Next Article in Journal
Fall Treatment with Fumagillin Contributes to an Overwinter Shift in Vairimorpha Species Prevalence in Honey Bee Colonies in Western Canada
Previous Article in Journal
An Overview of the Possible Exposure of Infants to Microplastics
Previous Article in Special Issue
Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Plant Biotic and Abiotic Stresses

1
Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
2
Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
*
Authors to whom correspondence should be addressed.
Life 2024, 14(3), 372; https://doi.org/10.3390/life14030372
Submission received: 1 March 2024 / Accepted: 11 March 2024 / Published: 12 March 2024
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses)
In the complex field of plant science, knowledge of the many difficulties that plants encounter from both living and non-living stresses is essential for maintaining biodiversity and managing natural resources in a sustainable manner, in addition to guaranteeing global food security. Biologic stressors, which are brought on by living things (such as bacteria, viruses, fungus, and insects) and have the potential to cause serious harm, financial losses, and food shortages, are a persistent hazard to plants [1,2,3]. Simultaneously, abiotic stresses impede plant growth, development, and productivity [3,4]. These stresses are caused by non-living elements such as heavy metals, salt, temperature extremes, and water scarcity [5].
The progress made in genetic engineering, molecular biology, and biotechnology has been revolutionary, facilitating the creation of plant types that are resistant to stress [6,7]. These scientific advancements not only improve the ability of crops to withstand challenges but also provide a promising outlook for the implementation of sustainable agriculture methods. The emergence of precision agriculture, driven by Internet of Things (IoT) sensors and artificial intelligence (AI) algorithms, has completely transformed the way plant stressors are monitored and managed [8]. The real-time collection and analysis of data grant the capacity to promptly identify stress indicators, hence permitting timely intervention and implementation of mitigation techniques.
The integrated management strategy is necessary due to the intricate nature of plant stress responses [9]. By integrating conventional agricultural methods with contemporary scientific investigation, it is possible to generate novel and inventive resolutions. For instance, the implementation of crop rotation and the utilization of biopesticides have been shown to effectively mitigate biotic stress [10,11]. Similarly, the incorporation of enhanced irrigation systems and soil amendments has been found to ease abiotic stress [12]. However, the threat of climate change remains significant, intensifying both living and non-living pressures and making it more difficult to combat these difficulties. It is imperative to perform a targeted study to comprehend the intricate relationship between climate change, the interactions between plants and pathogens, and the subsequent reactions to stress.
The need to develop comprehensive models that can accurately forecast the effects of stress and evaluate the efficacy of mitigation techniques cannot be overstated. The effective mitigation of plant biotic and abiotic stresses necessitates a collaborative endeavor involving researchers, farmers, and policymakers. Collaboration is crucial for creating robust agricultural systems that can endure the challenges posed by both living and non-living factors. As we persist in traversing this intricate terrain, the convergence of scientific inquiry and pragmatic implementation will assume a crucial role. By promoting creativity and adopting comprehensive management strategies, the objectives of preserving our crops, guaranteeing food security, and protecting the environment for future generations become more achievable. This research area presents numerous obstacles; however, the potential advantages for both humankind and the environment are extensive and profoundly captivating (Figure 1).

Author Contributions

Conceptualization, H.M.; methodology, W.Z.; software, W.Z.; validation, H.M. and W.Z.; investigation, H.M.; resources, W.Z.; data curation, W.Z.; writing—original draft preparation, H.M.; writing—review and editing, W.Z.; visualization, W.Z. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

List of Contributions

  • Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M. Zn Fertilizer and Mycorrhizal Inoculation Effect on Bread Wheat Cultivar Grown under Water Deficit. Life 2023, 13, 1078. https://doi.org/10.3390/life13051078.
  • Aina, O.; Bakare, O.O.; Daniel, A.I.; Gokul, A.; Beukes, D.R.; Fadaka, A.O.; Keyster, M.; Klein, A. Seaweed-Derived Phenolic Compounds in Growth Promotion and Stress Alleviation in Plants. Life 2022, 12, 1548. https://doi.org/10.3390/life12101548.
  • Ali, A.E.; Husselmann, L.H.; Tabb, D.L.; Ludidi, N. Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life 2023, 13, 170. https://doi.org/10.3390/life13010170.
  • Alnefaie, R.M.; El-Sayed, S.A.; Ramadan, A.A.; Elmezien, A.I.; El-Taher, A.M.; Randhir, T.O.; Bondok, A. Physiological and Anatomical Responses of Faba Bean Plants Infected with Chocolate Spot Disease to Chemical Inducers. Life 2023, 13, 392. https://doi.org/10.3390/life13020392.
  • Arslan, Ö. The Role of Heat Acclimation in Thermotolerance of Chickpea Cultivars: Changes in Photochemical and Biochemical Responses. Life 2023, 13, 233. https://doi.org/10.3390/life13010233.
  • Asati, R.; Tripathi, M.K.; Tiwari, S.; Yadav, R.K.; Tripathi, N. Molecular Breeding and Drought Tolerance in Chickpea. Life 2022, 12, 1846. https://doi.org/10.3390/life12111846.
  • Chimona, C.; Papadopoulou, S.; Kolyva, F.; Mina, M.; Rhizopoulou, S. From Biodiversity to Musketry: Detection of Plant Diversity in Pre-Industrial Peloponnese during the Flora Graeca Expedition. Life 2022, 12, 1957. https://doi.org/10.3390/life12121957.
  • Choudhury, S.; Moulick, D.; Ghosh, D.; Soliman, M.; Alkhedaide, A.; Gaber, A.; Hossain, A. Drought-Induced Oxidative Stress in Pearl Millet (Cenchrus americanus L.) at Seedling Stage: Survival Mechanisms through Alteration of Morphophysiological and Antioxidants Activity. Life 2022, 12, 1171. https://doi.org/10.3390/life12081171.
  • Chugh, V.; Kaur, D.; Purwar, S.; Kaushik, P.; Sharma, V.; Kumar, H.; Rai, A.; Singh, C.M.; Kamaluddin; Dubey, R.B. Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops. Life 2023, 13, 88. https://doi.org/10.3390/life13010088.
  • Debnath, D.; Samal, I.; Mohapatra, C.; Routray, S.; Kesawat, M.S.; Labanya, R. Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. Life 2022, 12, 1908. https://doi.org/10.3390/life12111908.
  • Gul, S.; Hussain, A.; Ali, Q.; Alam, I.; Alshegaihi, R.M.; Meng, Q.; Zaman, W.; Manghwar, H.; Munis, M.F. Hydropriming and Osmotic Priming Induce Resistance against Aspergillus niger in Wheat (Triticum aestivum L.) by Activating β-1, 3-glucanase, Chitinase, and Thaumatin-like Protein Genes. Life 2022, 12, 2061. https://doi.org/10.3390/life12122061.
  • Guo, X.; Ullah, A.; Siuta, D.; Kukfisz, B.; Iqbal, S. Role of WRKY Transcription Factors in Regulation of Abiotic Stress Responses in Cotton. Life 2022, 12, 1410. https://doi.org/10.3390/life12091410.
  • Hoang, H.L.; Rehman, H. Unravelling the Morphological, Physiological, and Phytochemical Responses in Centella asiatica L. Urban to Incremental Salinity Stress. Life 2023, 13, 61. https://doi.org/10.3390/life13010061.
  • Hoque, M.N.; Imran, S.; Hannan, A.; Paul, N.C.; Mahamud, M.A.; Chakrobortty, J.; Sarker, P.; Irin, I.J.; Brestic, M.; Rhaman, M.S. Organic Amendments for Mitigation of Salinity Stress in Plants: A Review. Life 2022, 12, 1632. https://doi.org/10.3390/life12101632.
  • Jalal, A.; da Silva Oliveira, C.E.; Galindo, F.S.; Rosa, P.A.; Gato, I.M.; de Lima, B.H.; Teixeira Filho, M.C. Regulatory Mechanisms of Plant Growth-Promoting Rhizobacteria and Plant Nutrition against Abiotic Stresses in Brassicaceae Family. Life 2023, 13, 211. https://doi.org/10.3390/life13010211.
  • Jalal, A.; Oliveira, C.E.; Rosa, P.A.; Galindo, F.S.; Teixeira Filho, M.C. Beneficial Microorganisms Improve Agricultural Sustainability under Climatic Extremes. Life 2023, 13, 1102. https://doi.org/10.3390/life13051102.
  • Kang, C.H.; Lee, J.H.; Kim, Y.-J.; Kim, C.Y.; Lee, S.I.; Hong, J.C.; Lim, C.O. Characterization of AtBAG2 as a Novel Molecular Chaperone. Life 2023, 13, 687. https://doi.org/10.3390/life13030687.
  • Kirakosyan, R.N.; Kalashnikova, E.A.; Abubakarov, H.G.; Sleptsov, N.N.; Dudina, Y.A.; Temirbekova, S.K.; Khuat, Q.V.; Trukhachev, V.I.; Sumin, A.V. Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro. Life 2023, 13, 52. https://doi.org/10.3390/life13010052.
  • Kirakosyan, R.N.; Sumin, A.V.; Polupanova, A.A.; Pankova, M.G.; Degtyareva, I.S.; Sleptsov, N.N.; Khuat, Q.V. Influence of Plant Growth Regulators and Artificial Light on the Growth and Accumulation of Inulin of Dedifferentiated Chicory (Cichorium intybus L.) Callus Cells. Life 2022, 12, 1524. https://doi.org/10.3390/life12101524.
  • Kumari, M.; Swarupa, P.; Kesari, K.K.; Kumar, A. Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. Life 2023, 13, 12. https://doi.org/10.3390/life13010012.
  • Ludwiczak, A.; Ciarkowska, A.; Rajabi Dehnavi, A.; Cárdenas-Pérez, S.; Piernik, A. Growth Stage-, Organ- and Time-Dependent Salt Tolerance of Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Life 2023, 13, 462. https://doi.org/10.3390/life13020462.
  • Lv, P.; Zhang, C.; Xie, P.; Yang, X.; El-Sheikh, M.A.; Hefft, D.I.; Ahmad, P.; Zhao, T.; Bhat, J.A. Genome-Wide Identification and Expression Analyses of the Chitinase Gene Family in Response to White Mold and Drought Stress in Soybean (Glycine max). Life 2022, 12, 1340. https://doi.org/10.3390/life12091340.
  • Maamri, K.; Zidane, O.D.; Chaabena, A.; Fiene, G.; Bazile, D. Adaptation of Some Quinoa Genotypes (Chenopodium quinoa Willd.), Grown in a Saharan Climate in Algeria. Life 2022, 12, 1854. https://doi.org/10.3390/life12111854.
  • Mamun, M.A.; Julekha; Sarker, U.; Mannan, M.A.; Rahman, M.M.; Karim, M.A.; Ercisli, S.; Marc, R.A.; Golokhvast, K.S. Application of Potassium after Waterlogging Improves Quality and Productivity of Soybean Seeds. Life 2022, 12, 1816. https://doi.org/10.3390/life12111816.
  • Maslennikova, D.; Nasyrova, K.; Chubukova, O.; Akimova, E.; Baymiev, A.; Blagova, D.; Ibragimov, A.; Lastochkina, O. Effects of Rhizobium leguminosarum Thy2 on the Growth and Tolerance to Cadmium Stress of Wheat Plants. Life 2022, 12, 1675. https://doi.org/10.3390/life12101675.
  • Mitra, D.; Panneerselvam, P.; Senapati, A.; Chidambaranathan, P.; Nayak, A.K.; Mohapatra, P.K. Arbuscular Mycorrhizal Fungi Response on Soil Phosphorus Utilization and Enzymes Activities in Aerobic Rice under Phosphorus-Deficient Conditions. Life 2023, 13, 1118. https://doi.org/10.3390/life13051118.
  • Mkhabela, S.S.; Shimelis, H.; Gerrano, A.S.; Mashilo, J. Drought Tolerance Assessment of Okra (Abelmoschus esculentus [L.] Moench) Accessions Based on Leaf Gas Exchange and Chlorophyll Fluorescence. Life 2023, 13, 682. https://doi.org/10.3390/life13030682.
  • Movahedi, A.; Wei, H.; Alhassan, A.R.; Dzinyela, R.; Wang, P.; Sun, W.; Zhuge, Q.; Xu, C. Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar. Life 2022, 12, 1830. https://doi.org/10.3390/life12111830.
  • Mushtaq, N.; Iqbal, S.; Hayat, F.; Raziq, A.; Ayaz, A.; Zaman, W. Melatonin in Micro-Tom Tomato: Improved Drought Tolerance via the Regulation of the Photosynthetic Apparatus, Membrane Stability, Osmoprotectants, and Root System. Life 2022, 12, 1922. https://doi.org/10.3390/life12111922.
  • Ntambiyukuri, A.; Li, X.; Xiao, D.; Wang, A.; Zhan, J.; He, L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. Life 2022, 12, 1271. https://doi.org/10.3390/life12081271.
  • Onele, A.O.; Mazina, A.B.; Leksin, I.Y.; Minibayeva, F.V. DsDBF1, a Type A-5 DREB Gene, Identified and Characterized in the Moss Dicranum scoparium. Life 2023, 13, 90. https://doi.org/10.3390/life13010090.
  • Qi, H.; Chen, X.; Luo, S.; Fan, H.; Guo, J.; Zhang, X.; Ke, Y.; Yang, P.; Yu, F. Genome-Wide Identification and Characterization of Heat Shock Protein 20 Genes in Maize. Life 2022, 12, 1397. https://doi.org/10.3390/life12091397.
  • Rai, K.K.; Kaushik, P. Free Radicals Mediated Redox Signaling in Plant Stress Tolerance. Life 2023, 13, 204. https://doi.org/10.3390/life13010204.
  • Renuka, R.; Prabakar, K.; Anandham, R.; Pugalendhi, L.; Rajendran, L.; Raguchander, T.; Karthikeyan, G. Exploring the Potentiality of Native Actinobacteria to Combat the Chilli Fruit Rot Pathogens under Post-Harvest Pathosystem. Life 2023, 13, 426. https://doi.org/10.3390/life13020426.
  • Saharan, B.S.; Brar, B.; Duhan, J.S.; Kumar, R.; Marwaha, S.; Rajput, V.D.; Minkina, T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life 2022, 12, 1634. https://doi.org/10.3390/life12101634.
  • Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. https://doi.org/10.3390/life13030706.
  • Severns, P.M. Dispersal Kernel Type Highly Influences Projected Relationships for Plant Disease Epidemic Severity When Outbreak and At-Risk Populations Differ in Susceptibility. Life 2022, 12, 1727. https://doi.org/10.3390/life12111727.
  • Shah, N.; Irshad, M.; Hussain, A.; Qadir, M.; Murad, W.; Khan, A.; Awais, M.; Alrefaei, A.F.; Ali, S. EDTA and IAA Ameliorates Phytoextraction Potential and Growth of Sunflower by Mitigating Cu-Induced Morphological and Biochemical Injuries. Life 2023, 13, 759. https://doi.org/10.3390/life13030759.
  • Shi, Y.; Zhang, Q.; Wang, L.; Du, Q.; Ackah, M.; Guo, P.; Zheng, D.; Wu, M.; Zhao, W. Functional Characterization of MaZIP4, a Gene Regulating Copper Stress Tolerance in Mulberry (Morus atropurpurea R.). Life 2022, 12, 1311. https://doi.org/10.3390/life12091311.
  • Shuyskaya, E.; Toderich, K.; Kolesnikov, A.; Prokofieva, M.; Lebedeva, M. Effects of Vertically Heterogeneous Soil Salinity on Genetic Polymorphism and Productivity of the Widespread Halophyte Bassia prostrata. Life 2023, 13, 56. https://doi.org/10.3390/life13010056.
  • Song, X.; Mo, F.; Yan, M.; Zhang, X.; Zhang, B.; Huang, X.; Huang, D.; Pan, Y.; Verma, K.K.; Li, Y.-R. Effect of Smut Infection on the Photosynthetic Physiological Characteristics and Related Defense Enzymes of Sugarcane. Life 2022, 12, 1201. https://doi.org/10.3390/life12081201.
  • Sun, C.; Zhu, L.; Cao, L.; Qi, H.; Liu, H.; Zhao, F.; Han, X. PKS5 Confers Cold Tolerance by Controlling Stomatal Movement and Regulating Cold-Responsive Genes in Arabidopsis. Life 2022, 12, 1633. https://doi.org/10.3390/life12101633.
  • Szőke, L.; Moloi, M.J.; Kaczur, D.; Radócz, L.; Tóth, B. Examination of Different Sporidium Numbers of Ustilago maydis Infection on Two Hungarian Sweet Corn Hybrids’ Characteristics at Vegetative and Generative Stages. Life 2023, 13, 433. https://doi.org/10.3390/life13020433.
  • Tiwari, P.N.; Tiwari, S.; Sapre, S.; Babbar, A.; Tripathi, N.; Tiwari, S.; Tripathi, M.K. Screening and Selection of Drought-Tolerant High-Yielding Chickpea Genotypes Based on Physio-Biochemical Selection Indices and Yield Trials. Life 2023, 13, 1405. https://doi.org/10.3390/life13061405.
  • Trifunović-Momčilov, M.; Stamenković, N.; Đurić, M.; Milošević, S.; Marković, M.; Giba, Z.; Subotić, A. Role of Sodium Nitroprusside on Potential Mitigation of Salt Stress in Centaury (Centaurium erythraea Rafn) Shoots Grown In Vitro. Life 2023, 13, 154. https://doi.org/10.3390/life13010154.
  • Ullah, R.; Aslam, Z.; Attia, H.; Sultan, K.; Alamer, K.H.; Mansha, M.Z.; Althobaiti, A.T.; Al Kashgry, N.A.T.; Algethami, B.; Zaman, Q.U. Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties. Life 2022, 12, 1359. https://doi.org/10.3390/life12091359.
  • Vescio, R.; Caridi, R.; Laudani, F.; Palmeri, V.; Zappalà, L.; Badiani, M.; Sorgonà, A. Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity. Life 2022, 12, 1804. https://doi.org/10.3390/life12111804.
  • Vizzarri, V.; Lombardo, L.; Novellis, C.; Rizzo, P.; Pellegrino, M.; Cruceli, G.; Godino, G.; Zaffina, F.; Ienco, A. Testing the Single and Combined Effect of Kaolin and Spinosad against Bactrocera oleae and Its Natural Antagonist Insects in an Organic Olive Grove. Life 2023, 13, 607. https://doi.org/10.3390/life13030607.
  • Wakabayashi, K.; Soga, K.; Hoson, T.; Masuda, H. The Modification of Cell Wall Properties Is Involved in the Growth Inhibition of Rice Coleoptiles Induced by Lead Stress. Life 2023, 13, 471. https://doi.org/10.3390/life13020471.
  • Wang, D.; Gao, Y.; Sun, S.; Lu, X.; Li, Q.; Li, L.; Wang, K.; Liu, J. Effects of Salt Stress on the Antioxidant Activity and Malondialdehyde, Solution Protein, Proline, and Chlorophyll Contents of Three Malus Species. Life 2022, 12, 1929. https://doi.org/10.3390/life12111929.
  • Waskow, A.; Guihur, A.; Howling, A.; Furno, I. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life 2022, 12, 1822. https://doi.org/10.3390/life12111822.
  • Yadav, R.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Asati, R.; Chauhan, S.; Tiwari, P.N.; Payasi, D.K. Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life 2023, 13, 1456. https://doi.org/10.3390/life13071456.
  • Yadav, R.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Asati, R.; Patel, V.; Sikarwar, R.S.; Payasi, D.K. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life 2023, 13, 988. https://doi.org/10.3390/life13040988.
  • Zahra, N.; Wahid, A.; Hafeez, M.B.; Lalarukh, I.; Batool, A.; Uzair, M.; El-Sheikh, M.A.; Alansi, S.; Kaushik, P. Effect of Salinity and Plant Growth Promoters on Secondary Metabolism and Growth of Milk Thistle Ecotypes. Life 2022, 12, 1530. https://doi.org/10.3390/life12101530.
  • Zhan, X.; Qian, Y.; Mao, B. Identification of Two GDSL-Type Esterase/Lipase Genes Related to Tissue-Specific Lipolysis in Dendrobium catenatum by Multi-Omics Analysis. Life 2022, 12, 1563. https://doi.org/10.3390/life12101563.
  • Zhang, J.; Liu, Y.; Gao, J.; Yuan, C.; Zhan, X.; Cui, X.; Zheng, Z.; Deng, X.; Xu, M. Current Epidemic Situation and Control Status of Citrus Huanglongbing in Guangdong China: The Space–Time Pattern Analysis of Specific Orchards. Life 2023, 13, 749. https://doi.org/10.3390/life13030749.
  • Zilani, R.A.K.M.; Lee, H.; Popova, E.; Kim, H. In Vitro Multiplication and Cryopreservation of Penthorum chinense Shoot Tips. Life 2022, 12, 1759. https://doi.org/10.3390/life12111759.
  • Zou, Z.; Guo, J.; Zheng, Y.; Xiao, Y.; Guo, A. Genomic Analysis of LEA Genes in Carica papaya and Insight into Lineage-Specific Family Evolution in Brassicales. Life 2022, 12, 1453 https://doi.org/10.3390/life12091453.

References

  1. Jiménez, O.R.; Bornemann, A.C.; Medina, Y.E.; Romero, K.; Bravo, J.R. Prospects of biological inputs as a measure for reducing crop losses caused by climate change effects. J. Agric. Food Res. 2023, 14, 100689. [Google Scholar] [CrossRef]
  2. Balla, A.; Silini, A.; Cherif-Silini, H.; Chenari Bouket, A.; Moser, W.K.; Nowakowska, J.A.; Oszako, T.; Benia, F.; Belbahri, L. The threat of pests and pathogens and the potential for biological control in forest ecosystems. Forests 2021, 12, 1579. [Google Scholar] [CrossRef]
  3. Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
  4. Bechtold, U.; Field, B. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 2018, 69, 2753–2758. [Google Scholar] [CrossRef] [PubMed]
  5. Rathod, A.; Verma, N.S. Impact of Abiotic Stress on Agronomical Crops. In Frontiers of Agronomy; Elite Publishing House: Rohini, ND, USA, 2023; p. 27. [Google Scholar]
  6. Cabello, J.V.; Lodeyro, A.F.; Zurbriggen, M.D. Novel perspectives for the engineering of abiotic stress tolerance in plants. Curr. Opin. Biotechnol. 2014, 26, 62–70. [Google Scholar] [CrossRef]
  7. Liu, W.; Yuan, J.S.; Stewart, C.N., Jr. Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 2013, 14, 781–793. [Google Scholar] [CrossRef] [PubMed]
  8. Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
  9. Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef]
  10. Roberts, D.P.; Mattoo, A.K. Sustainable agriculture—Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 2018, 8, 8. [Google Scholar] [CrossRef]
  11. Mishra, R.K.; Bohra, A.; Kamaal, N.; Kumar, K.; Gandhi, K.; Gk, S.; Saabale, P.R.; Sj, S.N.; Sarma, B.K.; Kumar, D. Utilization of biopesticides as sustainable solutions for management of pests in legume crops: Achievements and prospects. Egypt. J. Biol. Pest Control 2018, 28, 3. [Google Scholar] [CrossRef]
  12. Imran, S.; Sarker, P.; Hoque, M.N.; Paul, N.C.; Mahamud, M.A.; Chakrobortty, J.; Tahjib-Ul-Arif, M.; Latef, A.A.H.A.; Hasanuzzaman, M.; Rhaman, M.S. Biochar actions for the mitigation of plant abiotic stress. Crop Pasture Sci. 2022, 74, 6–20. [Google Scholar] [CrossRef]
Figure 1. Strategies for enhancing plant resilience to stresses. (Generated by OpenAI’s Whimsical Diagrams for GPT).
Figure 1. Strategies for enhancing plant resilience to stresses. (Generated by OpenAI’s Whimsical Diagrams for GPT).
Life 14 00372 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Manghwar, H.; Zaman, W. Plant Biotic and Abiotic Stresses. Life 2024, 14, 372. https://doi.org/10.3390/life14030372

AMA Style

Manghwar H, Zaman W. Plant Biotic and Abiotic Stresses. Life. 2024; 14(3):372. https://doi.org/10.3390/life14030372

Chicago/Turabian Style

Manghwar, Hakim, and Wajid Zaman. 2024. "Plant Biotic and Abiotic Stresses" Life 14, no. 3: 372. https://doi.org/10.3390/life14030372

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop