In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction Procedure
2.2. Cell Line and Cultivation Conditions
2.3. MTT Cell Proliferation Assay
2.4. Light Microscopy of Cell Morphology Changes
2.5. Colony-Formation Assay
2.6. Fluorescence Microscopy Analysis of Apoptosis
2.7. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) Analysis of Gene Expression
2.8. Statistical Analysis
3. Results
3.1. Cell Proliferation Inhibitory Effect of N. nuda Extract
3.2. Cell Morphological Alterations Caused by N. nuda Extract
3.3. Clonogenic Potential of N. nuda Extract on Colon Cancer Cells
3.4. Proapoptotic Ability of N. nuda Extract
3.5. Influence of N. nuda Extract on the Expression Level of Genes Associated with Programmed Cell Death and Cell Cycle Control
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Kokkini, S.; Babalonas, D. Morphological variation in Nepeta nuda L. Fedd. Repert. 1982, 93, 71–76. [Google Scholar] [CrossRef]
- Ghendov, V.; Ciocarlan, N.; Danila, D. Bioecological peculiarities of Nepeta pannonica L. under in situ and ex situ conditions. J. Bot. 2015, 2, 35–39. [Google Scholar]
- Aras, A.; Bursal, E.; Dogru, M. UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae. J. Appl. Pharm. Sci. 2016, 6, 9–13. [Google Scholar] [CrossRef]
- Smiljković, M.; Dias, M.I.; Stojković, D.; Barros, L.; Bukvički, D.; Ferreira, I.C.F.R.; Soković, M. Characterization of phenolic compounds in tincture of edible Nepeta nuda: Development of antimicrobial mouthwash. Food Funct. 2018, 9, 5417–5425. [Google Scholar] [CrossRef]
- Petrova, D.; Gašić, U.; Yocheva, L.; Hinkov, A.; Yordanova, Z.; Chaneva, G.; Mantovska, D.; Paunov, M.; Ivanova, L.; Rogova, M.; et al. Catmint (Nepeta nuda L.) phylogenetics and metabolic responses in variable growth conditions. Front. Plant Sci. 2022, 13, 866777. [Google Scholar] [CrossRef]
- Zaharieva, A.; Rusanov, K.; Rusanova, M.; Paunov, M.; Yordanova, Z.; Mantovska, D.; Tsacheva, I.; Petrova, D.; Mishev, K.; Dobrev, P.I.; et al. Uncovering the interrelation between metabolite profiles and bioactivity of in vitro- and wild-grown Catmint (Nepeta nuda L.). Metabolites 2023, 13, 1099. [Google Scholar] [CrossRef]
- Arnold, N.; Bellomaria, B.; Valentini, G.; Yanniou, C.; Arnold, H.J. Anatomical and phytochemical study of Cyprus endemic Nepeta troodi Holmboe (labiatae). Plantes Médicinales Et Phytothérapie 1993, 26, 52–63. [Google Scholar]
- Arnold, N.; Valentini, G.; Bellomaria, B.; Arnold, H.J. Contribution to the chemical study of essential oil of Nepeta Parnassica Heldr. B Sart. ex. Boiss. Plantes Médicinales Et Phytothérapie 1993, 26, 149–157. [Google Scholar]
- Formisano, C.; Rigano, D.; Senatore, F. Chemical constituents and biological activities of Nepeta species. Chem. Biodivers. 2011, 8, 1783–1818. [Google Scholar] [CrossRef]
- Sokolov, P.D. (Ed.) Plant Resources of the USSR. Flowering Plants, Their Chemical Composition, Use. Families Hippuridaceae-Lobeliaceae; Academia Nauk SSSR: St. Petersburg, SPb, Russia, 1991; Available online: https://z-lib.io/book/16128734 (accessed on 21 November 2024). (In Russian)
- Alim, A.; Goze, I.; Cetin, A.; Atas, A.D.; Cetinus, S.A.; Vural, N. Chemical composition and in vitro antimicrobial and antioxidant activities of the essential oil of Nepeta nuda L. subsp. Albiflora (Boiss.) gams. Afr. J. Microbiol. Res. 2009, 3, 463–467. [Google Scholar]
- Kozuharova, E.; Benbassat, N.; Getov, I. Ethnobotanical records of not yet documented therapeutic effects of some popular Bulgarian medicinal plants. Emir. J. Food Agric. 2014, 26, 647–651. [Google Scholar] [CrossRef]
- Todorov, D.; Shishkova, K.; Dragolova, D.; Hinkov, A.; Kapchina-Toteva, V.; Shishkov, S. Antiviral activity of medicinal plant Nepeta nuda. Biotechnol. Biotechnol. Equip. 2015, 29, S39–S43. [Google Scholar] [CrossRef]
- Aćimović, M.; Stanković-Jeremić, J.; Cvetković, M. Phyto-pharmacological aspects of Nepeta nuda L.: A systematic review. Nat. Med. Mater. (Lek. Sirovine) 2020, 40, 75–83. [Google Scholar] [CrossRef]
- Yildirim, A.B.; Karakas, F.P.; Turker, A.U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey. Asian Pac. J. Trop. Med. 2013, 6, 616–624. [Google Scholar] [CrossRef]
- Kabalay, B.; Mutlu, D.; Arslan, S.; Semiz, G.; Kocabıyık, K. Chemical composition and Cytotoxicity of Nepeta nuda subsp. lydiae P. H. Davis Essential Oil Towards Colon Carcinoma. In Proceedings of the 4th International Symposium on EuroAsian Biodiversity (SEAB2018), Kiev, Ukraine, 3–6 July 2018. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Suschke, U.; Sporer, F.; Schneele, J.; Geiss, H.K.; Reichling, J. Antibacterial and cytotoxic activity of Nepeta cataria L., N. Cataria Var. Citriodora (Beck.) Balb. and Melissa officinalis L. essential oils. Nat. Prod. Commun. 2007, 2, 1277–1286. [Google Scholar] [CrossRef]
- Al-kahraman, Y.; Baloch, N.; Kakar, A.M.; Nabi, S. In vitro antimicrobial, insecticidal, antitumor, antioxidant activities and their phytochemical estimation of methanolic extract and its fractions of Nepeta praetervisa leaves. Int. J. Phytomed. 2012, 4, 531–536. [Google Scholar]
- Shakeri, A.; Khakdan, F.; Soheili, V.; Sahebkar, A.; Rassam, G.; Asili, J. Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. kopetdaghensis. Ind. Crops Prod. 2014, 58, 315–321. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Razzaghirad, Y.; Ostad, S.N.; Hadjiakhoondi, A.; Ardekani, M.R.S.; Hajimehdipoor, H.; Attar, H.; Samadi, M.; Jovel, E.; Khanavi, M. Cytotoxic, acetylcholinesterase inhibitor and antioxidant activity of Nepeta menthoides Boiss & Buhse essential oil. J. Essent. Oil-Bear. 2014, 17, 544–552. [Google Scholar] [CrossRef]
- Al-Oqail, M.M.; Al-Sheddi, E.S.; Siddiqui, M.A.; Musarrat, J.; Al-Khedhairy, A.A.; Farshori, N.N. Anticancer activity of chloroform extract and sub-fractions of Nepeta deflersiana on human breast and lung cancer cells: An in vitro cytotoxicity assessment. Pharmacogn. Mag. 2015, 11, S598–S605. [Google Scholar] [CrossRef] [PubMed]
- Orfali, R.; Siddiqui, N.A.; Alam, P.; Alhowiriny, T.A.; Al-Taweel, A.M.; Al-Yahya, S.; Majrashi, N.M.; Mehmood, R.; Khan, S.I.; Perveen, S. Biological evaluation of different extracts of aerial parts of Nepeta deflersiana and standardization of active extracts using 8-epi-7-deoxyloganic acid and ursolic acid by validated HPTLC method. Evid. Based Complement. Alternat. Med. 2018, 1, 8790769. [Google Scholar] [CrossRef] [PubMed]
- Zahirnia, A.; Boroomand, M.; Nasirian, H.; Soleimani-Asl, S.; Salehzadeh, A.; Dastan, D. The cytotoxicity of malathion and essential oil of Nepeta crispa (lamiales: Lamiaceae) against vertebrate and invertebrate cell lines. Pan. Afr. Med. J. 2019, 33, 285. [Google Scholar] [CrossRef]
- Şafak, E.K.; Karatoprak, G.Ş.; Dirmenci, T.; Duman, H.; Küçükboyacı, N. Cytotoxic effects of some Nepeta species against breast cancer cell lines and their associated phytochemical properties. Plants 2022, 11, 1427. [Google Scholar] [CrossRef]
- Amirzadeh, M.; Soltanian, S.; Mohamadi, N. Chemical composition, anticancer and antibacterial activity of Nepeta mahanensis essential oil. BMC Complement. Med. Ther. 2022, 22, 173. [Google Scholar] [CrossRef]
- Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol. 1992, 19, 622–638. [Google Scholar]
- Aziz, B.; Aziz, I.; Khurshid, A.; Raoufi, E.; Esfahani, F.N.; Jalilian, Z.; Mozafari, M.R.; Taghavi, E.; Ikram, M. An overview of potential natural photosensitizers in cancer photodynamic therapy. Biomedicines 2023, 11, 224. [Google Scholar] [CrossRef]
- Yamali, C.; Nenni, M.; Sakarya, M.T.; Sakagami, H.; Gul, H.I. Biological activities and drug-likeness properties of phenol-based heterocyclic compounds. Pharm. Chem. J. 2024, 57, 1754–1760. [Google Scholar] [CrossRef]
- Hossan, S.; Rahman, S.; Bashar, A.B.M.A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic acid: A review of its anticancer action. World J. Pharm. Pharm. Sci. 2014, 3, 57–70. [Google Scholar]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.G.; Hwang, K.A.; Choi, K.C. Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients 2018, 10, 1784. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol. 2018, 102, 7775–7793. [Google Scholar] [CrossRef] [PubMed]
- Rahbardar, M.G.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: An evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine 2018, 40, 59–67. [Google Scholar] [CrossRef]
- Anwar, S.; Shamsi, A.; Shahbaaz, M.; Queen, A.; Khan, P.; Hasan, G.M.; Islam, A.; Alajmi, M.F.; Hussain, A.; Ahmad, F.; et al. Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Sci. Rep. 2020, 10, 10300. [Google Scholar] [CrossRef]
- Messeha, S.S.; Zarmouh, N.O.; Asiri, A.; Soliman, K.F.A. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 2020, 885, 173419. [Google Scholar] [CrossRef]
- Han, Y.H.; Kee, J.Y.; Hong, S.H. Rosmarinic acid activates AMPK to inhibit metastasis of colorectal cancer. Front. Pharmacol. 2018, 9, 68. [Google Scholar] [CrossRef]
- Brugiolo, A.S.S.; Gouveia, A.C.C.; de Souza Alves, C.C.; de Castro E Silva, F.M.; Esteves de Oliveira, É.; Ferreira, A.P. Ferulic acid supresses Th2 immune response and prevents remodeling in ovalbumin-induced pulmonary allergy associated with inhibition of epithelial-derived cytokines. Pulm. Pharmacol. Ther. 2017, 45, 202–209. [Google Scholar] [CrossRef]
- Nouri, A.; Ghatreh-Samani, K.; Amini-Khoei, H.; Mohammadi, A.; Heidarian, E.; Najafi, M. Ferulic acid prevents cyclosporine-induced nephrotoxicity in rats through exerting anti-oxidant and anti-inflammatory effects via activation of Nrf2/HO-1 signaling and suppression of NF-κB/TNF-α axis. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 387–395. [Google Scholar] [CrossRef]
- Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res. 2016, 8, 968–980. [Google Scholar]
- Fong, Y.; Tang, C.C.; Hu, H.T.; Fang, H.Y.; Chen, B.H.; Wu, C.Y.; Yuan, S.S.; Wang, H.M.D.; Chen, Y.C.; Teng, Y.N.; et al. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability. Chin. Med. 2016, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Dodurga, Y.; Eroğlu, C.; Seçme, M.; Elmas, L.; Avcı, Ç.B.; Şatıroğlu-Tufan, N.L. Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Tumor Biol. 2016, 37, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic acid exhibits anti-inflammatory effects by inducing autophagy and blocking NLRP3 inflammasome activation. Mol. Cell. Toxicol. 2022, 18, 509–519. [Google Scholar] [CrossRef]
- Muthusamy, G.; Balupillai, A.; Ramasamy, K.; Shanmugam, M.; Gunaseelan, S.; Mary, B.; Prasad, N.R. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur. J. Pharmacol. 2016, 786, 194–203. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Luan, C.; Zheng, J.; Liu, W.; Feng, Z.; Luo, R.; Han, X.; Wang, D. Ferulic acid induces autophagy and apoptosis in colon cancer CT26 cells via the MAPK pathway. Molecules 2023, 28, 6014. [Google Scholar] [CrossRef]
- Murai, F.; Tagawa, M.; Damtoft, S.; Jensen, S.R.; Nielsen, B.J. (1R, 5R, 8S, 9S)-Deoxyloganic acid from Nepeta cataria. Chem. Pharm. Bull. (Tokyo) 1984, 32, 2809–2814. [Google Scholar] [CrossRef]
- Takeda, Y.; Ooiso, Y.; Masuda, T.; Honda, G.; Otsuka, H.; Sezik, E.; Yesilada, E. Iridoid and eugenol glycosides from Nepeta cadmea. Phytochemistry 1998, 49, 787–791. [Google Scholar] [CrossRef]
- Kökdil, G.; Yalçin, S.M.; Topçu, G. Nepetalactones and other constituents of Nepeta nuda ssp. albiflora. Turk. J. Chem. 1999, 23, 99–104. [Google Scholar]
- Aničić, N.; Matekalo, D.; Skorić, M.; Gašić, U.; Živković, J.N.; Dmitrović, S.; Božunović, J.; Milutinović, M.; Petrović, L.; Dimitrijević, M.; et al. Functional iridoid synthases from iridoid producing and non-producing Nepeta species (subfam. Nepetoidae, fam. Lamiaceae). Front. Plant Sci. 2024, 14, 1211453. [Google Scholar] [CrossRef]
- Aničić, N.; Gašić, U.; Lu, F.; Ćirić, A.; Ivanov, M.; Jevtić, B.; Dimitrijević, M.; Anđelković, B.; Skorić, M.; Živković, J.N.; et al. Antimicrobial and immunomodulating activities of two endemic Nepeta species and their major iridoids isolated from natural sources. Pharmaceuticals 2021, 14, 414. [Google Scholar] [CrossRef]
- Başar, Y.; Yenigün, S.; İpek, Y.; Behçet, L.; Gül, F.; Özen, T.; Demirtaş, İ. DNA protection, molecular docking, enzyme inhibition and enzyme kinetic studies of 1,5,9-epideoxyloganic acid isolated from Nepeta aristata with bio-guided fractionation. J. Biomol. Struct. Dyn. 2024, 42, 9235–9248. [Google Scholar] [CrossRef] [PubMed]
- Başar, Y.; Yenigün, S.; Behçet, L.; Demirtaş, İ.; Ozen, T. Antibacterial and antioxidant molecule isolated from Nepeta aristata Boiss Et Kotschy Ex Boiss plant: 1,5,9-Epideoxyloganic Acid. Int. J. Chem. Technol. 2024, 8, 27–32. [Google Scholar] [CrossRef]
- Boldin, M.P.; Goncharov, T.M.; Goltsev, Y.V.; Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996, 85, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Radoshevich, L.; Murrow, L.; Chen, N.; Fernandez, E.; Roy, S.; Fung, C.; Debnath, J. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010, 142, 590–600. [Google Scholar] [CrossRef]
- Fang, D.; Xie, H.; Hu, T.; Shan, H.; Li, M. Binding features and functions of ATG3. Front. Cell Dev. Biol. 2021, 9, 685625. [Google Scholar] [CrossRef]
- Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011, 18, 571–580. [Google Scholar] [CrossRef]
- Hu, F.; Li, G., Huang; Hou, Z.; Yang, X.; Luo, X.; Feng, Y.; Wang, G.; Hu, J.; Cao, Z. The autophagy-independent role of BECN1 in colorectal cancer metastasis through regulating STAT3 signaling pathway activation. Cell Death Dis. 2020, 11, 304. [Google Scholar] [CrossRef]
Cell Line | IC50 [μg/mL] | SI |
---|---|---|
MDA-MB-231 | 481.6 | 2.8 |
MCF7 | 576.1 | 2.3 |
HT29 | 504.2 | 2.7 |
Colon 26 | 380.2 | 3.5 |
HepG2 | 541.4 | 2.5 |
BJ | 1346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodinova, Z.; Antov, G.; Stoichev, S.; Zhiponova, M. In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda. Life 2024, 14, 1539. https://doi.org/10.3390/life14121539
Gospodinova Z, Antov G, Stoichev S, Zhiponova M. In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda. Life. 2024; 14(12):1539. https://doi.org/10.3390/life14121539
Chicago/Turabian StyleGospodinova, Zlatina, Georgi Antov, Svetozar Stoichev, and Miroslava Zhiponova. 2024. "In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda" Life 14, no. 12: 1539. https://doi.org/10.3390/life14121539
APA StyleGospodinova, Z., Antov, G., Stoichev, S., & Zhiponova, M. (2024). In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda. Life, 14(12), 1539. https://doi.org/10.3390/life14121539