Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies
Abstract
:1. Introduction
1.1. The Crucial Role of Synchronization in Brain Function
1.2. What about Nonsinusoidal Brain Oscillations?
2. Current Findings Regarding PAC in PD
3. Discussion
4. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef]
- Müller, M.L.T.M.; Marusic, U.; van Emde Boas, M.; Weiss, D.; Bohnen, N.I. Treatment Options for Postural Instability and Gait Difficulties in Parkinson’s Disease. Expert Rev. Neurother. 2019, 19, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Leite Silva, A.B.R.; Gonçalves de Oliveira, R.W.; Diógenes, G.P.; de Castro Aguiar, M.F.; Sallem, C.C.; Lima, M.P.P.; de Albuquerque Filho, L.B.; Peixoto de Medeiros, S.D.; Penido de Mendonça, L.L.; de Santiago Filho, P.C.; et al. Premotor, Nonmotor and Motor Symptoms of Parkinson’s Disease: A New Clinical State of the Art. Ageing Res. Rev. 2023, 84, 101834. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Singer, W. Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. Neuron 2006, 52, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Bonilauri, A.; Sangiuliano Intra, F.; Pugnetti, L.; Baselli, G.; Baglio, F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics 2020, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Boon, L.I.; Geraedts, V.J.; Hillebrand, A.; Tannemaat, M.R.; Contarino, M.F.; Stam, C.J.; Berendse, H.W. A Systematic Review of MEG-Based Studies in Parkinson’s Disease: The Motor System and Beyond. Hum. Brain Mapp. 2019, 40, 2827–2848. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Koenig, T. EEG Microstates as a Tool for Studying the Temporal Dynamics of Whole-Brain Neuronal Networks: A Review. NeuroImage 2018, 180, 577–593. [Google Scholar] [CrossRef] [PubMed]
- De Costa, T.D.C.; Godeiro Júnior, C.; Silva, R.A.E.; Dos Santos, S.F.; Machado, D.G.d.S.; Andrade, S.M. The Effects of Non-Invasive Brain Stimulation on Quantitative EEG in Patients with Parkinson’s Disease: A Systematic Scoping Review. Front. Neurol. 2022, 13, 758452. [Google Scholar] [CrossRef]
- Marušič, U.; Meeusen, R.; Pišot, R.; Kavcic, V. The Brain in Micro- and Hypergravity: The Effects of Changing Gravity on the Brain Electrocortical Activity. Eur. J. Sport Sci. 2014, 14, 813–822. [Google Scholar] [CrossRef]
- Gorjan, D.; Gramann, K.; De Pauw, K.; Marusic, U. Removal of Movement-Induced EEG Artifacts: Current State of the Art and Guidelines. J. Neural Eng. 2022, 19, 011004. [Google Scholar] [CrossRef]
- Guevara, R.; Velazquez, J.L.P.; Nenadovic, V.; Wennberg, R.; Senjanovic, G.; Dominguez, L.G. Phase Synchronization Measurements Using Electroencephalographic Recordings: What Can We Really Say about Neuronal Synchrony? Neuroinformatics 2005, 3, 301–314. [Google Scholar] [CrossRef]
- Chen, R.; Berardelli, A.; Bhattacharya, A.; Bologna, M.; Chen, K.-H.S.; Fasano, A.; Helmich, R.C.; Hutchison, W.D.; Kamble, N.; Kühn, A.A.; et al. Clinical Neurophysiology of Parkinson’s Disease and Parkinsonism. Clin. Neurophysiol. Pract. 2022, 7, 201–227. [Google Scholar] [CrossRef]
- Gong, R.; Mühlberg, C.; Wegscheider, M.; Fricke, C.; Rumpf, J.-J.; Knösche, T.R.; Classen, J. Cross-Frequency Phase-Amplitude Coupling in Repetitive Movements in Patients with Parkinson’s Disease. J. Neurophysiol. 2022, 127, 1606–1621. [Google Scholar] [CrossRef]
- Swann, N.C.; de Hemptinne, C.; Thompson, M.C.; Miocinovic, S.; Miller, A.M.; Gilron, R.; Ostrem, J.L.; Chizeck, H.J.; Starr, P.A. Adaptive Deep Brain Stimulation for Parkinson’s Disease Using Motor Cortex Sensing. J. Neural Eng. 2018, 15, 046006. [Google Scholar] [CrossRef]
- Combrisson, E.; Perrone-Bertolotti, M.; Soto, J.L.; Alamian, G.; Kahane, P.; Lachaux, J.-P.; Guillot, A.; Jerbi, K. From Intentions to Actions: Neural Oscillations Encode Motor Processes through Phase, Amplitude and Phase-Amplitude Coupling. NeuroImage 2017, 147, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Swann, N.C.; de Hemptinne, C.; Aron, A.R.; Ostrem, J.L.; Knight, R.T.; Starr, P.A. Elevated Synchrony in Parkinson Disease Detected with Electroencephalography. Ann. Neurol. 2015, 78, 742–750. [Google Scholar] [CrossRef]
- Miller, A.M.; Miocinovic, S.; Swann, N.C.; Rajagopalan, S.S.; Darevsky, D.M.; Gilron, R.; de Hemptinne, C.; Ostrem, J.L.; Starr, P.A. Effect of Levodopa on Electroencephalographic Biomarkers of the Parkinsonian State. J. Neurophysiol. 2019, 122, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhu, G.; Liu, Y.; Zhao, B.; Liu, D.; Bai, Y.; Zhang, Q.; Shi, L.; Feng, T.; Yang, A.; et al. Cortical Phase-Amplitude Coupling Is Key to the Occurrence and Treatment of Freezing of Gait. Brain J. Neurol. 2022, 145, 2407–2421. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Salimpour, Y.; Tsehay, Y.K.; Anderson, W.S.; Mills, K.A. Perspective: Phase Amplitude Coupling–Based Phase–Dependent Neuromodulation in Parkinson’s Disease. Front. Neurosci. 2020, 14, 558967. [Google Scholar] [CrossRef]
- Salimpour, Y.; Mills, K.A.; Hwang, B.Y.; Anderson, W.S. Phase—Targeted Stimulation Modulates Phase-Amplitude Coupling in the Motor Cortex of the Human Brain. Brain Stimulat. 2022, 15, 152–163. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; ISBN 0-7817-5126-8. [Google Scholar]
- Canolty, R.T.; Knight, R.T. The Functional Role of Cross-Frequency Coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Zhang, C.; Shi, W.; Lo, M.-T.; Tinkhauser, G.; Oswal, A. Cross-Frequency Coupling and Intelligent Neuromodulation. Cyborg Bionic Syst. 2023, 4, 0034. [Google Scholar] [CrossRef]
- Miron-Shahar, Y.; Kantelhardt, J.W.; Grinberg, A.; Hassin-Baer, S.; Blatt, I.; Inzelberg, R.; Plotnik, M. Excessive Phase Synchronization in Cortical Activation during Locomotion in Persons with Parkinson’s Disease. Parkinsonism Relat. Disord. 2019, 65, 210–216. [Google Scholar] [CrossRef]
- Yanagisawa, T.; Yamashita, O.; Hirata, M.; Kishima, H.; Saitoh, Y.; Goto, T.; Yoshimine, T.; Kamitani, Y. Regulation of Motor Representation by Phase-Amplitude Coupling in the Sensorimotor Cortex. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 15467–15475. [Google Scholar] [CrossRef]
- Salimpour, Y.; Nayak, A.; Naydanova, E.; Kim, M.J.; Hwang, B.Y.; Mills, K.A.; Kudela, P.; Anderson, W.S. Phase-Dependent Stimulation for Modulating Phase-Amplitude Coupling: A Computational Modeling Approach. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Van der Meij, R.; Kahana, M.; Maris, E. Phase-Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 111–123. [Google Scholar] [CrossRef]
- Fries, P. Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. Annu. Rev. Neurosci. 2009, 32, 209–224. [Google Scholar] [CrossRef]
- Cassidy, M.; Mazzone, P.; Oliviero, A.; Insola, A.; Tonali, P.; Lazzaro, V.D.; Brown, P. Movement-related Changes in Synchronization in the Human Basal Ganglia. Brain 2002, 125, 1235–1246. [Google Scholar] [CrossRef]
- Marsden, J.F.; Limousin-Dowsey, P.; Ashby, P.; Pollak, P.; Brown, P. Subthalamic Nucleus, Sensorimotor Cortex and Muscle Interrelationships in Parkinson’s Disease. Brain 2001, 124, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.A.; Williams, D.; Kupsch, A.; Limousin, P.; Hariz, M.; Schneider, G.; Yarrow, K.; Brown, P. Event-related Beta Desynchronization in Human Subthalamic Nucleus Correlates with Motor Performance. Brain 2004, 127, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Meziane, H.B.; Moisello, C.; Perfetti, B.; Kvint, S.; Isaias, I.U.; Quartarone, A.; Di Rocco, A.; Ghilardi, M.F. Movement Preparation and Bilateral Modulation of Beta Activity in Aging and Parkinson’s Disease. PLoS ONE 2015, 10, e0114817. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.R.; Voytek, B. Brain Oscillations and the Importance of Waveform Shape. Trends Cogn. Sci. 2017, 21, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Wegscheider, M.; Mühlberg, C.; Gast, R.; Fricke, C.; Rumpf, J.-J.; Nikulin, V.V.; Knösche, T.R.; Classen, J. Spatiotemporal Features of β-γ Phase-Amplitude Coupling in Parkinson’s Disease Derived from Scalp EEG. Brain 2020, 144, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Meidahl, A.C.; Moll, C.K.E.; van Wijk, B.C.M.; Gulberti, A.; Tinkhauser, G.; Westphal, M.; Engel, A.K.; Hamel, W.; Brown, P.; Sharott, A. Synchronised Spiking Activity Underlies Phase Amplitude Coupling in the Subthalamic Nucleus of Parkinson’s Disease Patients. Neurobiol. Dis. 2019, 127, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, T.H.B.; Valentin, A.; Selway, R.; Richardson, M.P. Cross-Frequency Coupling within and between the Human Thalamus and Neocortex. Front. Hum. Neurosci. 2013, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Colgin, L.L. Cross-Frequency Coupling between Neuronal Oscillations. Trends Cogn. Sci. 2007, 11, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, Y.; Hsin, Y.-L.; Liu, W. Phase-Amplitude Coupling Analysis for Seizure Evolvement Using Hilbert Huang Transform. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016. [Google Scholar]
- Yakubov, B.; Das, S.; Zomorrodi, R.; Blumberger, D.M.; Enticott, P.G.; Kirkovski, M.; Rajji, T.K.; Desarkar, P. Cross-Frequency Coupling in Psychiatric Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2022, 138, 104690. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.R.; Peterson, E.J.; van der Meij, R.; de Hemptinne, C.; Starr, P.A.; Voytek, B. Nonsinusoidal Oscillations Underlie Pathological Phase-Amplitude Coupling in the Motor Cortex in Parkinson’s Disease. bioRxiv 2016, 49304. [Google Scholar] [CrossRef]
- Tort, A.B.L.; Kramer, M.A.; Thorn, C.; Gibson, D.J.; Kubota, Y.; Graybiel, A.M.; Kopell, N.J. Dynamic Cross-Frequency Couplings of Local Field Potential Oscillations in Rat Striatum and Hippocampus during Performance of a T-Maze Task. Proc. Natl. Acad. Sci. USA 2008, 105, 20517–20522. [Google Scholar] [CrossRef]
- He, S.; Everest-Phillips, C.; Clouter, A.; Brown, P.; Tan, H. Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 4021–4032. [Google Scholar] [CrossRef]
- Abubaker, M.; Al Qasem, W.; Kvašňák, E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front. Psychol. 2021, 12, 756661. [Google Scholar] [CrossRef]
- Bong, S.H.; Kim, J.W. The Role of Quantitative Electroencephalogram in the Diagnosis and Subgrouping of Attention-Deficit/Hyperactivity Disorder. Soa-Chongsonyon Chongsin Uihak J. Child Adolesc. Psychiatry 2021, 32, 85–92. [Google Scholar] [CrossRef]
- Sherman, M.A.; Lee, S.; Law, R.; Haegens, S.; Thorn, C.A.; Hämäläinen, M.S.; Moore, C.I.; Jones, S.R. Neural Mechanisms of Transient Neocortical Beta Rhythms: Converging Evidence from Humans, Computational Modeling, Monkeys, and Mice. Proc. Natl. Acad. Sci. USA 2016, 113, E4885–E4894. [Google Scholar] [CrossRef]
- Poza, J.; Bachiller, A.; Gomez, C.; Garcia, M.; Nunez, P.; Gomez-Pilar, J.; Tola-Arribas, M.A.; Cano, M.; Hornero, R. Phase-Amplitude Coupling Analysis of Spontaneous EEG Activity in Alzheimer’s Disease. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017. [Google Scholar]
- Bayraktaroğlu, Z.; Aktürk, T.; Yener, G.; de Graaf, T.A.; Hanoğlu, L.; Yıldırım, E.; Hünerli Gündüz, D.; Kıyı, İ.; Sack, A.T.; Babiloni, C.; et al. Abnormal Cross Frequency Coupling of Brain Electroencephalographic Oscillations Related to Visual Oddball Task in Parkinson’s Disease with Mild Cognitive Impairment. Clin. EEG Neurosci. 2022, 54, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Devergnas, A.; Caiola, M.; Pittard, D.; Wichmann, T. Cortical Phase–Amplitude Coupling in a Progressive Model of Parkinsonism in Nonhuman Primates. Cereb. Cortex 2019, 29, 167–177. [Google Scholar] [CrossRef] [PubMed]
- AuYong, N.; Malekmohammadi, M.; Ricks-Oddie, J.; Pouratian, N. Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease. Front. Hum. Neurosci. 2018, 12, 270. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Cole, S.R.; Voytek, B.; Swann, N.C. Characteristics of Waveform Shape in Parkinson’s Disease Detected with Scalp Electroencephalography. eNeuro 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shreve, L.A.; Velisar, A.; Malekmohammadi, M.; Koop, M.M.; Trager, M.; Quinn, E.J.; Hill, B.C.; Blumenfeld, Z.; Kilbane, C.; Mantovani, A.; et al. Subthalamic Oscillations and Phase Amplitude Coupling Are Greater in the More Affected Hemisphere in Parkinson’s Disease. Clin. Neurophysiol. 2017, 128, 128–137. [Google Scholar] [CrossRef] [PubMed]
- De Hemptinne, C.; Ryapolova-Webb, E.S.; Air, E.L.; Garcia, P.A.; Miller, K.J.; Ojemann, J.G.; Ostrem, J.L.; Galifianakis, N.B.; Starr, P.A. Exaggerated Phase-Amplitude Coupling in the Primary Motor Cortex in Parkinson Disease. Proc. Natl. Acad. Sci. USA 2013, 110, 4780–4785. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, J.; Hartmann, C.J.; Butz, M.; Hoogenboom, N.; Özkurt, T.E.; Elben, S.; Vesper, J.; Wojtecki, L.; Schnitzler, A. A Direct Relationship between Oscillatory Subthalamic Nucleus–Cortex Coupling and Rest Tremor in Parkinson’s Disease. Brain 2013, 136, 3659–3670. [Google Scholar] [CrossRef] [PubMed]
- Miocinovic, S.; de Hemptinne, C.; Qasim, S.; Ostrem, J.L.; Starr, P.A. Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease. JAMA Neurol. 2015, 72, 1244–1251. [Google Scholar] [CrossRef]
- Pauls, K.A.M.; Korsun, O.; Nenonen, J.; Nurminen, J.; Liljeström, M.; Kujala, J.; Pekkonen, E.; Renvall, H. Cortical Beta Burst Dynamics Are Altered in Parkinson’s Disease but Normalized by Deep Brain Stimulation. NeuroImage 2022, 257, 119308. [Google Scholar] [CrossRef] [PubMed]
- Churchland, M.M.; Cunningham, J.P.; Kaufman, M.T.; Foster, J.D.; Nuyujukian, P.; Ryu, S.I.; Shenoy, K.V. Neural Population Dynamics during Reaching. Nature 2012, 487, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, K.V.; Sahani, M.; Churchland, M.M. Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annu. Rev. Neurosci. 2013, 36, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Madadi Asl, M.; Vahabie, A.-H.; Valizadeh, A. The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. Park. Dis. 2022, 2022, 7524066. [Google Scholar] [CrossRef] [PubMed]
- Ortone, A.; Vergani, A.A.; Ahmadipour, M.; Mannella, R.; Mazzoni, A. Dopamine Depletion Leads to Pathological Synchronization of Distinct Basal Ganglia Loops in the Beta Band. PLoS Comput. Biol. 2023, 19, e1010645. [Google Scholar] [CrossRef] [PubMed]
- Brittain, J.-S.; Sharott, A.; Brown, P. The Highs and Lows of Beta Activity in Cortico-Basal Ganglia Loops. Eur. J. Neurosci. 2014, 39, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Van Nuland, A.J.M.; den Ouden, H.E.M.; Zach, H.; Dirkx, M.F.M.; van Asten, J.J.A.; Scheenen, T.W.J.; Toni, I.; Cools, R.; Helmich, R.C. GABAergic Changes in the Thalamocortical Circuit in Parkinson’s Disease. Hum. Brain Mapp. 2020, 41, 1017–1029. [Google Scholar] [CrossRef]
- Kondabolu, K.; Roberts, E.A.; Bucklin, M.; McCarthy, M.M.; Kopell, N.; Han, X. Striatal Cholinergic Interneurons Generate Beta and Gamma Oscillations in the Corticostriatal Circuit and Produce Motor Deficits. Proc. Natl. Acad. Sci. USA 2016, 113, E3159–E3168. [Google Scholar] [CrossRef]
- Chen, C.C.; Brücke, C.; Kempf, F.; Kupsch, A.; Lu, C.S.; Lee, S.T.; Tisch, S.; Limousin, P.; Hariz, M.; Brown, P. Deep Brain Stimulation of the Subthalamic Nucleus: A Two-Edged Sword. Curr. Biol. 2006, 16, R952–R953. [Google Scholar] [CrossRef]
- Castrioto, A.; Lhommée, E.; Moro, E.; Krack, P. Mood and Behavioural Effects of Subthalamic Stimulation in Parkinson’s Disease. Lancet Neurol. 2014, 13, 287–305. [Google Scholar] [CrossRef]
Citation | Measurements | Participants | ON vs. OFF | OFF vs. HC | ON vs. HC | Main Finding | Waveform Shape Analysis | Effect Size (PD_OFF vs. HC) |
---|---|---|---|---|---|---|---|---|
Swann et al. (2015) [16]. | 32 channel, 3 min RS, EO | 14 patients | x | x | x | PAC calculation can be based on only two electrodes (C3/C4). | effect size: 0.83, p = 0.009 | |
Jackson et al. (2019) [50]. | 32 channel, 3 min, RS, EO | 15 patients | x | x | Improvement of PAC sensitivity based on waveform shape analysis. | x | sharpness ratio effect size: 0.86, p = 0.006, steepness ratio effect size: 0.68, p = 0.004, PAC effect size: 0.27, p = 0.011 | |
Miller et al. (2019) [17]. | 64 channel EEG, 5 min RS, 10 s hand movements followed by 10 s rest, repeated 5 times, finger tapping on screen, 3 s movement and 7 s no movement, repeated 20 times | 14 patients | x | x | Medication induced PAC attenuation corresponds to motor symptom alleviation measured using UPDRS. PAC is attenuated during voluntary movement. | x | effect size: (n/a), p = 0.031 | |
Gong et al. (2020) [34]. | 64 channel, 5 min RS, EO | 19 patients | x | Spatiotemporal characteristics of PAC. | ||||
Gong et al. (2022) [13]. | 64 channel, pressing: self initiated, 3 min, 2 trials, slow tapping: 30 s, two blocks of 6 trials, fast tapping: 2 blocks; 15 s, 10 trials and 12 s, 10 trials | 9 patients | x | PAC follows a movement modulation mechanism. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodnik, T.; Roytman, S.; Bohnen, N.I.; Marusic, U. Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies. Life 2024, 14, 391. https://doi.org/10.3390/life14030391
Hodnik T, Roytman S, Bohnen NI, Marusic U. Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies. Life. 2024; 14(3):391. https://doi.org/10.3390/life14030391
Chicago/Turabian StyleHodnik, Tisa, Stiven Roytman, Nico I. Bohnen, and Uros Marusic. 2024. "Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies" Life 14, no. 3: 391. https://doi.org/10.3390/life14030391
APA StyleHodnik, T., Roytman, S., Bohnen, N. I., & Marusic, U. (2024). Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies. Life, 14(3), 391. https://doi.org/10.3390/life14030391