Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Chemicals
2.3. Experimental Protocol
2.4. Cognitive Test
Morris Water Maze (MWM)
2.5. Biochemical Analysis Procedures
2.5.1. Tissue Sample Collection and Homogenisation
2.5.2. BDNF, ACh and AChE Analysis
2.6. Histopathological Analysis
2.7. Immunohistochemistry (IHC) Analysis
2.8. Semi-Quantitative Analysis
2.9. Statistical Analysis
3. Results
3.1. Morris Water Maze (MWM)
3.2. Biochemical Results
BDNF, ACh and AChE Analysis Results
3.3. Histopathological Results
3.4. Immunohistochemical Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topcu, A.; Saral, S.; Ozturk, A.; Saral, O.; Kaya, A.K. The Effect of the Calcium Channel Blocker Nimodipine on Hippocampal BDNF/Ach Levels in Rats with Experimental Cognitive Impairment. Neurol. Res. 2023, 45, 544–553. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric Symptoms in Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Tzioras, M.; McGeachan, R.I.; Durrant, C.S.; Spires-Jones, T.L. Synaptic Degeneration in Alzheimer Disease. Nat. Rev. Neurol. 2023, 19, 19–38. [Google Scholar] [CrossRef]
- Schinder, A.F.; Poo, M. ming The Neurotrophin Hypothesis for Synaptic Plasticity. Trends Neurosci. 2000, 23, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease and Its Pharmaceutical Potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. The Role of CREB and BDNF in Neurobiology and Treatment of Alzheimer’s Disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef]
- Chen, Z.R.; Huang, J.B.; Yang, S.L.; Hong, F.F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Majdi, A.; Sadigh-Eteghad, S.; Rahigh Aghsan, S.; Farajdokht, F.; Vatandoust, S.M.; Namvaran, A.; Mahmoudi, J. Amyloid-β, Tau, and the Cholinergic System in Alzheimer’s Disease: Seeking Direction in a Tangle of Clues. Rev. Neurosci. 2020, 31, 391–413. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Maskos, U. Role of the Nicotinic Acetylcholine Receptor in Alzheimer’s Disease Pathology and Treatment. Neuropharmacology 2015, 96, 255–262. [Google Scholar] [CrossRef]
- Hu, J.; Chun, Y.; Kim, J.; Cho, I.; Ku, S. Ginseng Berry Aqueous Extract Prevents Scopolamine-induced Memory Impairment in Mice. Exp. Ther. Med. 2019, 18, 4388–4396. [Google Scholar] [CrossRef]
- Park, H.S.; Hwang, E.S.; Choi, G.Y.; Kim, H.B.; Park, K.S.; Sul, J.Y.; Hwang, Y.; Choi, G.W.; Kim, B.I.; Park, H.; et al. Sulforaphane Enhances Long-Term Potentiation and Ameliorate Scopolamine-Induced Memory Impairment. Physiol. Behav. 2021, 238, 113467. [Google Scholar] [CrossRef]
- Ahn, J.H.; Chen, B.H.; Yan, B.C.; Park, J.H.; Kang, I.J.; Lee, T.K.; Cho, J.H.; Shin, B.N.; Lee, J.C.; Jeon, Y.H.; et al. Effects of Long-Term Scopolamine Treatment on Cognitive Deficits and Calcium Binding Proteins Immunoreactivities in the Mouse Hippocampus. Mol. Med. Rep. 2018, 17, 293–299. [Google Scholar] [CrossRef]
- Lian, B.; Gu, J.; Zhang, C.; Zou, Z.; Yu, M.; Li, F.; Wu, X.; Zhao, A.Z. Protective Effects of Isofraxidin against Scopolamine-Induced Cognitive and Memory Impairments in Mice Involve Modulation of the BDNF-CREB-ERK Signaling Pathway. Metab. Brain Dis. 2022, 37, 2751–2762. [Google Scholar] [CrossRef] [PubMed]
- Caine, E.D.; Weingartner, H.; Ludlow, C.L.; Cudahy, E.A.; Wehry, S. Qualitative Analysis of Scopolamine-Induced Amnesia. Psychopharmacology 1981, 74, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Bhana, N.; Goa, K.L.; Clellan, K.J.M. Dexmedetomidine. Drugs 2000, 59, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.M.; Lin, T.Y.; Lee, M.Y.; Lu, C.W.; Wang, M.J.; Wang, S.J. Dexmedetomidine Protects Neurons from Kainic Acid-Induced Excitotoxicity by Activating BDNF Signaling. Neurochem. Int. 2019, 129, 104493. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Eldemerdash, O.M.; Elshaffei, I.M.; Yousef, E.M.; Senousy, M.A. Dexmedetomidine Attenuates Methotrexate-Induced Neurotoxicity and Memory Deficits in Rats through Improving Hippocampal Neurogenesis: The Role of MiR-15a/ROCK-1/ERK1/2/CREB/BDNF Pathway Modulation. Int. J. Mol. Sci. 2023, 24, 766. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, R.; Sobrino, T.; Veiga, S.; López, P.; Rodríguez-García, J.; Del Río, S.V.; Baluja, A.; Castillo, J.; Álvarez, J. Neuroprotective Effects of Dexmedetomidine Conditioning Strategies: Evidences from an in Vitro Model of Cerebral Ischemia. Life Sci. 2016, 144, 162–169. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, A.; Ma, W. Dexmedetomidine Attenuates the Toxicity of β-Amyloid on Neurons and Astrocytes by Increasing BDNF Production under the Regulation of HDAC2 and HDAC5. Mol. Med. Rep. 2019, 19, 533–540. [Google Scholar] [CrossRef]
- Chen, X.; Chen, A.; Wei, J.; Huang, Y.; Deng, J.; Chen, P.; Yan, Y.; Lin, M.; Chen, L.; Zhang, J.; et al. Dexmedetomidine Alleviates Cognitive Impairment by Promoting Hippocampal Neurogenesis via BDNF/TrkB/CREB Signaling Pathway in Hypoxic–Ischemic Neonatal Rats. CNS Neurosci. Ther. 2024, 30, e14486. [Google Scholar] [CrossRef] [PubMed]
- Mikami, M.; Zhang, Y.; Kim, B.; Worgall, T.S.; Groeben, H.; Emala, C.W. Dexmedetomidine’s Inhibitory Effects on Acetylcholine Release from Cholinergic Nerves in Guinea Pig Trachea: A Mechanism That Accounts for Its Clinical Benefit during Airway Irritation. BMC Anesthesiol. 2017, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Saral, S.; Topçu, A.; Sümer, A.; Kaya, A.K.; Öztürk, A.; Pinarbaş, E. Agomelatine Reverses Scopolamine-Induced Learning and Memory Impairment in Adult Rats. Online Türk Sağlık Bilim. Derg. 2021, 6, 535–541. [Google Scholar] [CrossRef]
- Saral, S.; Topçu, A.; Alkanat, M.; Mercantepe, T.; Şahin, Z.; Akyıldız, K.; Karataş, K.S.; Yıldız, L.; Tümkaya, L.; Yazıcı, Z.A. Agomelatine Attenuates Cisplatin-Induced Cognitive Impairment via Modulation of BDNF/TrkB Signaling in Rat Hippocampus. J. Chem. Neuroanat. 2023, 130, 102269. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kwon, H.; Lee, J.H.; Cho, E.; Lee, Y.C.; Moon, M.; Jun, M.; Kim, D.H.; Jung, J.W. β-Amyrin Ameliorates Alzheimer’s Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus. Biomol. Ther. 2020, 28, 74–82. [Google Scholar] [CrossRef]
- Klinkenberg, I.; Blokland, A. The Validity of Scopolamine as a Pharmacological Model for Cognitive Impairment: A Review of Animal Behavioral Studies. Neurosci. Biobehav. Rev. 2010, 34, 1307–1350. [Google Scholar] [CrossRef]
- Jiang, J.H.; He, Z.; Peng, Y.L.; Jin, W.D.; Wang, Z.; Mu, L.Y.; Chang, M.; Wang, R. Phoenixin-14 Enhances Memory and Mitigates Memory Impairment Induced by Aβ1-42 and Scopolamine in Mice. Brain Res. 2015, 1629, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Danappanvar, A.N.; Biradar, P.R.; Jalalpure, S.S.; Belgaonkar, A.S. Neuroprotective Effects of Photobiomodulation by Hormesis on Scopolamine Induced Neurodegenerative Diseases of Memory Disorders in Rats a Paradigm Shift. J. Biophotonics 2023, 16, e202300012. [Google Scholar] [CrossRef] [PubMed]
- Aksoz, E.; Gocmez, S.S.; Sahin, T.D.; Aksit, D.; Aksit, H.; Utkan, T. The Protective Effect of Metformin in Scopolamine-Induced Learning and Memory Impairment in Rats. Pharmacol. Rep. 2019, 71, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Q.; Wu, Z.; Xue, H.; Liu, B.; Zhao, P. Dexmedetomidine Promotes Hippocampal Neurogenesis and Improves Spatial Learning and Memory in Neonatal Rats. Drug Des. Devel. Ther. 2019, 13, 4439–4449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, Y.; Lian, Y.; Chen, Y.; Wu, T.; Zheng, Y.; Zong, H.; Sun, L.; Zhang, R.; Wang, Z.; et al. Brain-Derived Neurotrophic Factor Ameliorates Learning Deficits in a Rat Model of Alzheimer’s Disease Induced by Aβ1-42. PLoS ONE 2015, 10, e0122415. [Google Scholar] [CrossRef]
- Chen, B.H.; Park, J.H.; Lee, T.K.; Song, M.; Kim, H.; Lee, J.C.; Kim, Y.M.; Lee, C.H.; Hwang, I.K.; Kang, I.J.; et al. Melatonin Attenuates Scopolamine-Induced Cognitive Impairment via Protecting against Demyelination through BDNF-TrkB Signaling in the Mouse Dentate Gyrus. Chem. Biol. Interact. 2018, 285, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Kwon, S.H.; Lee, S.Y.; Jang, C.G. Isoorientin Improves Scopolamine-Induced Cognitive Impairments by Restoring the Cholinergic System, Antioxidant Defense, and p-CREB/BDNF Signaling in the Hippocampus and Frontal Cortex. Arch. Pharm. Res. 2019, 42, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hong, W.; Tang, Z.; Gao, Y.; Wu, X.; Liu, H. Dexmedetomidine Attenuates Neurotoxicity in Developing Rats Induced by Sevoflurane through Upregulating BDNF-TrkB-CREB and Downregulating ProBDNF-P75NRT-RhoA Signaling Pathway. Mediat. Inflamm. 2020, 2020, 5458061. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.L.; Gupta, K.; Climer, J.R.; Monaghan, C.K.; Hasselmo, M.E. Cholinergic Modulation of Cognitive Processing: Insights Drawn from Computational Models. Front. Behav. Neurosci. 2012, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.S.; Rai, S.; Katyal, A. Cholinergic Receptor Blockade by Scopolamine and Mecamylamine Exacerbates Global Cerebral Ischemia Induced Memory Dysfunction in C57BL/6J Mice. Nitric Oxide-Biol. Chem. 2014, 43, 62–73. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, E.B.; Jang, H.H.; Cha, Y.S.; Park, Y.S.; Lee, S.H. Allium Hookeri Extracts Improve Scopolamine-Induced Cognitive Impairment via Activation of the Cholinergic System and Anti-Neuroinflammation in Mice. Nutrients 2021, 13, 2890. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Nam, M.; Park, J.; Lee, J.; Hong, H.; Kim, T.; Lee, I.; Shin, C.; Lee, S.; Seo, Y. Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024, 12, 2475. [Google Scholar] [CrossRef]
- Nemoto, C.; Murakawa, M.; Hakozaki, T.; Imaizumi, T.; Isosu, T.; Obara, S. Effects of Dexmedetomidine, Midazolam, and Propofol on Acetylcholine Release in the Rat Cerebral Cortex in Vivo. J. Anesth. 2013, 27, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Jacob, Y.; Schneider, B.; Spies, C.; Heinrich, M.; von Haefen, C.; Kho, W.; Pohrt, A.; Müller, A. In a Secondary Analysis from a Randomised, Double-Blind Placebo-Controlled Trial Dexmedetomidine Blocks Cholinergic Dysregulation in Delirium Pathogenesis in Patients with Major Surgery. Sci. Rep. 2023, 13, 3971. [Google Scholar] [CrossRef]
Percentages | Findings | Score |
---|---|---|
IschemicNeurons | ||
<5% | None | 0 |
<25% | Mild | 1 |
<50% | Moderate | 2 |
<75% | Severe | 3 |
Edema | ||
<5% | None | 0 |
<25% | Mild | 1 |
<50% | Moderate | 2 |
<75% | Severe | 3 |
Score | |
---|---|
0 | None (less than 5%) |
1 | Mild (between 6–25%) |
2 | Moderate (between 26–50%) |
3 | Severe (between 51–75%) |
4 | Very Severe (more than 76%) |
Groups | Ischemic Neuron | Edema | HHS (Median (25–75% İnterquartile Range) |
---|---|---|---|
Control | 0(0-1) | 0(0-0) | 0(0-1) |
SCOP | 2(1.5-2) a | 0(0-1) | 2(2-3) a |
SCOP + DEX | 1(0-1) a,b | 0(0-0) | 1(0-1) b |
Group | CREB Posivitiy Score | TrkB Positivitiy Score |
---|---|---|
Control | 0(0-1) | 0(0-0) |
SCOP | 0(0-0) a | 0(0-0) |
SCOP + DEX | 2(1-2) b | 0(0-0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saral, S.; Mercantepe, T.; Topçu, A.; Kaya, A.K.; Öztürk, A. Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway. Life 2024, 14, 1672. https://doi.org/10.3390/life14121672
Saral S, Mercantepe T, Topçu A, Kaya AK, Öztürk A. Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway. Life. 2024; 14(12):1672. https://doi.org/10.3390/life14121672
Chicago/Turabian StyleSaral, Sinan, Tolga Mercantepe, Atilla Topçu, Ali Koray Kaya, and Aykut Öztürk. 2024. "Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway" Life 14, no. 12: 1672. https://doi.org/10.3390/life14121672
APA StyleSaral, S., Mercantepe, T., Topçu, A., Kaya, A. K., & Öztürk, A. (2024). Dexmedetomidine Improves Learning Functions in Male Rats Modeling Cognitive Impairment by Modulating the BDNF/TrkB/CREB Signaling Pathway. Life, 14(12), 1672. https://doi.org/10.3390/life14121672