Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Extraction of Tannins, Chemical Analysis, and Characterization of Phenolic Compounds in Used Tannin Product
2.3. Blood Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Characterization of Used Tannin Product
3.2. Blood Metabolic Profile
4. Discussion
4.1. Specificities of the Used Tannin Product
4.2. Blood Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassanpour, S.; Maheri-Sis, N.; Eshratkhah, B.; Mehmandar, F.B. Plants and secondary metabolites (tannins): A review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Levin, D.A. The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst. 1976, 7, 121–159. [Google Scholar] [CrossRef]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef] [PubMed]
- Barry, T.N.; McNabb, W.C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The effect of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Frutos, P.; Raso, M.; Hervás, G.; Mantecón, A.R.; Pérez, V.; Javier Giráldez, F. Is there any detrimental effect when a chestnut hydrolysable tannin extract is included in the diet of finishing lambs? Anim. Res. 2004, 53, 127–136. [Google Scholar] [CrossRef]
- Decandia, M.; Cabiddu, A.; Molle, G. Effect of tannins on the nutrition, grazing or browsing management and enviornmental impact of small ruminants fed mediterranean pastures. In Tannins: Types, Food Containing, and Nutrition, 1st ed.; Petridis, G.K., Ed.; Nova Science Inc.: New York, NY, USA, 2011; Volume 1, pp. 83–112. [Google Scholar]
- Jeronimo, E.; Pinheiro, C.; Lamy, E.; Dentinho, M.T.; Sales-Baptista, E.; Lopez, O.; Capella e Silva, F. Tannins in ruminant nutrition: Impact on animal performance and quality of edible products. In Tannins: Biochemistry, Food Sources and Nutritional Properties, 1st ed.; Combs, C.A., Ed.; Nova Science Inc.: New York, NY, USA, 2016; Volume 1, pp. 121–168. [Google Scholar]
- Mezzomo, R.; Paulino, P.V.R.; Barbosa, M.M.; da Silva Martins, T.; Paulino, M.F.; Alves, K.S.; Gomes, D.I.; dos Santos Monnerat, J.P.I. Performance and carcass characteristics of young cattle fed with soybean meal treated with tannins. Anim. Sci. J. 2016, 87, 775–782. [Google Scholar] [CrossRef]
- Rivera-Méndez, C.; Plascencia, A.; Torrentera, N.; Zinn, R.A. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J. Appl. Anim. Res. 2017, 45, 199–203. [Google Scholar] [CrossRef]
- Mergeduš, A.; Janžekovič, M.; Škorjanc, D.; Kraner Šumenjak, T.; Brus, M. Growth performance, meat quality, and fecal microbial population in limousin bulls supplemented with hydrolyzable tannins. Agriculture 2022, 12, 939. [Google Scholar] [CrossRef]
- Gravador, R.S.; Luciano, G.; Jongberg, S.; Bognanno, M.; Scerra, M.; Andersen, M.L.; Lund, M.N.; Priolo, A. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chem. 2015, 182, 27–34. [Google Scholar] [CrossRef]
- Min, B.R.; Hart, S.P. Tannins for suppression of internal parasites. J. Anim. Sci. 2003, 81, 102–109. [Google Scholar]
- Buccioni, A.; Pauselli, M.; Viti, C.; Minieri, S.; Pallara, G.; Roscini, V.; Rapaccini, S.; Trabalza Murinucci, M.; Lupi, P.; Conte, G.; et al. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 2015, 98, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Mata-Padrino, D.J.; Belesky, D.P.; Crawford, C.D.; Walsh, B.; MacAdam, J.W.; Bowdridge, S.A. Effects of grazing birdsfoot trefoil–enriched pasture on managing Haemonchus contortus infection in Suffolk crossbred lambs. J. Anim. Sci. 2019, 97, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, F.; Turini, L.; Sarri, G.; Serra, A.; Buccioni, A.; Mele, M. Oral administration of chestnut tannins to reduce the duration of neonatal calf diarrhea. BMC Vet. Res. 2018, 14, 227. [Google Scholar] [CrossRef]
- Lagrange, S.P.; MacAdam, J.W.; Villalba, J.J. The use of temperate tannin containing forage legumes to improve sustainability in forage–livestock production. Agronomy 2021, 11, 2264. [Google Scholar] [CrossRef]
- Fonseca, N.V.B.; Cardoso, A.S.; Granja-Salcedo, Y.T.; Siniscalchi, D.; Camargo, K.D.V.; Dornellas, I.A.; Silva, M.L.C.; Vecchio, L.S.D.; Grizotto, R.K.; Reis, R.A. Effects of condensed tannin-enriched alternative energy feedstuff supplementation on performance, nitrogen utilization, and rumen microbial diversity in grazing beef cattle. Livest. Sci. 2024, 287, 105529. [Google Scholar] [CrossRef]
- Frankič, T.; Salobir, J. In vivo antioxidant potential of Sweet chestnut (Castanea sativa Mill.) wood extract in young growing pigs exposed to n -3 PUFA-induced oxidative stress: In vivo antioxidant potential of Sweet chestnut wood extract. J. Sci. Food Agric. 2011, 91, 1432–1439. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Kadigi, J.H.; Muzzo, B.I.; Schreiber, S. Potential benefits of tannins on ruminant health, production and environmental sustainability. Eur. J. Nutr. Food Saf. 2024, 16, 13–24. [Google Scholar] [CrossRef]
- Fonseca, N.V.B.; Cardoso, A.S.; Bahia, A.S.R.D.S.; Messana, J.D.; Vicente, E.F.; Reis, R.A. Additive tannins in ruminant nutrition: An alternative to achieve sustainability in animal production. Sustainability 2023, 15, 4162. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, V.; Kaur, J.; Tanwar, B.; Goyal, A.; Sharma, R.; Gat, Y.; Kumar, A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2021, 40, 432–444. [Google Scholar] [CrossRef]
- Krisper, P.; Tišler, V.; Skubic, V.; Rupnik, I.; Kobal, S. The use of tannin from chestnut (Castanea Vesca). In Plant Polyphenols, 1st ed.; Hemingway, R.W., Laks, P.E., Eds.; Springer: Boston, MA, USA, 1992; Volume 1, pp. 1013–1019. [Google Scholar]
- Comandini, P.; Lerma-García, M.J.; Simó-Alfonso, E.F.; Toschi, T.G. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD–MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends Food Sci. 2018, 81, 110–121. [Google Scholar] [CrossRef]
- Soares, S.; Brandao, E.; Garcia-Estevez, I.; Fonseca, F.; Guerreiro, C.; Ferreira da Silva, F.; Mateus, N.; Deffieux, D.; Quideau, S.; de Freitas, V. Interaction between ellagitannins and salivary proline-rich proteins. J. Agric. Food Chem. 2019, 67, 9579–9590. [Google Scholar] [CrossRef]
- Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. Castanea sativa by-products: A review on added value and sustainable application. Nat. Prod. Res. 2015, 29, 1–18. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Miele, S.; Romani, A.; Campo, M. Biostimulant activity of hydrolyzable tannins from sweet chestnut (Castanea Sativa Mill.). Acta Hortic. 2013, 111–116. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Quantification of Tannins in Tree Foliage—A Laboratory Manual, 1st ed.; FAO-IAEA: Vienna, Austria, 2000; pp. 1–15. [Google Scholar]
- Maksimović, N.; Žujović, M.; Hristov, S.; Petrović, M.P.; Stanković, B.; Tomić, Z.; Stanišić, N. Association between the social rank, body mass, testicular circumference and linear body measures of rams. Biotechnol. Anim. Husb. 2012, 28, 253–261. [Google Scholar] [CrossRef]
- CVB. CVB Table Booklet of Ruminants, 2nd ed.; Federatie Nederlandse Diervoderketen: Zoetermeer, The Netherlands, 2018; pp. 22–44. [Google Scholar]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. NAR 2021, 49, 1388–1395. [Google Scholar] [CrossRef]
- Oracz, J.; Żyżelewicz, D.; Pacholczyk-Sienicka, B. UHPLC-DAD-ESI-HRMS/MS profile of phenolic compounds in northern red oak (Quercus rubra L., syn. Q. borealis F. Michx) seeds and its transformation during thermal processing. Ind. Crops Prod. 2022, 189, 115860. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, A. Colorimetry of total phenolics with phospitomolybolic-phosphotungustic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Nakamura, Y.; Tsuji, S.; Tonogai, Y. Method for analysis of tannic acid and its metabolites in biological samples: Application to tannic acid metabolism in the rat. J. Agric. Food Chem. 2003, 51, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, W.; Wittek, T. Klinische Propädeutik der Haus—und Heimtiere, 9th ed.; Enke: Stuttgart, Germany, 2017; pp. 337–398. [Google Scholar]
- Rezar, V.; Salobir, J. Effects of tannin-rich sweet chestnut (Castanea sativa Mill.) wood extract supplementation on nutrient utilisation and excreta dry matter content in broiler chickens. Eur. Poult. Sci. EPS 2014, 78, 1–10. [Google Scholar]
- Campo, M.; Pinelli, P.; Romani, A. Hydrolyzable tannins from sweet chestnut fractions obtained by a sustainable and eco-friendly industrial process. Nat. Prod. Commun. 2016, 11, 409–415. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Campo, M.; Romani, A.; Milli, G.; Miele, S. Hydrolysable Tannins from Sweet Chestnut (Castanea sativa Mill.) to improve Tobacco and Food/Feed Quality. Note 1: Fraction characterization, and Tobacco biostimulant effect for gall-nematode resistance. AIMS Agric. Food 2017, 2, 324–338. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Ciucure, C.T.; Geana, E.I.; Sandru, C.; Tita, O.; Botu, M. Phytochemical and nutritional profile composition in fruits of different sweet chestnut (Castanea sativa Mill.) cultivars grown in Romania. Separations 2022, 9, 66. [Google Scholar] [CrossRef]
- Valenti, B.; Natalello, A.; Vasta, V.; Campidonico, L.; Roscini, V.; Mattioli, S.; Pauselli, M.; Priolo, A.; Lanza, M.; Luciano, G. Effect of different dietary tannin extracts on lamb growth performances and meat oxidative stability: Comparison between mimosa, chestnut and tara. Animal 2019, 13, 435–443. [Google Scholar] [CrossRef]
- Del Bianco, S.; Natalello, A.; Luciano, G.; Valenti, B.; Campidonico, L.; Gkarane, V.; Monahan, F.; Biondi, L.; Favotto, S.; Sepuleri, A.; et al. Influence of dietary inclusion of tannin extracts from mimosa, chestnut and tara on volatile compounds and flavour in lamb meat. Meat Sci. 2021, 172, 108336. [Google Scholar] [CrossRef]
- Buccioni, A.; Pauselli, M.; Minieri, S.; Roscini, V.; Manelli, F.; Rapaccini, S. Chestnut or quebracho tannins in the diet of grazing ewes supplemented with soybean oil: Effects on animal performances, blood parameters and fatty acid composition of plasma and milk lipids. Small Rumin. Res. 2017, 153, 23–30. [Google Scholar] [CrossRef]
- Krueger, W.K.; Gutierrez-Banuelos, H.; Carstens, G.E.; Min, B.R.; Pinchak, W.E.; Gomez, R.R.; Anderson, R.C.; Krueger, N.A.; Forbes, T.D.A. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Anim. Feed Sci. Technol. 2010, 159, 1–9. [Google Scholar] [CrossRef]
- Deaville, E.R.; Givens, D.I.; Mueller-Harvey, I. Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilisation and losses. Anim. Feed Sci. Technol. 2010, 157, 129–138. [Google Scholar] [CrossRef]
- Barajas, R.; Bonilla, E.B.; Flores, L.R.; Lomeli, J.J.; Romo, J.A. Influence of additional tannins extract level on feedlot performance of finishing hair lambs. In Proceedings of the ADSA-ASAS-CSAS Joint Annual Meeting, Kansas City, MI, USA, 20–24 July 2014; Shanks, R.D., Lewis, G.S., Eds.; pp. 920–921. [Google Scholar]
- Rojas-Roman, L.A.; Castro-Perez, B.I.; Estrada-Angulo, A.; Angulo-Montoya, C.; Yocupicio-Rocha, J.A.; Lopez-Soto, M.A.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: Finishing lambs. Small Rumin. Res. 2017, 153, 137–141. [Google Scholar] [CrossRef]
- Costa, E.D.S.; Ribiero, C.; Silva, T.; Ribeiro, R.; Vieira, J.; Lima, A.D.O.; Barbosa, A.; Júnior, J.D.S.; Bezerra, L.; Oliveira, R. Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Anim. Feed Sci. Technol. 2020, 272, 114744. [Google Scholar] [CrossRef]
- Pimentel, P.R.S.; Pellegrini, C.B.; Lanna, D.P.D.; Brant, L.M.S.; Ribeiro, C.V.D.M.; Silva, T.M.; Barbosa, A.M.; da Silva Junior, J.M.; Bezera, L.R.; Oliveira, R.L. Effects of Acacia mearnsii extract as a condensed-tannin source on animal performance, carcass yield and meat quality in goats. Anim. Feed Sci. Technol. 2021, 271, 114733. [Google Scholar] [CrossRef]
- Li, W.; Yao, R.; Xie, L.; Liu, J.; Weng, X.; Yue, X.; Li, F. Dietary supplementation of grape seed tannin extract stimulated testis development, changed fatty acid profiles and increased testis antioxidant capacity in pre-puberty hu lambs. Theriogenology 2021, 172, 160–168. [Google Scholar] [CrossRef]
- Al-Dobaib, S.N. Effect of different levels of Quebracho tannin on nitrogen utilization and growth performance of Najdi sheep fed alfalfa (Medicago sativa) hay as a sole diet. Anim. Sci. J. 2009, 80, 532–541. [Google Scholar] [CrossRef]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef]
- Griffiths, W.M.; Clark, C.E.F.; Clark, D.A.; Waghorn, G.C. Supplementing lactating dairy cows fed high-quality pasture with black wattle (Acacia mearnsii) tannin. Animal 2013, 7, 1789–1795. [Google Scholar] [CrossRef]
- Fernandes, J.; Filho, J.P.; Menezes, D.; Caldas, A.C.; Cavalcante, I.; Oliveira, J.; Oliveira, R.; Silva Junior, J.; Cezar, M.; Bezerra, L. Carcass and meat quality in lambs receiving natural tannins from Mimosa tenuiflora hay. Small Rumin. Res. 2021, 198, 106362. [Google Scholar] [CrossRef]
- Zaitsev, V.V.; Bogolyubova, N.V.; Zaitseva, L.M.; Emelyanova, I.S.; Korotkiy, V.P.; Ryzhov, V.A. Effect of dietary supplements Farmatantm and pine tree energy on the regulation of ruminal digestion and microbiocenosis of lactating black and white cows. Basrah J. Agric. Sci. 2022, 35, 99–109. [Google Scholar] [CrossRef]
- Pirman, T.; Orešnik, A. Effect of sweet chestnut extract (Farmatan®) on the digestibility and bioavailability of nitrogen and some minerals in the laboratory rats. Acta Agric. Slov. 2016, 108, 9–16. [Google Scholar] [CrossRef]
- Prevolnik, M.; Škrlep, M.; Brus, M.; Pugliese, C.; Škorjanc, D. Supplementing pig diet with 0.2% sweet chestnut (Castanea sativa Mill.) wood extract had no effect no effect on growth, carcass or meat quality. Acta Agric. Slov. 2012, 3, 83–88. [Google Scholar] [CrossRef]
- Jamroz, D.; Wiliczkiewicz, A.; Skorupińska, J.; Orda, J.; Kuryszko, J.; Tschirch, H. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. Br. Poult. Sci. 2009, 50, 687–699. [Google Scholar] [CrossRef]
- Sivka, U.; Lavrenčič, A. The effect of sweet chestnut extract (Farmatan®) on kinetics of in vitro cellulose fermentation. Krmiva 2007, 49, 127–132. [Google Scholar]
- Ali, M.; Mehboob, H.A.; Mirza, M.A.; Raza, H.; Osredkar, H. Effect of hydrolysable tannin supplementation on production performance of dairy crossbred cows. JAPS 2017, 27, 1088–1093. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on a request from the Commission on the safety and efficacy of the product Farmatan for rabbits and piglets. EFSA J. 2005, 222, 1–20. [Google Scholar]
- Salobir, J.; Kostanjevec, B.; Štruklec, M.; Salobir, K. Tannins reduce protein but not phosphorusutilization of diet with added phytase in pigs. J. Anim. Feed Sci. 2005, 14, 277–282. [Google Scholar] [CrossRef]
- Biagi, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of tannins on growth performance and intestinal ecosystem in weaned piglets. Arch. Anim. Nutr. 2010, 64, 121–135. [Google Scholar] [CrossRef]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch. Anim. Nutr. 2016, 70, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Davidović, V.; Jovetić, B.; Joksimović Todorović, M.; Stojanović, B.; Lazarević, M.; Perišić, P.; Radivojević, M.; Maletić, M.; Miletić, A. The effect of tannin supplementation of mid-lactation dairy cows diets on metabolic profile parameters and production characteristics. Slov. Vet. Res. 2019, 56, 143–151. [Google Scholar] [CrossRef]
- Jovetić, B. The Influence of Tannins Additives On Metabolic Profile, Production And Reproductive Performances of Holstein-Friesian Cows. Ph.D. Dissertation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2021. [Google Scholar]
- Prodanović, R.; Nedić, S.; Simeunović, P.; Borozan, S.; Nedić, S.; Bojkovski, J.; Kirovski, D.; Vujanac, I. Effects of chestnut tannins supplementation of prepartum moderate yielding dairy cows on metabolic health, antioxidant and colostrum indices. Ann. Anim. Sci. 2021, 21, 609–621. [Google Scholar] [CrossRef]
- Mavri, M.; Čandek-Potokar, M.; Fazarinc, G.; Škrlep, M.; Rutland, C.S.; Potočnik, B.; Batorek-Lukač, N.; Kubale, V. Salivary gland adaptation to dietary inclusion of hydrolysable tannins in boars. Animals 2022, 12, 2171. [Google Scholar] [CrossRef]
- Živković, J.; Mujić, I.; Zeković, Z.; Nikolić, G.; Vidović, S.; Mujić, A. Extraction and analysis of condensed tannins in Castanea sativa Mill. J. Cent. Eur. Agric. 2009, 10, 283–288. [Google Scholar]
- Asín, J.; Ramírez, G.A.; Navarro, M.A.; Nyaoke, A.C.; Henderson, E.E.; Mendonça, F.S.; Molín, J.; Uzal, F.A. Nutritional wasting disorders in sheep. Animals 2021, 11, 501. [Google Scholar] [CrossRef]
- Avellaneda, Y.; Mancipe, E.; Vargas, J.; Manriquez, D. Energy and protein requirements of growing lambs in colombian highlands. Animals 2024, 14, 2117. [Google Scholar] [CrossRef]
- Ma, S.-W.; Faciola, A.P. Impacts of slow-release urea in ruminant diets: A review. Fermentation 2024, 10, 527. [Google Scholar] [CrossRef]
- Molosse, V.L.; Deolindo, G.L.; Cecere, B.G.; Marcon, H.; Da Rosa, G.; Vedovatto, M.; Zotti, C.A.; Silva, A.D.; Fracasso, M.; Morsch, V.M.; et al. Effect of dietary supplementation with grape residue flour on weight gain, metabolic profile, leukogram, proteinogram and antioxidant response in suckling lambs. Res. Vet. Sci. 2021, 139, 112–120. [Google Scholar] [CrossRef]
- Xiao, J.; Han, Z.; Li, X.; Phillips, C.J.C.; Shi, B. Effects of transport duration and pre-transport fasting on blood biochemistry in dorper × mongolian sheep. Animals 2024, 14, 1482. [Google Scholar] [CrossRef]
- Tripp, M.J.; Schmitz, J.A. Influence of physical exercise on plasma creatine kinase activity in healthy and dystrophic turkeys and sheep. Am. J. Vet. Res. 1982, 43, 2220–2223. [Google Scholar] [PubMed]
- Miletić, S. The Effects of Using Soybean Molasses In Diets For Dairy Cows. Ph.D. Dissertation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2018. [Google Scholar]
- Lima, P.R.; Apdini, T.; Freire, A.S.; Santana, A.S.; Moura, L.M.L.; Nascimento, J.C.S.; Rodrigues, R.T.S.; Dijkstra, J.; Garcez Neto, A.F.; Queiroz, M.A.A.; et al. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 2019, 249, 10–17. [Google Scholar] [CrossRef]
- Zhao, M.D.; Di, L.F.; Tang, Z.Y.; Jiang, W.; Li, C.Y. Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep. Asian-Australas. J. Anim. Sci. 2019, 32, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Ahmed, S.; Ahmad, N.; Shahzad, F.; Javed, M.Q.; Younas, U.; Irshad, I. Effects of tannic acid supplementation on growth performance, nutrients digestibility, and blood metabolite in lohi male lambs. Insights Anim. Sci. 2024, 1, 8–13. [Google Scholar] [CrossRef]
- Min, B.R.; Frank, A.; Gurung, N.; Lee, J.H.; Joo, J.W.; Pacheco, W. Peanut skin in diet alters average daily gain, ruminal and blood metabolites, and carcass traits associated with Haemonchus contortus infection in meat goats. Anim. Nutr. 2019, 5, 278–285. [Google Scholar] [CrossRef]
- Mokhtapour, A.; Jahantigh, M. Feed intake, ruminal fermentation, blood metabolites and growth performance of lambs fed on camelthorn (Alhagi Camelorum fisch.) based diets. Agric. Conspec. Sci. 2023, 88, 157–164. [Google Scholar]
- Barry, T.N.; Manley, T.R. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep: 2. Quantitative digestion of carbohydrates and proteins. Br. J. Nutr. 1984, 51, 493–504. [Google Scholar] [CrossRef]
- Bojković-Kovačević, S. Metabolic Status of Peripartal Holstein Cows, as a Prognostic Factor of Production Results In Early Lactation. Ph.D. Dissertation, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2016. [Google Scholar]
- Swanson, R.M.; Tait, R.G.; Galles, B.M.; Duffy, E.M.; Schmidt, T.B.; Petersen, J.L.; Yates, D.T. Heat stress-induced deficits in growth, metabolic efficiency, and cardiovascular function coincided with chronic systemic inflammation and hypercatecholaminemia in ractopamine-supplemented feedlot lambs. J. Anim. Sci. 2020, 98, skaa168. [Google Scholar] [CrossRef]
- Faryabi, R.; Mousaie, A.; Bahrampour, J.; Barazandeh, A. The effect of dietary inclusion of Artemisia sieberi leaves on growth performance, feeding behaviors, ruminal fermentation, feed digestibility, and blood hemato-biochemical profile of growing male lambs. Trop. Anim. Health Prod. 2023, 55, 41. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Hernández-García, P.A. Effects of a polyherbal dietary additive on performance, dietary energetics, carcass traits, and blood metabolites of finishing lambs. Metabolites 2022, 12, 413. [Google Scholar] [CrossRef]
- Liu, H.; Li, K.; Mingbin, L.; Zhao, J.; Xiong, B. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs. Meat Sci. 2016, 116, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Biz, J.F.F.; Dos Santos, S.K.; Salgado, J.A.; Bechara, G.H.; Sotomaior, C.S. Effect of commercial tannins on parasitic infection and immunity of lambs naturally infected with Haemonchus contortus. Vet. Parasitol. Reg. Stud. Rep. 2023, 38, 100833. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, N.; Cordesse, R. Digestibility and ruminal digestion of non-nitrogenous compounds in adult sheep and goats: Effects of chestnut tannins. Anim. Feed Sci. Technol. 1996, 61, 259–273. [Google Scholar] [CrossRef]
- Gao, C.; Qi, M.; Zhou, Y. Chestnut tannin extract modulates growth performance and fatty acid composition in finishing Tan lambs by regulating blood antioxidant capacity, rumen fermentation, and biohydrogenation. BMC Vet. Res. 2024, 20, 23. [Google Scholar] [CrossRef]
- Lin, L.; Lu, Y.; Wang, W.; Luo, W.; Li, T.; Cao, G.; Du, C.; Wei, C.; Yin, F.; Gan, S.; et al. The influence of high-concentrate diet supplemented with tannin on growth performance, rumen fermentation, and antioxidant ability of fattening lambs. Animals 2024, 14, 2471. [Google Scholar] [CrossRef]
- Lucianer, E.; da Silva, A.S.; Cazarotto, C.J.; Alba, D.F.; Griss, L.G.; Zampar, A.; Vedovatto, M.; Kessler, J.D. Addition of tannin in lamb diets after weaning: Impact on performance and hematological and biochemical variables. Acta Sci. Vet. 2019, 47, 1–11. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Ghedini, C.P.; Paschoaloto, J.R.; da Silva, D.A.V.; Coelho, L.M.; Almeida Junior, A.; Ezequiel, J.M.B.; Machado Neto, O.R.; Almeida, M.T.C. Effects of tannins supplementation to sheep diets on their performance, carcass parameters and meat fatty acid profile: A meta-analysis study. Small Rumin. Res. 2022, 206, 106585. [Google Scholar] [CrossRef]
Diet | Treatment * | ||
---|---|---|---|
Ingredient | C | T1 | T2 |
Alfalfa hay, g/day | 700.00 | 700.00 | 700.00 |
Maize, g/day | 479.70 | 472.50 | 465.30 |
Sunflower meal, g/day | 281.70 | 277.47 | 273.24 |
Wheat bran, g/day | 108.00 | 106.38 | 104.76 |
Salt, g/day | 18.00 | 17.73 | 17.46 |
Monocalcium phosphate, g/day | 2.70 | 2.70 | 2.61 |
Chalk, g/day | 5.40 | 5.31 | 5.22 |
Vitamin mineral premix, g/day | 4.50 | 4.41 | 4.41 |
Tannin product, g/day | 0.00 | 13.50 | 27.00 |
Total, g/day | 1600.00 | 1600.00 | 1600.00 |
Chemical composition, g/kg DM ** | |||
Dry matter, g/kg diet | 892.77 | 891.87 | 894.06 |
Crude protein | 185.10 | 185.41 | 182.20 |
Crude fat | 29.91 | 29.23 | 30.71 |
Crude fibre | 182.76 | 180.16 | 178.25 |
Crude ash | 67.64 | 64.73 | 66.90 |
NDF | 329.04 | 316.31 | 313.09 |
ADF | 231.62 | 232.24 | 232.86 |
Calcium | 10.33 | 8.97 | 9.78 |
Phosphorus (total) | 5.80 | 5.86 | 5.74 |
Total polyphenols g GAE/100 g DM | 5.73 | 10.60 | 15.49 |
Flavonoids g CAE/100 g DM | 3.72 | 6.02 | 8.31 |
Condensed tannins g CAE/100 g DM | 0.41 | 0.59 | 0.77 |
Nutritive value, according to [29] *** | |||
NEmeat, MJ/day | 9.96 | 9.86 | 9.75 |
Metabolic protein, g/day | 118.31 | 117.21 | 116.11 |
bRP, g/day | 14.91 | 15.08 | 15.25 |
Parameters * | Mean Value ± Standard Deviation |
---|---|
Dry matter, g/kg | 898.30 ± 7.22 |
Total nitrogen, g/kg DM | 2.20 ± 0.11 |
Crude protein, g/kg DM | 13.75 ± 0.67 |
Crude fat, g/kg DM | 1.20 ± 0.06 |
Crude fiber, g/kg DM | 0.50 ± 0.03 |
Crude ash, g/kg DM | 19.40 ± 0.79 |
Total polyphenols, g GAE/100 g DM | 36.14 ± 1.78 |
Flavonoids, g CAE/100 g DM | 17.01 ± 0.84 |
Condensed tannins, g CAE/100 g DM | 1.34 ± 0.06 |
No. | Compound | λmax * | MW (g/mol) ** | Presence | Class *** |
---|---|---|---|---|---|
1 | Vescalagin | 224, 276 | 934 | 5 | HT |
2 | Castalagin | 224, 276 | 934 | 5 | HT |
3 | Gallic acid | 272 | 170 | 5 | PAC |
4 | Ellagic acid | 254 | 302 | 5 | PAC |
5 | Dehydrated tergallagic-C-glucoside | 250, 374 | 614 | 5 | PG |
6 | Digalloyl glucose | 274 | 484 | 5 | PAC |
7 | Monogalloyl glucose I | 274 | 332 | 4 | PAC |
8 | Trigalloyl glucose | 276 | 636 | 4 | PAC |
9 | Cretanin | 280 | 470 | 4 | PG |
10 | Tetragalloyl glucose | 276 | 788 | 3 | HT |
11 | Vescalin | 230, 280 | 632 | 2 | HT |
12 | Castalin | 230, 280 | 632 | 2 | HT |
13 | Monogalloyl glucose II | 274 | 332 | 2 | HT |
14 | Ellagic acid—glucopyranoside | 280 | 552 | 2 | HT |
15 | Pentagalloyl glucose | 274 | 940 | 2 | HT |
16 | Protocatechuic acid | 297, 258 | 154 | 2 | PAC |
17 | Vanillic acid | 260, 292 | 168 | 2 | PAC |
18 | Syringic acid | 274 | 198 | 2 | PAC |
19 | Astragalin | 280 | 448 | 2 | FL |
20 | Kaempferol coumaroyl hexoside | 280 | 594 | 2 | FL |
21 | Protocatechualdehyde | 280, 310 | 138 | 1 | PAL |
22 | Vanillin | 280, 312 | 152 | 1 | PAL |
23 | Conifer aldehyde | 290, 322 | 178 | 1 | FL |
24 | Sinapaldehyde | 300, 338 | 208 | 1 | FL |
Par.* | Prot. g/L | Alb. g/L | Glob. g/L | Urea mmol/L | Creat. µmol/L | Gluc. mmol/L | Bilir. µmol/L | AST IU/L | GGT IU/L | CK mmol/L | Chol. mmol/L | Trig. mmol/L | Ca mmol/L | P mmol/L | Mg mmol/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group ** | |||||||||||||||
Ref *** | 59.00–78.00 | 27.00–37.00 | 32.00–50.00 | 3.70–9.30 | 75.80–174.30 | 2.40–4.5 | 0.70–8.60 | 49.00–123.30 | 19.60–44.10 | 7.70–101.00 | 1.10–2.30 | 0.20–0.30 | 2.30–2.90 | 1.30–2.40 | 0.80–1.10 |
Start of the experiment, lamb aged 68 days (±3 days) | |||||||||||||||
C | 58.13 ± 3.12 | 31.54 ± 0.97 | 26.59 ± 2.84 | 10.88 ± 1.41 | 77.72 ± 5.53 | 4.18 ± 0.86 | 1.87 ± 0.59 | 110.4 ± 19.4 | 59.56 ± 23.21 | 900.75 ± 275.53 | 1.30 ± 0.24 | 0.27 ± 0.08 | 2.48 ± 0.12 | 2.78 ± 0.5 | 1.14 ± 0.11 |
T1 | 58.05 ± 2.38 | 32.07 ± 1.28 | 25.98 ± 2.96 | 10.01 ± 1.97 | 74.70 ± 7.46 | 3.96 ± 0.45 | 1.97 ± 1.15 | 139.23 ± 48.32 | 60.11 ± 19.52 | 892.3 ± 288.23 | 1.51 ± 0.39 | 0.34 ± 0.08 | 2.46 ± 0.24 | 3.00 ± 0.38 | 1.14 ± 0.14 |
T2 | 57.59 ± 5.07 | 32.88 ± 3.02 | 24.71 ± 2.95 | 10.37 ± 1.34 | 74.06 ± 8.61 | 4.21 ± 0.27 | 1.87 ± 0.87 | 108.26 ± 12.33 | 61.41 ± 21.74 | 466.87 ± 203.84 | 1.43 ± 0.47 | 0.30 ± 0.14 | 2.54 ± 0.20 | 3.22 ± 0.55 | 1.19 ± 0.11 |
p-values | 0.94 | 0.33 | 0.35 | 0.48 | 0.34 | 0.58 | 0.97 | 0.49 | 0.98 | 0.36 | 0.47 | 0.54 | 0.63 | 0.15 | 0.57 |
End of the experiment, lamb aged 118 days (±3 days) | |||||||||||||||
C | 62.61 ± 1.99 | 30.54 ± 1.99 | 32.07 ± 2.50 | 7.64 ± 0.61 | 69.09 ± 5.48 | 4.68 ± 1.18 | 2.54 ± 0.27 | 126.89 ± 38.37 | 64.13 ± 7.68 | 460.39 ± 282.44 | 1.25 ± 0.35 | 0.29 ± 0.12 | 2.48 ± 0.09 | 2.88 ± 0.39 | 0.96 ± 0.07 |
T1 | 62.33 ± 2.79 | 31.74 ± 1.09 | 30.59 ± 2.65 | 6.92 ± 1.06 | 66.06 ± 7.03 | 4.19 ± 0.85 | 2.52 ± 0.64 | 162.80 ± 88.10 | 72.12 ± 10.64 | 308.67 ± 139.19 | 1.34 ± 0.14 | 0.28 ± 0.09 | 2.58 ± 0.08 | 2.98 ± 0.33 | 0.95 ± 0.07 |
T2 | 62.68 ± 3.44 | 31.67 ± 1.35 | 31.01 ± 2.46 | 7.41 ± 0.81 | 65.41 ± 4.23 | 4.06 ± 0.35 | 2.49 ± 0.32 | 140.06 ± 18.96 | 67.80 ± 11.03 | 381.51 ± 255.69 | 1.34 ± 0.23 | 0.34 ± 0.13 | 2.56 ± 0.14 | 2.96 ± 0.30 | 1.00 ± 0.07 |
p-values | 0.96 | 0.16 | 0.42 | 0.17 | 0.32 | 0.26 | 0.97 | 0.37 | 0.21 | 0.36 | 0.66 | 0.46 | 0.11 | 0.79 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cekić, B.; Marković, J.; Maksimović, V.; Ružić-Muslić, D.; Maksimović, N.; Ćosić, I.; Zeljić Stojiljković, K. Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health. Life 2024, 14, 1556. https://doi.org/10.3390/life14121556
Cekić B, Marković J, Maksimović V, Ružić-Muslić D, Maksimović N, Ćosić I, Zeljić Stojiljković K. Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health. Life. 2024; 14(12):1556. https://doi.org/10.3390/life14121556
Chicago/Turabian StyleCekić, Bogdan, Jordan Marković, Vuk Maksimović, Dragana Ružić-Muslić, Nevena Maksimović, Ivan Ćosić, and Krstina Zeljić Stojiljković. 2024. "Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health" Life 14, no. 12: 1556. https://doi.org/10.3390/life14121556
APA StyleCekić, B., Marković, J., Maksimović, V., Ružić-Muslić, D., Maksimović, N., Ćosić, I., & Zeljić Stojiljković, K. (2024). Characterization of Chestnut Tannins: Bioactive Compounds and Their Impact on Lamb Health. Life, 14(12), 1556. https://doi.org/10.3390/life14121556