Blood Growth Factor Levels in Patients with Systemic Lupus Erythematosus: High Neuregulin-1 Is Associated with Comorbid Cardiovascular Pathology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Serum Samples Collection
2.3. Multiplex Analysis of Growth Factor Levels in Serum
2.4. Protein–Protein Association Network Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Analyzed Groups and the Structure of Comorbid CVDs in Patients with SLE
3.2. Serum Concentrations of Growth Factors in Healthy Subjects and SLE Patients
3.3. Clinical Associations
3.4. Correlation of Growth Factor Levels with Cytokines, Functional Connectivity, and Co-Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barber, M.R.W.; Falasinnu, T.; Ramsey-Goldman, R.; Clarke, A.E. The Global Epidemiology of SLE: Narrowing the Knowledge Gaps. Rheumatology 2023, 62, i4–i9. [Google Scholar] [CrossRef] [PubMed]
- Izmirly, P.M.; Parton, H.; Wang, L.; McCune, W.J.; Lim, S.S.; Drenkard, C.; Ferucci, E.D.; Dall’Era, M.; Gordon, C.; Helmick, C.G.; et al. Prevalence of Systemic Lupus Erythematosus in the United States: Estimates From a Meta-Analysis of the Centers for Disease Control and Prevention National Lupus Registries. Arthritis Rheumatol. 2021, 73, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.; Park, J.S.; Lim, H.; Lee, C.H.; Lee, J. Incidence and Prevalence of Systemic Lupus Erythematosus among Korean Women in Childbearing Years: A Nationwide Population-Based Study. Lupus 2021, 30, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New Insights into the Immunopathogenesis of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Anti-DNA Antibodies—Quintessential Biomarkers of SLE. Nat. Rev. Rheumatol. 2016, 12, 102–110. [Google Scholar] [CrossRef]
- Lee, K.H.; Kronbichler, A.; Park, D.D.-Y.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil Extracellular Traps (NETs) in Autoimmune Diseases: A Comprehensive Review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, M.; Yang, H.; Qu, R.; Qiu, Y.; Hao, J.; Bi, H.; Guo, D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediat. Inflamm. 2023, 2023, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Fueyo, A.; Bradley, S.J.; Tsokos, G.C. T Cells in Systemic Lupus Erythematosus. Curr. Opin. Immunol. 2016, 43, 32–38. [Google Scholar] [CrossRef]
- Giannelou, M.; Mavragani, C.P. Cardiovascular Disease in Systemic Lupus Erythematosus: A Comprehensive Update. J. Autoimmun. 2017, 82, 1–12. [Google Scholar] [CrossRef]
- Fernández-Nebro, A.; Rúa-Figueroa, Í.; López-Longo, F.J.; Galindo-Izquierdo, M.; Calvo-Alén, J.; Olivé-Marqués, A.; Ordóñez-Cañizares, C.; Martín-Martínez, M.A.; Blanco, R.; Melero-González, R.; et al. Cardiovascular Events in Systemic Lupus Erythematosus: A Nationwide Study in Spain From the RELESSER Registry. Medicine 2015, 94, e1183. [Google Scholar] [CrossRef]
- Arkema, E.V.; Svenungsson, E.; Von Euler, M.; Sjöwall, C.; Simard, J.F. Stroke in Systemic Lupus Erythematosus: A Swedish Population-Based Cohort Study. Ann. Rheum. Dis. 2017, 76, 1544–1549. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-C.; Liu, H.-R.; Leng, R.-X.; Li, X.-P.; Li, X.-M.; Pan, H.-F.; Ye, D.-Q. Subclinical Atherosclerosis in Patients with Systemic Lupus Erythematosus: A Systemic Review and Meta-Analysis. Autoimmun. Rev. 2016, 15, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Budman, D.R. Hypertension and Renal Disease in Systemic Lupus Erythematosus. Arch. Intern. Med. 1976, 136, 1003. [Google Scholar] [CrossRef]
- Al-Herz, A.; Ensworth, S.; Shojania, K.; Esdaile, J.M. Cardiovascular Risk Factor Screening in Systemic Lupus Erythematosus. J. Rheumatol. 2003, 30, 493–496. [Google Scholar]
- Frostegård, J. Systemic Lupus Erythematosus and Cardiovascular Disease. J. Intern. Med. 2023, 293, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Ma, B.M.Y.; Zhang, D.; Cheung, W.; Chan, T.M.; Yap, D.Y.H. Cardiovascular Risk Factors and Complications in Patients with Systemic Lupus Erythematosus with and without Nephritis: A Systematic Review and Meta-Analysis. Lupus Sci. Med. 2024, 11, e001152. [Google Scholar] [CrossRef]
- Font, J. Cardiovascular Risk Factors and the Long-Term Outcome of Lupus Nephritis. QJM 2001, 94, 19–26. [Google Scholar] [CrossRef]
- Pons-Estel, G.J.; Andreoli, L.; Scanzi, F.; Cervera, R.; Tincani, A. The Antiphospholipid Syndrome in Patients with Systemic Lupus Erythematosus. J. Autoimmun. 2017, 76, 10–20. [Google Scholar] [CrossRef]
- Guzmán-Martínez, G.; Marañón, C.; CYTED RIBLES Network. Immune Mechanisms Associated with Cardiovascular Disease in Systemic Lupus Erythematosus: A Path to Potential Biomarkers. Front. Immunol. 2022, 13, 974826. [Google Scholar] [CrossRef]
- Moya, F.B.; Pineda Galindo, L.F.; García De La Peña, M. Impact of Chronic Glucocorticoid Treatment on Cardiovascular Risk Profile in Patients with Systemic Lupus Erythematosus. JCR J. Clin. Rheumatol. 2016, 22, 8–12. [Google Scholar] [CrossRef]
- Gao, N.; Kong, M.; Li, X.; Wei, D.; Zhu, X.; Hong, Z.; Ni, M.; Wang, Y.; Dong, A. Systemic Lupus Erythematosus and Cardiovascular Disease: A Mendelian Randomization Study. Front. Immunol. 2022, 13, 908831. [Google Scholar] [CrossRef] [PubMed]
- Nossent, J.; Cikes, N.; Kiss, E.; Marchesoni, A.; Nassonova, V.; Mosca, M.; Olesinska, M.; Pokorny, G.; Rozman, B.; Schneider, M.; et al. Current Causes of Death in Systemic Lupus Erythematosus in Europe, 2000–2004: Relation to Disease Activity and Damage Accrual. Lupus 2007, 16, 309–317. [Google Scholar] [CrossRef]
- Ding, J.; Su, S.; You, T.; Xia, T.; Lin, X.; Chen, Z.; Zhang, L. Serum Interleukin-6 Level Is Correlated with the Disease Activity of Systemic Lupus Erythematosus: A Meta-Analysis. Clinics 2020, 75, e1801. [Google Scholar] [CrossRef]
- Mao, Y.-M.; Zhao, C.-N.; Liu, L.-N.; Wu, Q.; Dan, Y.-L.; Wang, D.-G.; Pan, H.-F. Increased Circulating Interleukin-8 Levels in Systemic Lupus Erythematosus Patients: A Meta-Analysis. Biomark. Med. 2018, 12, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-H.; Fan, Y.; Wang, Y.-N.; Zhao, C.-N.; Zhang, Z.-K.; Pan, H.-F.; Wu, G.-C. Elevated Circulating Interleukin-17 Levels in Patients with Systemic Lupus Erythematosus: A Meta-Analysis. Immunol. Investig. 2020, 49, 662–675. [Google Scholar] [CrossRef]
- Xiang, M.; Feng, Y.; Wang, Y.; Wang, J.; Zhang, Z.; Liang, J.; Xu, J. Correlation between Circulating Interleukin-18 Level and Systemic Lupus Erythematosus: A Meta-Analysis. Sci. Rep. 2021, 11, 4707. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, N.; Thome, R.; Rezaei, N.; Zhang, G.-X.; Rezaei, A.; Rostami, A.; Esmaeil, N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front. Immunol. 2019, 10, 1265. [Google Scholar] [CrossRef]
- Chiewchengchol, D.; Midgley, A.; Sodsai, P.; Deekajorndech, T.; Hirankarn, N.; Beresford, M.W.; Edwards, S.W. The Protective Effect of GM-CSF on Serum-Induced Neutrophil Apoptosis in Juvenile Systemic Lupus Erythematosus Patients. Clin. Rheumatol. 2015, 34, 85–91. [Google Scholar] [CrossRef]
- Enzler, T.; Gillessen, S.; Manis, J.P.; Ferguson, D.; Fleming, J.; Alt, F.W.; Mihm, M.; Dranoff, G. Deficiencies of GM-CSF and Interferon γ Link Inflammation and Cancer. J. Exp. Med. 2003, 197, 1213–1219. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Liu, Y.; Li, Y.; Cai, J. Macrophage Colony-Stimulating Factor Could Evaluate Both Disease Activity and Renal Involvement in Systemic Lupus Erythematosus. Ann. Palliat. Med. 2021, 10, 2098–2107. [Google Scholar] [CrossRef]
- Govoni, M.; Hanly, J.G. The Management of Neuropsychiatric Lupus in the 21st Century: Still so Many Unmet Needs? Rheumatology 2020, 59, v52–v62. [Google Scholar] [CrossRef] [PubMed]
- Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int. J. Mol. Sci. 2017, 18, 1028. [Google Scholar] [CrossRef] [PubMed]
- Morel, L.; Domingues, O.; Zimmer, J.; Michel, T. Revisiting the Role of Neurotrophic Factors in Inflammation. Cells 2020, 9, 865. [Google Scholar] [CrossRef] [PubMed]
- Geissler, A.; Ryzhov, S.; Sawyer, D.B. Neuregulins: Protective and Reparative Growth Factors in Multiple Forms of Cardiovascular Disease. Clin. Sci. 2020, 134, 2623–2643. [Google Scholar] [CrossRef] [PubMed]
- Fanouriakis, A.; Tziolos, N.; Bertsias, G.; Boumpas, D.T. Update on the Diagnosis and Management of Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2021, 80, 14–25. [Google Scholar] [CrossRef]
- Ermakov, E.A.; Kabirova, E.M.; Sizikov, A.E.; Buneva, V.N.; Nevinsky, G.A. IgGs-Abzymes from the Sera of Patients with Systemic Lupus Erythematosus Hydrolyzed miRNAs. J. Inflamm. Res. 2020, 13, 681–699. [Google Scholar] [CrossRef]
- Petri, M.; Kim, M.Y.; Kalunian, K.C.; Grossman, J.; Hahn, B.H.; Sammaritano, L.R.; Lockshin, M.; Merrill, J.T.; Belmont, H.M.; Askanase, A.D.; et al. Combined Oral Contraceptives in Women with Systemic Lupus Erythematosus. N. Engl. J. Med. 2005, 353, 2550–2558. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Adler, Y.; Agostini, C.; Allanore, Y.; Anastasakis, A.; Arad, M.; Böhm, M.; Charron, P.; Elliott, P.M.; Eriksson, U.; et al. Diagnosis and Management of Myocardial Involvement in Systemic Immune-Mediated Diseases: A Position Statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 2017, 38, 2649–2662. [Google Scholar] [CrossRef]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.-R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef]
- Kataria, H.; Alizadeh, A.; Karimi-Abdolrezaee, S. Neuregulin-1/ErbB Network: An Emerging Modulator of Nervous System Injury and Repair. Prog. Neurobiol. 2019, 180, 101643. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein–Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Melamud, M.M.; Ermakov, E.A.; Boiko, A.S.; Kamaeva, D.A.; Sizikov, A.E.; Ivanova, S.A.; Baulina, N.M.; Favorova, O.O.; Nevinsky, G.A.; Buneva, V.N. Multiplex Analysis of Serum Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 13829. [Google Scholar] [CrossRef] [PubMed]
- Kustatscher, G.; Grabowski, P.; Schrader, T.A.; Passmore, J.B.; Schrader, M.; Rappsilber, J. Co-Regulation Map of the Human Proteome Enables Identification of Protein Functions. Nat. Biotechnol. 2019, 37, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Melamud, M.M.; Ermakov, E.A.; Boiko, A.S.; Parshukova, D.A.; Sizikov, A.E.; Ivanova, S.A.; Nevinsky, G.A.; Buneva, V.N. Serum Cytokine Levels of Systemic Lupus Erythematosus Patients in the Presence of Concomitant Cardiovascular Diseases. Endocr. Metab. Immune Disord.—Drug Targets 2022, 22, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Rupert, C.E.; Coulombe, K.L.K. The Roles of Neuregulin-1 in Cardiac Development, Homeostasis, and Disease: Supplementary Issue: Stem Cell Biology. Biomark. Insights 2015, 10s1, BMI.S20061. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, J.; Zhang, P.; Zhang, X.; Wang, Y.; Chen, W.; Zhao, Y.; Cui, X. Neuregulin-1, a Potential Therapeutic Target for Cardiac Repair. Front. Pharmacol. 2022, 13, 945206. [Google Scholar] [CrossRef]
- Bracci-Laudiero, L.; Aloe, L.; Levi-Montalcini, R.; Galeazzi, M.; Schilter, D.; Scully, J.L.; Otten, U. Increased Levels of NGF in Sera of Systemic Lupus Erythematosus Patients. NeuroReport 1993, 4, 563–565. [Google Scholar] [CrossRef]
- Fauchais, A.-L.; Lise, M.-C.; Marget, P.; Lapeybie, F.-X.; Bezanahary, H.; Martel, C.; Dumonteil, S.; Sparsa, A.; Lalloué, F.; Ly, K.; et al. Serum and Lymphocytic Neurotrophins Profiles in Systemic Lupus Erythematosus: A Case-Control Study. PLoS ONE 2013, 8, e79414. [Google Scholar] [CrossRef]
- Aalto, K.; Korhonen, L.; Lahdenne, P.; Pelkonen, P.; Lindholm, D. Nerve Growth Factor in Serum of Children with Systemic Lupus Erythematosus Is Correlated with Disease Activity. Cytokine 2002, 20, 136–139. [Google Scholar] [CrossRef]
- Wiesmann, C.; De Vos, A.M. Nerve Growth Factor: Structure and Function. Cell. Mol. Life Sci. 2001, 58, 748–759. [Google Scholar] [CrossRef]
- Otten, U.; Ehrhard, P.; Peck, R. Nerve Growth Factor Induces Growth and Differentiation of Human B Lymphocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 10059–10063. [Google Scholar] [CrossRef] [PubMed]
- Kannan, Y.; Usami, K.; Okada, M.; Shimizu, S.; Matsuda, H. Nerve Growth Factor Suppresses Apoptosis of Murine Neutrophils. Biochem. Biophys. Res. Commun. 1992, 186, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, M.S.; Saarma, M. The GDNF Family: Signalling, Biological Functions and Therapeutic Value. Nat. Rev. Neurosci. 2002, 3, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Orth, S.R.; Ritz, E.; Suter-Crazzolara, C. Glial Cell Line-derived Neurotrophic Factor (GDNF) Is Expressed in the Human Kidney and Is a Growth Factor for Human Mesangial Cells. Nephrol. Dial. Transplant. 2000, 15, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Petrackova, A.; Smrzova, A.; Gajdos, P.; Schubertova, M.; Schneiderova, P.; Kromer, P.; Snasel, V.; Skacelova, M.; Mrazek, F.; Zadrazil, J.; et al. Serum Protein Pattern Associated with Organ Damage and Lupus Nephritis in Systemic Lupus Erythematosus Revealed by PEA Immunoassay. Clin. Proteom. 2017, 14, 32. [Google Scholar] [CrossRef]
- Midgley, A.; McLaren, Z.; Moots, R.J.; Edwards, S.W.; Beresford, M.W. The Role of Neutrophil Apoptosis in Juvenile-onset Systemic Lupus Erythematosus. Arthritis Rheum. 2009, 60, 2390–2401. [Google Scholar] [CrossRef]
- Edrey, Y.H.; Casper, D.; Huchon, D.; Mele, J.; Gelfond, J.A.; Kristan, D.M.; Nevo, E.; Buffenstein, R. Sustained High Levels of Neuregulin-1 in the Longest-lived Rodents; a Key Determinant of Rodent Longevity. Aging Cell 2012, 11, 213–222. [Google Scholar] [CrossRef]
- Schallenberg, M.; Charalambous, P.; Thanos, S. GM-CSF Protects Rat Photoreceptors from Death by Activating the SRC-Dependent Signalling and Elevating Anti-Apoptotic Factors and Neurotrophins. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 699–712. [Google Scholar] [CrossRef]
Parameters | HSs (1) | SLE Total (2) | SLE without CVD (3) | SLE with CVD (4) | Differences |
---|---|---|---|---|---|
n | 38 | 35 | 18 | 17 | – |
Sex (F/M), % | 92.1/7.9 | 94.3/5.7 | 94.4/5.6 | 94.1/5.9 | N.S. |
Age, years | 49 (37–60); 49 ± 12 | 52 (38–63); 51 ± 14 | 54 (38–58); 50 ± 13 | 50 (44–66); 52 ± 15 | N.S. |
Smokers, % | 15.8 | 17.1 | 16.7 | 17.6 | N.S. |
BMI | 21.9 (20.9–24.5) | 22.5 (21.8–25.0) | 22.4 (21.4–25.0) | 22.9 (22.1–25.4) | N.S. |
SLE duration, years | – | 7 (4–17) | 7 (4–15) | 11 (4–17) | N.S. |
SELENA-SLEDAI score | – | 8 (4–10) | 8 (5–9) | 8 (4–10) | N.S. |
SLE phase (active/inactive), % | – | 94.3/5.7 | 88.9/11.1 | 100/0 | N.S. |
Anti-dsDNA IgG (ME/mL) | 11.92 (8.36–22.02) | 64.2 (29.0–190.3) | 61.5 (25.9–193.5) | 66.8 (37.7–145.8) | 1 vs. 2: p = 0.0001 1 vs. 3: p = 0.0001 1 vs. 4: p = 0.0002 3 vs. 4: N.S. |
AIP | – | 2.78 (2.01–3.62) | 2.71 (2.11–3.42) | 2.91 (2.49–3.79) | N.S. |
Patients received therapy, % | – | 100 | 100 | 100 | – |
Growth Factor | HSs (n = 38) | SLE without CVDs (n = 18) | SLE with CVDs (n = 17) |
---|---|---|---|
NGFβ | 2.9 (1.3–3.4); 4.1 ± 4.1 | 4 (3–4.5); 4.6 ± 2.3 | 3.6 (2.9–4.5); 6.7 ± 7.6 |
GM-CSF | 1.8 (0.5–3.0); 2.8 ± 2.6 | 1.4 (0.9–2.3); 1.8 ± 1.3 | 2.3 (1.0–3.7); 3.8 ± 4.4 |
NRG-1β | 13.7 (4.4–42); 44 ± 68 | 19 (9–80); 66 ± 106 | 99 (22–242); 187 ± 229 *, ** |
GDNF | 1.9 (0.9–2.4); 1.9 ± 0.7 | 1.4 (1.1–1.9); 1.5 ± 0.7 | 1.9 (1.3–2.9); 3.0 ± 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakov, E.A.; Melamud, M.M.; Boiko, A.S.; Ivanova, S.A.; Sizikov, A.E.; Nevinsky, G.A.; Buneva, V.N. Blood Growth Factor Levels in Patients with Systemic Lupus Erythematosus: High Neuregulin-1 Is Associated with Comorbid Cardiovascular Pathology. Life 2024, 14, 1305. https://doi.org/10.3390/life14101305
Ermakov EA, Melamud MM, Boiko AS, Ivanova SA, Sizikov AE, Nevinsky GA, Buneva VN. Blood Growth Factor Levels in Patients with Systemic Lupus Erythematosus: High Neuregulin-1 Is Associated with Comorbid Cardiovascular Pathology. Life. 2024; 14(10):1305. https://doi.org/10.3390/life14101305
Chicago/Turabian StyleErmakov, Evgeny A., Mark M. Melamud, Anastasiia S. Boiko, Svetlana A. Ivanova, Alexey E. Sizikov, Georgy A. Nevinsky, and Valentina N. Buneva. 2024. "Blood Growth Factor Levels in Patients with Systemic Lupus Erythematosus: High Neuregulin-1 Is Associated with Comorbid Cardiovascular Pathology" Life 14, no. 10: 1305. https://doi.org/10.3390/life14101305
APA StyleErmakov, E. A., Melamud, M. M., Boiko, A. S., Ivanova, S. A., Sizikov, A. E., Nevinsky, G. A., & Buneva, V. N. (2024). Blood Growth Factor Levels in Patients with Systemic Lupus Erythematosus: High Neuregulin-1 Is Associated with Comorbid Cardiovascular Pathology. Life, 14(10), 1305. https://doi.org/10.3390/life14101305