results |
---|---|---|---|---|
Fang [91] | Pre-clinical in vitro | Male wild-type mice and HK-2 cells | 5/6 nephrectomy surgery | ↓ TNFa ↓ MCP-1 |
Candido [92] | CC study | 42 DVT patients | - | ↓ IL-6 |
Author | Protocol | Target | Disease Model | Results |
---|---|---|---|---|
Tripathy [94] | Pre-clinical in vitro | Rat brain endothelial cell cultures | Hypoxia exposition | ↓ MCP-1 |
Song [97] | Pre-clinical in vitro | Male New Zealand white rabbits | Coronary-occlusion-induced acute myocardial infarction | ↓ TNFa, IL-1 ↓ NF-kB |
Mahmoud [95] | Pre-clinical in vitro | Adult male albino rats | CCl4-induced liver fibrosis | ↓ TNFa, IL-1 |
Saifi [96] | Pre-clinical in vitro | Male Swiss albino mice | UUO-induced renal fibrosis | ↓ TNFa, IL-1 |
Rahadian [98] | Pre-clinical in vivo | STZ-induced diabetic C57BL/6 J mice | STZ-induced diabetes | ↓ MCP-1, ICAM-1 |
Kikuchi [99] | RCT | 117 AF patients | - | ↓ IL-6, IL-18 |
Author | Protocol | DOAC | Target | Disease Model | Results |
---|---|---|---|---|---|
DeFeo [101] | Pre-clinical in vitro and in vivo | Dabigatran | MDA-MB-231 cells, 4T1 cells and BALB/c mice | Breast cancer | ↓ Cell migration both in vitro and in vivo ↓ Circulating 4T1 cells ↓ Tumor dimension ↓ Liver micrometastases |
Alexander [102] | Pre-clinical in vitro and in vivo | Dabigatran | 4T1 cells and BALB/c mice | Breast cancer | ↓ Tumor dimension ↓ Lung metastases ↓ TGFβ ↓ Arginase + Gr-1 + CD11b+ MDSCs ↓ splenomegaly ↓ Circulating TF microparticles ↓ Activated platelets |
Alexander [103] | Pre-clinical in vitro and in vivo | Dabigatran | ID8-luc mouse ovarian carcinoma cells andC57/Bl6 mice | Ovarian cancer | ↓ Tumor growth ↓ Ascites ↓ Circulating activated platelets ↓ Circulating TF microparticles ↓ Gr1+/CD11b+ MDSCs ↓ CD11b+/CD11c+ DCs ↓ TGF-β, VEGF, IL-6, IL-10, and MCP-1↑ IFN-g |
Vianello [104] | Pre-clinical in vitro | Dabigatran | MDA-MB-231 and U87-MG | Breast cancer, glioblastoma | ↓ Thrombin-induced: —Tumor proliferation —p27 downregulation —Cyclin D1 upregulation—Proangiogenetic protein expression —Vascular tube formation —Cell migration |
Shi [105] | Pre-clinical in vitro and in vivo | Dabigatran | Panc02 cells and C57Bl/6 mice | Pancreatic cancer | ↓ Tumor growth ↓ Cell dissemination |
Yavuz [106] | Pre-clinical in vivo | Rivaroxaban | Ross 308 strain fertilized hen eggs | CAM | ↓ Angiogenesis |
Graf [107] | Pre-clinical in vitro and in vivo | Rivaroxaban | Melanoma B16F10 cells, fibro-sarcoma T241, PyMT tumor cells, and mutant mice | Breast cancer, melanoma, fibrosarcoma | ↓ Tumor growth ↓ Metastases ↓ TAMs expression of Mrc1 CD204 ↓ FoxP3 + CD4+ T cells in TME ↑ Tumor-killing granzyme B+ CD8+ T cells ↑ CD169+ macrophages and CD8+ DCs ↑ Antitumor immunity |
Guasti [108] | Pre-clinical in vitro | Apixaban | OVCAR3, MDA-MB-231, CaCO-2, LNCaP, U937 cells | Ovarian cancer, breast cancer, colon cancer, prostate cancer, histiocytic lymphoma | ↑ p16 ↑ Cell mortality (OVCAR3, MDA-MB-231, CaCO-2, U937 cells) ↓ Cell migration (OVCAR3, CaCO-2) ↓ Cell Proliferation (OVCAR3, CaCO-2, LNCaP) |
Kubat [109] | Pre-clinical in vitro | Apixaban | HeLa cells | Cervical cancer | ↓ Cell viability |
Featherby [110] | Pre-clinical in vitro | Apixaban | MDA-MB-231 and AsPC-1 cells | Breast cancer, pancreatic cancer | ↓ Release of TF-microvesicles from both fXa-activated cells and non-activated cells ↓ Cell proliferation of both fXa-activated cells and non-activated cells |
Hiramoto [111] | Pre-clinical in vitro and in vivo | Edoxaban | Colon26 cells and BALB/c mice | Colon cancer | ↓ Tumor growth ↓ TF, PAI-1, IL-6, and MMP-2 ↓ PAR2, STAT3, cyclin D1, and Ki67 |
Author | Protocol | Target | Disease Model | Results |
---|---|---|---|---|
Hostettler [117] | Pre-clinical in vitro and in vivo | MC-38, B16-BL6 cells and C57BL/6 J mice | Colon carcinoma/melanoma | ↓ Metastases |
Ludwig [118] | Pre-clinical in vitro and in vivo | B16F10 cells and C57BL/6 J mice | Melanoma | ↓ Metastases |
Pan [119] | Pre-clinical in vitro and in vivo | NSCLC-A549, H1975 cells and BALB/c mice | Non-small-cell lung cancer | ↓ Tumor volume, cell migration |
Pfankuchen [120] | Pre-clinical in vitro | A2780 cells | Ovarian cancer | ↑ Cisplatin sensitivity |
Li [121] | Pre-clinical in vitro | CNE2 cells | Nasopharyngeal carcinoma | ↑ DNA fragmentation, apoptosis, bax/bcl2 ratio |
Shen [122] | Pre-clinical in vitro | HMEC-1 cells | - | ↓ MiR-10b expression ↓ Cell migration, tube formation, and angiogenesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, V.; Falco, L.; Tessitore, V.; Mauriello, A.; Catapano, D.; Napolitano, N.; Tariq, M.; Caturano, A.; Ciccarelli, G.; D’Andrea, A.; et al. Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life 2023, 13, 1888. https://doi.org/10.3390/life13091888
Russo V, Falco L, Tessitore V, Mauriello A, Catapano D, Napolitano N, Tariq M, Caturano A, Ciccarelli G, D’Andrea A, et al. Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life. 2023; 13(9):1888. https://doi.org/10.3390/life13091888
Chicago/Turabian StyleRusso, Vincenzo, Luigi Falco, Viviana Tessitore, Alfredo Mauriello, Dario Catapano, Nicola Napolitano, Moiz Tariq, Alfredo Caturano, Giovanni Ciccarelli, Antonello D’Andrea, and et al. 2023. "Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy" Life 13, no. 9: 1888. https://doi.org/10.3390/life13091888
APA StyleRusso, V., Falco, L., Tessitore, V., Mauriello, A., Catapano, D., Napolitano, N., Tariq, M., Caturano, A., Ciccarelli, G., D’Andrea, A., & Giordano, A. (2023). Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life, 13(9), 1888. https://doi.org/10.3390/life13091888