Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas
Abstract
:1. Introduction
2. The Molecular Mechanisms of HIV-Associated Dyslipidemia
2.1. The Role of HIV Viremia and Inflammation
2.2. The Role of Antiretroviral Treatment
2.2.1. Protease Inhibitors
2.2.2. Nucleoside Reverse Transcriptase Inhibitors
2.2.3. Non-Nucleoside Reverse Transcriptase Inhibitors
2.2.4. Integrase Inhibitors
3. Treatment of Dyslipidemia
3.1. Statins
3.1.1. The Role of Statins in Inflammation
3.1.2. The Role of Statins in Lipid Management
3.1.3. Drug Interactions between HAART and Statins
3.2. Ezetimibe
3.3. PCSK9 Inhibitors
3.4. Bempedoic Acid
3.5. Fibrates
3.6. Fish Oils
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Health Sector Strategy on HIV 2016-2021. Towards Ending AIDS; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Thaker, H.K.; Snow, M.H. HIV viral suppression in the era of antiretroviral therapy. Postgrad. Med. J. 2003, 79, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, G.R.; Zaunders, J.; Cooper, D.A. Immune reconstitution in HIV-1 infected subjects treated with potent antiretroviral therapy. Sex. Transm. Infect. 1999, 75, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Nunan, E.; Wright, C.L.; Semola, O.A.; Subramanian, M.; Balasubramanian, P.; Lovern, P.C.; Fancher, I.S.; Butcher, J.T. Obesity as a premature aging phenotype-implications for sarcopenic obesity. Geroscience 2022, 44, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Enanoria, W.T.; Ng, C.; Saha, S.R.; Colford, J.M., Jr. Treatment outcomes after highly active antiretroviral therapy: A meta-analysis of randomised controlled trials. Lancet Infect. Dis. 2004, 4, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.; Babiker, A.; Bhaskaran, K.; Darbyshire, J.; Pezzotti, P.; Porter, K.; Walker, A.S.; Collaboration, C. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003, 362, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Koethe, J.R. Adipose Tissue in HIV Infection. Compr. Physiol. 2017, 7, 1339–1357. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.; Brinkman, K.; Geerlings, S.; Smit, C.; Thyagarajan, K.; Sighem, A.; de Wolf, F.; Hallett, T.B.; ATHENA observational cohort. Future challenges for clinical care of an ageing population infected with HIV: A modelling study. Lancet Infect. Dis. 2015, 15, 810–818. [Google Scholar] [CrossRef]
- Masenga, S.K.; Elijovich, F.; Koethe, J.R.; Hamooya, B.M.; Heimburger, D.C.; Munsaka, S.M.; Laffer, C.L.; Kirabo, A. Hypertension and Metabolic Syndrome in Persons with HIV. Curr. Hypertens. Rep. 2020, 22, 78. [Google Scholar] [CrossRef]
- Freiberg, M.S.; Chang, C.H.; Skanderson, M.; Patterson, O.V.; DuVall, S.L.; Brandt, C.A.; So-Armah, K.A.; Vasan, R.S.; Oursler, K.A.; Gottdiener, J.; et al. Association Between HIV Infection and the Risk of Heart Failure With Reduced Ejection Fraction and Preserved Ejection Fraction in the Antiretroviral Therapy Era: Results From the Veterans Aging Cohort Study. JAMA Cardiol. 2017, 2, 536–546. [Google Scholar] [CrossRef]
- Gili, S.; Grosso Marra, W.; D’Ascenzo, F.; Lonni, E.; Calcagno, A.; Cannillo, M.; Ballocca, F.; Cerrato, E.; Pianelli, M.; Barbero, U.; et al. Comparative safety and efficacy of statins for primary prevention in human immunodeficiency virus-positive patients: A systematic review and meta-analysis. Eur. Heart J. 2016, 37, 3600–3609. [Google Scholar] [CrossRef]
- Freiberg, M.S.; Chang, C.C.; Kuller, L.H.; Skanderson, M.; Lowy, E.; Kraemer, K.L.; Butt, A.A.; Bidwell Goetz, M.; Leaf, D.; Oursler, K.A.; et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern. Med. 2013, 173, 614–622. [Google Scholar] [CrossRef]
- Tseng, Z.H.; Secemsky, E.A.; Dowdy, D.; Vittinghoff, E.; Moyers, B.; Wong, J.K.; Havlir, D.V.; Hsue, P.Y. Sudden cardiac death in patients with human immunodeficiency virus infection. J. Am. Coll. Cardiol. 2012, 59, 1891–1896. [Google Scholar] [CrossRef]
- Ryom, L.; Lundgren, J.D.; El-Sadr, W.; Reiss, P.; Kirk, O.; Law, M.; Phillips, A.; Weber, R.; Fontas, E.; d’Arminio Monforte, A.; et al. Cardiovascular disease and use of contemporary protease inhibitors: The D:A:D international prospective multicohort study. Lancet HIV 2018, 5, e291–e300. [Google Scholar] [CrossRef]
- Hsue, P.Y.; Waters, D.D. Time to Recognize HIV Infection as a Major Cardiovascular Risk Factor. Circulation 2018, 138, 1113–1115. [Google Scholar] [CrossRef]
- Feingold, K.R.; Krauss, R.M.; Pang, M.; Doerrler, W.; Jensen, P.; Grunfeld, C. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J. Clin. Endocrinol. Metab. 1993, 76, 1423–1427. [Google Scholar] [CrossRef]
- Buchacz, K.; Baker, R.K.; Palella, F.J., Jr.; Shaw, L.; Patel, P.; Lichtenstein, K.A.; Chmiel, J.S.; Vellozzi, C.; Debes, R.; Henry, K.; et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir. Ther. 2013, 18, 65–75. [Google Scholar] [CrossRef]
- Riddler, S.A.; Smit, E.; Cole, S.R.; Li, R.; Chmiel, J.S.; Dobs, A.; Palella, F.; Visscher, B.; Evans, R.; Kingsley, L.A. Impact of HIV infection and HAART on serum lipids in men. JAMA 2003, 289, 2978–2982. [Google Scholar] [CrossRef]
- Sviridov, D.; Mukhamedova, N.; Makarov, A.A.; Adzhubei, A.; Bukrinsky, M. Comorbidities of HIV infection: Role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS 2020, 34, 1–13. [Google Scholar] [CrossRef]
- Mohseni Ahooyi, T.; Shekarabi, M.; Torkzaban, B.; Langford, T.D.; Burdo, T.H.; Gordon, J.; Datta, P.K.; Amini, S.; Khalili, K. Dysregulation of Neuronal Cholesterol Homeostasis upon Exposure to HIV-1 Tat and Cocaine Revealed by RNA-Sequencing. Sci. Rep. 2018, 8, 16300. [Google Scholar] [CrossRef]
- Reeds, D.N.; Mittendorfer, B.; Patterson, B.W.; Powderly, W.G.; Yarasheski, K.E.; Klein, S. Alterations in lipid kinetics in men with HIV-dyslipidemia. Am. J. Physiol.-Endocrinol. Metab. 2003, 285, E490–E497. [Google Scholar] [CrossRef]
- Duong, M.; Petit, J.M.; Martha, B.; Galland, F.; Piroth, L.; Walldner, A.; Grappin, M.; Buisson, M.; Duvillard, L.; Chavanet, P.; et al. Concentration of circulating oxidized LDL in HIV-infected patients treated with antiretroviral agents: Relation to HIV-related lipodystrophy. HIV Clin. Trials 2006, 7, 41–47. [Google Scholar] [CrossRef]
- Mujawar, Z.; Rose, H.; Morrow, M.P.; Pushkarsky, T.; Dubrovsky, L.; Mukhamedova, N.; Fu, Y.; Dart, A.; Orenstein, J.M.; Bobryshev, Y.V.; et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol. 2006, 4, e365. [Google Scholar] [CrossRef]
- Damouche, A.; Lazure, T.; Avettand-Fenoel, V.; Huot, N.; Dejucq-Rainsford, N.; Satie, A.P.; Melard, A.; David, L.; Gommet, C.; Ghosn, J.; et al. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog. 2015, 11, e1005153. [Google Scholar] [CrossRef]
- Gorwood, J.; Bourgeois, C.; Mantecon, M.; Atlan, M.; Pourcher, V.; Pourcher, G.; Le Grand, R.; Desjardins, D.; Feve, B.; Lambotte, O.; et al. Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS 2019, 33, 953–964. [Google Scholar] [CrossRef]
- Maurin, T.; Saillan-Barreau, C.; Cousin, B.; Casteilla, L.; Doglio, A.; Penicaud, L. Tumor necrosis factor-alpha stimulates HIV-1 production in primary culture of human adipocytes. Exp. Cell Res. 2005, 304, 544–551. [Google Scholar] [CrossRef]
- Munier, S.; Borjabad, A.; Lemaire, M.; Mariot, V.; Hazan, U. In vitro infection of human primary adipose cells with HIV-1: A reassessment. AIDS 2003, 17, 2537–2539. [Google Scholar] [CrossRef]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef]
- Lake, J.E.; Currier, J.S. Metabolic disease in HIV infection. Lancet Infect. Dis. 2013, 13, 964–975. [Google Scholar] [CrossRef]
- Anastos, K.; Lu, D.; Shi, Q.; Tien, P.C.; Kaplan, R.C.; Hessol, N.A.; Cole, S.; Vigen, C.; Cohen, M.; Young, M.; et al. Association of serum lipid levels with HIV serostatus, specific antiretroviral agents, and treatment regimens. J. Acquir. Immune Defic. Syndr. 2007, 45, 34–42. [Google Scholar] [CrossRef]
- Zhao, R.Y.; Bukrinsky, M.I. HIV-1 accessory proteins: VpR. Methods Mol. Biol. 2014, 1087, 125–134. [Google Scholar] [CrossRef]
- Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med. 2004, 10, 355–361. [Google Scholar] [CrossRef]
- Francis, G.A.; Li, G.; Casey, R.; Wang, J.; Cao, H.; Leff, T.; Hegele, R.A. Peroxisomal proliferator activated receptor-gamma deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3). BMC Med. Genet. 2006, 7, 3. [Google Scholar] [CrossRef]
- Agarwal, N.; Iyer, D.; Gabbi, C.; Saha, P.; Patel, S.G.; Mo, Q.; Chang, B.; Goswami, B.; Schubert, U.; Kopp, J.B.; et al. HIV-1 viral protein R (Vpr) induces fatty liver in mice via LXRalpha and PPARalpha dysregulation: Implications for HIV-specific pathogenesis of NAFLD. Sci. Rep. 2017, 7, 13362. [Google Scholar] [CrossRef]
- Shrivastav, S.; Kino, T.; Cunningham, T.; Ichijo, T.; Schubert, U.; Heinklein, P.; Chrousos, G.P.; Kopp, J.B. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor gamma and inhibits adipocyte differentiation: Implications for HIV-associated lipodystrophy. Mol. Endocrinol. 2008, 22, 234–247. [Google Scholar] [CrossRef]
- Rice, A.P. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Curr. Pharm. Des. 2017, 23, 4098–4102. [Google Scholar] [CrossRef]
- Liu, Y.; Jones, M.; Hingtgen, C.M.; Bu, G.; Laribee, N.; Tanzi, R.E.; Moir, R.D.; Nath, A.; He, J.J. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat. Med. 2000, 6, 1380–1387. [Google Scholar] [CrossRef]
- Weiss, J.M.; Nath, A.; Major, E.O.; Berman, J.W. HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J. Immunol. 1999, 163, 2953–2959. [Google Scholar] [CrossRef]
- Zauli, G.; Furlini, G.; Re, M.C.; Milani, D.; Capitani, S.; La Placa, M. Human immunodeficiency virus type 1 (HIV-1) tat-protein stimulates the production of interleukin-6 (IL-6) by peripheral blood monocytes. New Microbiol. 1993, 16, 115–120. [Google Scholar]
- Duffy, P.; Wang, X.; Lin, P.H.; Yao, Q.; Chen, C. HIV Nef protein causes endothelial dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells. J. Surg. Res. 2009, 156, 257–264. [Google Scholar] [CrossRef]
- Lin, S.; Nadeau, P.E.; Mergia, A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology 2015, 12, 62. [Google Scholar] [CrossRef]
- Lin, S.; Nadeau, P.E.; Wang, X.; Mergia, A. Caveolin-1 reduces HIV-1 infectivity by restoration of HIV Nef mediated impairment of cholesterol efflux by apoA-I. Retrovirology 2012, 9, 85. [Google Scholar] [CrossRef]
- Olivetta, E.; Percario, Z.; Fiorucci, G.; Mattia, G.; Schiavoni, I.; Dennis, C.; Jager, J.; Harris, M.; Romeo, G.; Affabris, E.; et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: Involvement of Nef endocytotic signals and NF-kappa B activation. J. Immunol. 2003, 170, 1716–1727. [Google Scholar] [CrossRef]
- van’t Wout, A.B.; Swain, J.V.; Schindler, M.; Rao, U.; Pathmajeyan, M.S.; Mullins, J.I.; Kirchhoff, F. Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells. J. Virol. 2005, 79, 10053–10058. [Google Scholar] [CrossRef]
- Wang, T.; Green, L.A.; Gupta, S.K.; Kim, C.; Wang, L.; Almodovar, S.; Flores, S.C.; Prudovsky, I.A.; Jolicoeur, P.; Liu, Z.; et al. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS ONE 2014, 9, e91063. [Google Scholar] [CrossRef]
- Schipper, H.S.; Prakken, B.; Kalkhoven, E.; Boes, M. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends Endocrinol. Metab. 2012, 23, 407–415. [Google Scholar] [CrossRef]
- Dorfmuller, P.; Zarka, V.; Durand-Gasselin, I.; Monti, G.; Balabanian, K.; Garcia, G.; Capron, F.; Coulomb-Lhermine, A.; Marfaing-Koka, A.; Simonneau, G.; et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2002, 165, 534–539. [Google Scholar] [CrossRef]
- Freeman, M.L.; Hossain, M.B.; Burrowes, S.A.B.; Jeudy, J.; Bui, R.; Moisi, D.; Mitchell, S.E.; Khambaty, M.; Weiss, R.G.; Lederman, M.M.; et al. Association of Soluble Markers of Inflammation With Peri-coronary Artery Inflammation in People With and Without HIV Infection and Without Cardiovascular Disease. Open Forum Infect. Dis. 2023, 10, ofad328. [Google Scholar] [CrossRef]
- Couturier, J.; Agarwal, N.; Nehete, P.N.; Baze, W.B.; Barry, M.A.; Jagannadha Sastry, K.; Balasubramanyam, A.; Lewis, D.E. Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology 2016, 13, 30. [Google Scholar] [CrossRef]
- McGillicuddy, F.C.; de la Llera Moya, M.; Hinkle, C.C.; Joshi, M.R.; Chiquoine, E.H.; Billheimer, J.T.; Rothblat, G.H.; Reilly, M.P. Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009, 119, 1135–1145. [Google Scholar] [CrossRef]
- Khovidhunkit, W.; Memon, R.A.; Feingold, K.R.; Grunfeld, C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J. Infect. Dis. 2000, 181 (Suppl. S3), S462–S472. [Google Scholar] [CrossRef]
- Perrotta, I.; Aquila, S. The role of oxidative stress and autophagy in atherosclerosis. Oxidative Med. Cell. Longev. 2015, 2015, 130315. [Google Scholar] [CrossRef]
- Ma, R.; Yang, L.; Niu, F.; Buch, S. HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. Mol. Neurobiol. 2016, 53, 132–142. [Google Scholar] [CrossRef]
- Cross, A.R.; Segal, A.W. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 2004, 1657, 1–22. [Google Scholar] [CrossRef]
- Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature 2012, 481, 278–286. [Google Scholar] [CrossRef]
- Guo, H.; Gao, J.; Taxman, D.J.; Ting, J.P.; Su, L. HIV-1 infection induces interleukin-1beta production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J. Biol. Chem. 2014, 289, 21716–21726. [Google Scholar] [CrossRef]
- Blanc, M.; Hsieh, W.Y.; Robertson, K.A.; Watterson, S.; Shui, G.; Lacaze, P.; Khondoker, M.; Dickinson, P.; Sing, G.; Rodriguez-Martin, S.; et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 2011, 9, e1000598. [Google Scholar] [CrossRef]
- Vyboh, K.; Jenabian, M.A.; Mehraj, V.; Routy, J.P. HIV and the gut microbiota, partners in crime: Breaking the vicious cycle to unearth new therapeutic targets. J. Immunol. Res. 2015, 2015, 614127. [Google Scholar] [CrossRef]
- Serrano-Villar, S.; Vazquez-Castellanos, J.F.; Vallejo, A.; Latorre, A.; Sainz, T.; Ferrando-Martinez, S.; Rojo, D.; Martinez-Botas, J.; Del Romero, J.; Madrid, N.; et al. The effects of prebiotics on microbial dysbiosis, butyrate production and immunity in HIV-infected subjects. Mucosal Immunol. 2017, 10, 1279–1293. [Google Scholar] [CrossRef]
- Nordell, A.D.; McKenna, M.; Borges, A.H.; Duprez, D.; Neuhaus, J.; Neaton, J.D.; Insight Smart, E.S.G.; Committee, S.S. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J. Am. Heart Assoc. 2014, 3, e000844. [Google Scholar] [CrossRef]
- Villanueva-Millan, M.J.; Perez-Matute, P.; Recio-Fernandez, E.; Lezana Rosales, J.M.; Oteo, J.A. Characterization of gut microbiota composition in HIV-infected patients with metabolic syndrome. J. Physiol. Biochem. 2019, 75, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.M.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major revision version 12.0 of the European AIDS Clinical Society guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Yang, Y.; Yang, Z.; Wu, Y.; Liu, X.; Li, X.; Chen, L.; Han, Y.; Song, X.; Kong, Z.; et al. Altered plasma metabolites and inflammatory networks in HIV-1 infected patients with different immunological responses after long-term antiretroviral therapy. Front. Immunol. 2023, 14, 1254155. [Google Scholar] [CrossRef] [PubMed]
- Okunorobo, M.N.; Nnamah, N.K.; Ude, U.A.; Ude, E.A. Lipids and apolipoproteins C-III and E among treatment-naive and treatment-experienced persons with HIV in Nigeria. Afr. J. Lab. Med. 2023, 12, 2018. [Google Scholar] [CrossRef] [PubMed]
- Ambisa Lamesa, T.; Getachew Mamo, A.; Arega Berihun, G.; Alemu Kebede, R.; Bekele Lemesa, E.; Cheneke Gebisa, W. Dyslipidemia and Nutritional Status of HIV-Infected Children and Adolescents on Antiretroviral Treatment at the Comprehensive Chronic Care and Training Center of Jimma Medical Center. HIV AIDS 2023, 15, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, X.; Han, Y.; Qiu, Z.; Cao, W.; Li, T. Risk factors and longitudinal changes of dyslipidemia among Chinese people living with HIV receiving antiretroviral therapy. BMC Infect. Dis. 2023, 23, 598. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Mukherjee, A.; Lakshmy, R.; Kabra, S.K.; Lodha, R. Dyslipidemia in HIV Infected Children Receiving Highly Active Antiretroviral Therapy. Indian J. Pediatr. 2016, 83, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Mallon, P.W.; Cooper, D.A.; Carr, A. HIV-associated lipodystrophy. HIV Med. 2001, 2, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef]
- Feeney, E.R.; Mallon, P.W. HIV and HAART-Associated Dyslipidemia. Open Cardiovasc. Med. J. 2011, 5, 49–63. [Google Scholar] [CrossRef]
- Martini, S.; Pisaturo, M.; Russo, A.; Palamone, M.G.; Russo, M.T.; Zollo, V.; Maggi, P.; Coppola, N. Evaluation of Lipid Profile and Intima Media Thickness in Antiretroviral-Experienced HIV-Infected Patients Treated with Protease Inhibitor-Based Regimens versus Protease Inhibitor-Sparing Regimens. Pathogens 2023, 12, 925. [Google Scholar] [CrossRef]
- den Boer, M.A.; Berbee, J.F.; Reiss, P.; van der Valk, M.; Voshol, P.J.; Kuipers, F.; Havekes, L.M.; Rensen, P.C.; Romijn, J.A. Ritonavir impairs lipoprotein lipase-mediated lipolysis and decreases uptake of fatty acids in adipose tissue. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 124–129. [Google Scholar] [CrossRef]
- Caron, M.; Auclair, M.; Sterlingot, H.; Kornprobst, M.; Capeau, J. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS 2003, 17, 2437–2444. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.; Auclair, M.; Vigouroux, C.; Glorian, M.; Forest, C.; Capeau, J. The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes 2001, 50, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gurley, E.C.; Jarujaron, S.; Ding, H.; Fang, Y.; Xu, Z.; Pandak, W.M., Jr.; Hylemon, P.B. HIV protease inhibitors activate the unfolded protein response and disrupt lipid metabolism in primary hepatocytes. Am. J. Physiol. -Gastrointest. Liver Physiol. 2006, 291, G1071–G1080. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.S.; Distler, O.; Cooper, D.A.; Jamil, H.; Deckelbaum, R.J.; Ginsberg, H.N.; Sturley, S.L. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: A potential mechanism for protease inhibitor-induced hyperlipidemia. Nat. Med. 2001, 7, 1327–1331. [Google Scholar] [CrossRef]
- Akita, S.; Suzuki, K.; Yoshimoto, H.; Ohtsuru, A.; Hirano, A.; Yamashita, S. Cellular Mechanism Underlying Highly-Active or Antiretroviral Therapy-Induced Lipodystrophy: Atazanavir, a Protease Inhibitor, Compromises Adipogenic Conversion of Adipose-Derived Stem/Progenitor Cells through Accelerating ER Stress-Mediated Cell Death in Differentiating Adipocytes. Int. J. Mol. Sci. 2021, 22, 2114. [Google Scholar] [CrossRef]
- Bruder-Nascimento, T.; Kress, T.C.; Kennard, S.; Belin de Chantemele, E.J. HIV Protease Inhibitor Ritonavir Impairs Endothelial Function Via Reduction in Adipose Mass and Endothelial Leptin Receptor-Dependent Increases in NADPH Oxidase 1 (Nox1), C-C Chemokine Receptor Type 5 (CCR5), and Inflammation. J. Am. Heart Assoc. 2020, 9, e018074. [Google Scholar] [CrossRef]
- Kovacs, L.; Bruder-Nascimento, T.; Greene, L.; Kennard, S.; Belin de Chantemele, E.J. Chronic Exposure to HIV-Derived Protein Tat Impairs Endothelial Function via Indirect Alteration in Fat Mass and Nox1-Mediated Mechanisms in Mice. Int. J. Mol. Sci. 2021, 22, 977. [Google Scholar] [CrossRef]
- Friis-Moller, N.; Weber, R.; Reiss, P.; Thiebaut, R.; Kirk, O.; d’Arminio Monforte, A.; Pradier, C.; Morfeldt, L.; Mateu, S.; Law, M.; et al. Cardiovascular disease risk factors in HIV patients--association with antiretroviral therapy. Results from the DAD study. AIDS 2003, 17, 1179–1193. [Google Scholar] [CrossRef]
- Fontas, E.; van Leth, F.; Sabin, C.A.; Friis-Moller, N.; Rickenbach, M.; d’Arminio Monforte, A.; Kirk, O.; Dupon, M.; Morfeldt, L.; Mateu, S.; et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: Are different antiretroviral drugs associated with different lipid profiles? J. Infect. Dis. 2004, 189, 1056–1074. [Google Scholar] [CrossRef] [PubMed]
- Sadler, B.M.; Piliero, P.J.; Preston, S.L.; Lloyd, P.P.; Lou, Y.; Stein, D.S. Pharmacokinetics and safety of amprenavir and ritonavir following multiple-dose, co-administration to healthy volunteers. AIDS 2001, 15, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Purnell, J.Q.; Zambon, A.; Knopp, R.H.; Pizzuti, D.J.; Achari, R.; Leonard, J.M.; Locke, C.; Brunzell, J.D. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS 2000, 14, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Shafran, S.D.; Mashinter, L.D.; Roberts, S.E. The effect of low-dose ritonavir monotherapy on fasting serum lipid concentrations. HIV Med. 2005, 6, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.A.; Seneviratne, T.; Noor, M.A.; Lo, J.C.; Schwarz, J.M.; Aweeka, F.T.; Mulligan, K.; Schambelan, M.; Grunfeld, C. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS 2004, 18, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Voigt, E.; Wasmuth, J.C.; Vogel, M.; Mauss, S.; Schmutz, G.; Kaiser, R.; Rockstroh, J.K. Safety, efficacy and development of resistance under the new protease inhibitor lopinavir/ritonavir: 48-week results. Infection 2004, 32, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; De Boever, C.M.; Dupuy, A.M.; Baillat, V.; Cristol, J.P.; Reynes, J. Small dense LDL and atherogenic lipid profile in HIV-positive adults: Influence of lopinavir/ritonavir-containing regimen. AIDS 2003, 17, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Montes, M.L.; Pulido, F.; Barros, C.; Condes, E.; Rubio, R.; Cepeda, C.; Dronda, F.; Antela, A.; Sanz, J.; Navas, E.; et al. Lipid disorders in antiretroviral-naive patients treated with lopinavir/ritonavir-based HAART: Frequency, characterization and risk factors. J. Antimicrob. Chemother. 2005, 55, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, F.; Padilla, S.; Navarro, A.; Masia, M.; Hernandez, I.; Ramos, J.; Esteban, A.; Martin-Hidalgo, A. Lopinavir plasma concentrations and changes in lipid levels during salvage therapy with lopinavir/ritonavir-containing regimens. J. Acquir. Immune Defic. Syndr. 2003, 33, 594–600. [Google Scholar] [CrossRef]
- Torti, C.; Quiros-Roldan, E.; Regazzi-Bonora, M.; De Luca, A.; Lo Caputo, S.; Di Giambenedetto, S.; Patroni, A.; Villani, P.; Micheli, V.; Carosi, G.; et al. Lipid abnormalities in HIV-infected patients are not correlated with lopinavir plasma concentrations. J. Acquir. Immune Defic. Syndr. 2004, 35, 324–326. [Google Scholar] [CrossRef]
- Dube, M.P.; Qian, D.; Edmondson-Melancon, H.; Sattler, F.R.; Goodwin, D.; Martinez, C.; Williams, V.; Johnson, D.; Buchanan, T.A. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin. Infect. Dis. 2002, 35, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Fisac, C.; Virgili, N.; Ferrer, E.; Barbera, M.J.; Fumero, E.; Vilarasau, C.; Podzamczer, D. A comparison of the effects of nevirapine and nelfinavir on metabolism and body habitus in antiretroviral-naive human immunodeficiency virus-infected patients: A randomized controlled study. J. Clin. Endocrinol. Metab. 2003, 88, 5186–5192. [Google Scholar] [CrossRef] [PubMed]
- Squires, K.; Lazzarin, A.; Gatell, J.M.; Powderly, W.G.; Pokrovskiy, V.; Delfraissy, J.F.; Jemsek, J.; Rivero, A.; Rozenbaum, W.; Schrader, S.; et al. Comparison of once-daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV. J. Acquir. Immune Defic. Syndr. 2004, 36, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Mobius, U.; Lubach-Ruitman, M.; Castro-Frenzel, B.; Stoll, M.; Esser, S.; Voigt, E.; Christensen, S.; Rump, J.A.; Fatkenheuer, G.; Behrens, G.M.; et al. Switching to atazanavir improves metabolic disorders in antiretroviral-experienced patients with severe hyperlipidemia. J. Acquir. Immune Defic. Syndr. 2005, 39, 174–180. [Google Scholar] [PubMed]
- Mills, A.M.; Nelson, M.; Jayaweera, D.; Ruxrungtham, K.; Cassetti, I.; Girard, P.M.; Workman, C.; Dierynck, I.; Sekar, V.; Abeele, C.V.; et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS 2009, 23, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Clotet, B.; Bellos, N.; Molina, J.M.; Cooper, D.; Goffard, J.C.; Lazzarin, A.; Wohrmann, A.; Katlama, C.; Wilkin, T.; Haubrich, R.; et al. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: A pooled subgroup analysis of data from two randomised trials. Lancet 2007, 369, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Aberg, J.A.; Tebas, P.; Overton, E.T.; Gupta, S.K.; Sax, P.E.; Landay, A.; Falcon, R.; Ryan, R.; De La Rosa, G. Metabolic effects of darunavir/ritonavir versus atazanavir/ritonavir in treatment-naive, HIV type 1-infected subjects over 48 weeks. AIDS Res. Hum. Retroviruses 2012, 28, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.; Auclair, M.; Lagathu, C.; Lombes, A.; Walker, U.A.; Kornprobst, M.; Capeau, J. The HIV-1 nucleoside reverse transcriptase inhibitors stavudine and zidovudine alter adipocyte functions in vitro. AIDS 2004, 18, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, T.N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 2000, 22, 685–708. [Google Scholar] [CrossRef]
- Maagaard, A.; Kvale, D. Long term adverse effects related to nucleoside reverse transcriptase inhibitors: Clinical impact of mitochondrial toxicity. Scand. J. Infect. Dis. 2009, 41, 808–817. [Google Scholar] [CrossRef]
- Johnson, A.A.; Ray, A.S.; Hanes, J.; Suo, Z.; Colacino, J.M.; Anderson, K.S.; Johnson, K.A. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J. Biol. Chem. 2001, 276, 40847–40857. [Google Scholar] [CrossRef] [PubMed]
- Zaera, M.G.; Miro, O.; Pedrol, E.; Soler, A.; Picon, M.; Cardellach, F.; Casademont, J.; Nunes, V. Mitochondrial involvement in antiretroviral therapy-related lipodystrophy. AIDS 2001, 15, 1643–1651. [Google Scholar] [CrossRef]
- Blas-Garcia, A.; Apostolova, N.; Ballesteros, D.; Monleon, D.; Morales, J.M.; Rocha, M.; Victor, V.M.; Esplugues, J.V. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 2010, 52, 115–125. [Google Scholar] [CrossRef]
- Cote, H.C. Possible ways nucleoside analogues can affect mitochondrial DNA content and gene expression during HIV therapy. Antivir. Ther. 2005, 10 (Suppl 2), M3–M11. [Google Scholar] [CrossRef]
- Mallal, S.A.; John, M.; Moore, C.B.; James, I.R.; McKinnon, E.J. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 2000, 14, 1309–1316. [Google Scholar] [CrossRef]
- Shikuma, C.M.; Hu, N.; Milne, C.; Yost, F.; Waslien, C.; Shimizu, S.; Shiramizu, B. Mitochondrial DNA decrease in subcutaneous adipose tissue of HIV-infected individuals with peripheral lipoatrophy. AIDS 2001, 15, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Cote, H.C.; Brumme, Z.L.; Craib, K.J.; Alexander, C.S.; Wynhoven, B.; Ting, L.; Wong, H.; Harris, M.; Harrigan, P.R.; O’Shaughnessy, M.V.; et al. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N. Engl. J. Med. 2002, 346, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Walker, U.A.; Setzer, B.; Venhoff, N. Increased long-term mitochondrial toxicity in combinations of nucleoside analogue reverse-transcriptase inhibitors. AIDS 2002, 16, 2165–2173. [Google Scholar] [CrossRef]
- Llibre, J.M.; Domingo, P.; Palacios, R.; Santos, J.; Perez-Elias, M.J.; Sanchez-de la Rosa, R.; Miralles, C.; Antela, A.; Moreno, S.; Lipo-Rec Study, G. Sustained improvement of dyslipidaemia in HAART-treated patients replacing stavudine with tenofovir. AIDS 2006, 20, 1407–1414. [Google Scholar] [CrossRef]
- Milinkovic, A.; Martinez, E.; Lopez, S.; de Lazzari, E.; Miro, O.; Vidal, S.; Blanco, J.L.; Garrabou, G.; Laguno, M.; Arnaiz, J.A.; et al. The impact of reducing stavudine dose versus switching to tenofovir on plasma lipids, body composition and mitochondrial function in HIV-infected patients. Antivir. Ther. 2007, 12, 407–415. [Google Scholar] [CrossRef]
- Lundgren, J.D.; Battegay, M.; Behrens, G.; De Wit, S.; Guaraldi, G.; Katlama, C.; Martinez, E.; Nair, D.; Powderly, W.G.; Reiss, P.; et al. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 2008, 9, 72–81. [Google Scholar] [CrossRef]
- Sun, L.Q.; Liu, J.Y.; He, Y.; Zhou, Y.; Xu, L.M.; Zhang, L.K.; Zhao, F.; Liu, X.N.; Song, Y.; Cao, T.Z.; et al. Evolution of blood lipids and risk factors of dyslipidemia among people living with human immunodeficiency virus who had received first-line antiretroviral regimens for 3 years in Shenzhen. Chin. Med. J. 2020, 133, 2808–2815. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Workman, C.; Smith, D.E.; Hoy, J.; Hudson, J.; Doong, N.; Martin, A.; Amin, J.; Freund, J.; Law, M.; et al. Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: A randomized trial. JAMA 2002, 288, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.M.; Tierney, C.; Budhathoki, C.; Daar, E.S.; Sax, P.E.; Collier, A.C.; Fischl, M.A.; Zolopa, A.R.; Balamane, M.; Katzenstein, D. Early virologic response to abacavir/lamivudine and tenofovir/emtricitabine during ACTG A5202. HIV Clin. Trials 2013, 14, 284–291. [Google Scholar] [CrossRef]
- Jaschinski, N.; Greenberg, L.; Neesgaard, B.; Miro, J.M.; Grabmeier-Pfistershammer, K.; Wandeler, G.; Smith, C.; De Wit, S.; Wit, F.; Pelchen-Matthews, A.; et al. Recent abacavir use and incident cardiovascular disease in contemporary-treated people with HIV. AIDS 2023, 37, 467–475. [Google Scholar] [CrossRef]
- Martinez-Sanz, J.; Serrano-Villar, S.; Muriel, A.; Garcia Fraile, L.J.; Orviz, E.; Mena de Cea, A.; Campins, A.A.; Moreno, S. Metabolic-Related Outcomes After Switching From Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Adults With Human Immunodeficiency Virus (HIV): A Multicenter Prospective Cohort Study. Clin. Infect. Dis. 2023, 76, e652–e660. [Google Scholar] [CrossRef] [PubMed]
- Moschopoulos, C.D.; Protopapas, K.; Thomas, K.; Kavatha, D.; Papadopoulos, A.; Antoniadou, A. Switching from Tenofovir Disoproxil to Tenofovir Alafenamide Fumarate: Impact on Cardiovascular Risk and Lipid Profile in People Living with HIV, an Observational Study. AIDS Res. Hum. Retroviruses 2023, 39, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Friis-Moller, N.; Thiebaut, R.; Reiss, P.; Weber, R.; Monforte, A.D.; De Wit, S.; El-Sadr, W.; Fontas, E.; Worm, S.; Kirk, O.; et al. Predicting the risk of cardiovascular disease in HIV-infected patients: The data collection on adverse effects of anti-HIV drugs study. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 491–501. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, M.; Kastelein, J.J.; Murphy, R.L.; van Leth, F.; Katlama, C.; Horban, A.; Glesby, M.; Behrens, G.; Clotet, B.; Stellato, R.K.; et al. Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an anti-atherogenic lipid profile. AIDS 2001, 15, 2407–2414. [Google Scholar] [CrossRef]
- Apostolova, N.; Blas-Garcia, A.; Esplugues, J.V. Mitochondrial interference by anti-HIV drugs: Mechanisms beyond Pol-gamma inhibition. Trends Pharmacol. Sci. 2011, 32, 715–725. [Google Scholar] [CrossRef]
- Apostolova, N.; Gomez-Sucerquia, L.J.; Moran, A.; Alvarez, A.; Blas-Garcia, A.; Esplugues, J.V. Enhanced oxidative stress and increased mitochondrial mass during efavirenz-induced apoptosis in human hepatic cells. Br. J. Pharmacol. 2010, 160, 2069–2084. [Google Scholar] [CrossRef] [PubMed]
- Gwag, T.; Meng, Z.; Sui, Y.; Helsley, R.N.; Park, S.H.; Wang, S.; Greenberg, R.N.; Zhou, C. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol. 2019, 70, 930–940. [Google Scholar] [CrossRef]
- Williams, P.; Wu, J.; Cohn, S.; Koletar, S.; McCutchan, J.; Murphy, R.; Currier, J.; Team, A.C.T.G.S. Improvement in lipid profiles over 6 years of follow-up in adults with AIDS and immune reconstitution. HIV Med. 2009, 10, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Podzamczer, D.; Andrade-Villanueva, J.; Clotet, B.; Taylor, S.; Rockstroh, J.K.; Reiss, P.; Domingo, P.; Gellermann, H.J.; de Rossi, L.; Cairns, V.; et al. Lipid profiles for nevirapine vs. atazanavir/ritonavir, both combined with tenofovir disoproxil fumarate and emtricitabine over 48 weeks, in treatment-naive HIV-1-infected patients (the ARTEN study). HIV Med. 2011, 12, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Haubrich, R.H.; Riddler, S.A.; DiRienzo, A.G.; Komarow, L.; Powderly, W.G.; Klingman, K.; Garren, K.W.; Butcher, D.L.; Rooney, J.F.; Haas, D.W.; et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 2009, 23, 1109–1118. [Google Scholar] [CrossRef]
- van Leth, F.; Phanuphak, P.; Stroes, E.; Gazzard, B.; Cahn, P.; Raffi, F.; Wood, R.; Bloch, M.; Katlama, C.; Kastelein, J.J.; et al. Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naive patients infected with HIV-1. PLoS Med. 2004, 1, e19. [Google Scholar] [CrossRef] [PubMed]
- Taramasso, L.; Tatarelli, P.; Ricci, E.; Madeddu, G.; Menzaghi, B.; Squillace, N.; De Socio, G.V.; Martinelli, C.; Gulminetti, R.; Maggi, P.; et al. Improvement of lipid profile after switching from efavirenz or ritonavir-boosted protease inhibitors to rilpivirine or once-daily integrase inhibitors: Results from a large observational cohort study (SCOLTA). BMC Infect. Dis. 2018, 18, 357. [Google Scholar] [CrossRef]
- Rokx, C.; Verbon, A.; Rijnders, B.J. Short communication: Lipids and cardiovascular risk after switching HIV-1 patients on nevirapine and emtricitabine/tenofovir-DF to rilpivirine/emtricitabine/tenofovir-DF. AIDS Res. Hum. Retroviruses 2015, 31, 363–367. [Google Scholar] [CrossRef]
- MacInnes, A.; Lazzarin, A.; Di Perri, G.; Sierra-Madero, J.G.; Aberg, J.; Heera, J.; Rajicic, N.; Goodrich, J.; Mayer, H.; Valdez, H. Maraviroc can improve lipid profiles in dyslipidemic patients with HIV: Results from the MERIT trial. HIV Clin. Trials 2011, 12, 24–36. [Google Scholar] [CrossRef]
- Valenzuela-Rodriguez, G.; Diaz-Arocutipa, C.; Collins, J.A.; Hernandez, A.V. Weight and Metabolic Outcomes in Naive HIV Patients Treated with Integrase Inhibitor-Based Antiretroviral Therapy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 3644. [Google Scholar] [CrossRef]
- Cardoso-Neto, E.C.; Netto, E.M.; Brites, C. Weight gain in patients starting Dolutegravir-based ART according to baseline CD4 count after 48 weeks of follow up. Braz. J. Infect. Dis. 2023, 27, 102807. [Google Scholar] [CrossRef] [PubMed]
- Sax, P.E.; Erlandson, K.M.; Lake, J.E.; McComsey, G.A.; Orkin, C.; Esser, S.; Brown, T.T.; Rockstroh, J.K.; Wei, X.; Carter, C.C.; et al. Weight Gain Following Initiation of Antiretroviral Therapy: Risk Factors in Randomized Comparative Clinical Trials. Clin. Infect. Dis. 2020, 71, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.E. The Fat of the Matter: Obesity and Visceral Adiposity in Treated HIV Infection. Curr. HIV/AIDS Rep. 2017, 14, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, C.; Gorwood, J.; Olivo, A.; Le Pelletier, L.; Capeau, J.; Lambotte, O.; Bereziat, V.; Lagathu, C. Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment. Front. Immunol. 2021, 12, 670566. [Google Scholar] [CrossRef] [PubMed]
- Couturier, J.; Winchester, L.C.; Suliburk, J.W.; Wilkerson, G.K.; Podany, A.T.; Agarwal, N.; Xuan Chua, C.Y.; Nehete, P.N.; Nehete, B.P.; Grattoni, A.; et al. Adipocytes impair efficacy of antiretroviral therapy. Antivir. Res. 2018, 154, 140–148. [Google Scholar] [CrossRef]
- Gorwood, J.; Bourgeois, C.; Pourcher, V.; Pourcher, G.; Charlotte, F.; Mantecon, M.; Rose, C.; Morichon, R.; Atlan, M.; Le Grand, R.; et al. The Integrase Inhibitors Dolutegravir and Raltegravir Exert Proadipogenic and Profibrotic Effects and Induce Insulin Resistance in Human/Simian Adipose Tissue and Human Adipocytes. Clin. Infect. Dis. 2020, 71, e549–e560. [Google Scholar] [CrossRef] [PubMed]
- Katlama, C.; Assoumou, L.; Valantin, M.A.; Soulie, C.; Martinez, E.; Beniguel, L.; Bouchaud, O.; Raffi, F.; Molina, J.M.; Fellahi, S.; et al. Dual therapy combining raltegravir with etravirine maintains a high level of viral suppression over 96 weeks in long-term experienced HIV-infected individuals over 45 years on a PI-based regimen: Results from the Phase II ANRS 163 ETRAL study. J. Antimicrob. Chemother. 2019, 74, 2742–2751. [Google Scholar] [CrossRef] [PubMed]
- Dirajlal-Fargo, S.; Moser, C.; Brown, T.T.; Kelesidis, T.; Dube, M.P.; Stein, J.H.; Currier, J.; McComsey, G.A. Changes in Insulin Resistance After Initiation of Raltegravir or Protease Inhibitors With Tenofovir-Emtricitabine: AIDS Clinical Trials Group A5260s. Open Forum Infect. Dis. 2016, 3, ofw174. [Google Scholar] [CrossRef]
- Ofotokun, I.; Na, L.H.; Landovitz, R.J.; Ribaudo, H.J.; McComsey, G.A.; Godfrey, C.; Aweeka, F.; Cohn, S.E.; Sagar, M.; Kuritzkes, D.R.; et al. Comparison of the metabolic effects of ritonavir-boosted darunavir or atazanavir versus raltegravir, and the impact of ritonavir plasma exposure: ACTG 5257. Clin. Infect. Dis. 2015, 60, 1842–1851. [Google Scholar] [CrossRef]
- Pantazis, N.; Papastamopoulos, V.; Antoniadou, A.; Adamis, G.; Paparizos, V.; Metallidis, S.; Sambatakou, H.; Psichogiou, M.; Chini, M.; Chrysos, G.; et al. Changes in Body Mass Index after Initiation of Antiretroviral Treatment: Differences by Class of Core Drug. Viruses 2022, 14, 1677. [Google Scholar] [CrossRef]
- The, R.S.G. Incidence of dyslipidemia in people with HIV who are treated with integrase inhibitors versus other antiretroviral agents. AIDS 2021, 35, 869–882. [Google Scholar] [CrossRef]
- Baldin, G.; Ciccullo, A.; Lombardi, F.; D’Angelillo, A.; Dusina, A.; Emiliozzi, A.; Farinacci, D.; Moschese, D.; Picarelli, C.; Borghetti, A.; et al. Short Communication: Comparing Lamivudine+Dolutegravir and Bictegravir/Emtricitabine/Tenofovir Alafenamide as Switch Strategies: Preliminary Results from Clinical Practice. AIDS Res. Hum. Retroviruses 2021, 37, 429–432. [Google Scholar] [CrossRef]
- Adachi, E.; Saito, M.; Otani, A.; Koga, M.; Yotsuyanagi, H. Brief communications: Changes in inflammatory biomarkers and lipid profiles after switching to long-acting cabotegravir plus rilpivirine. AIDS Res. Ther. 2024, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Achhra, A.C.; Lyass, A.; Borowsky, L.; Bogorodskaya, M.; Plutzky, J.; Massaro, J.M.; D’Agostino, R.B., Sr.; Triant, V.A. Assessing Cardiovascular Risk in People Living with HIV: Current Tools and Limitations. Curr. HIV/AIDS Rep. 2021, 18, 271–279. [Google Scholar] [CrossRef]
- Triant, V.A.; Perez, J.; Regan, S.; Massaro, J.M.; Meigs, J.B.; Grinspoon, S.K.; D’Agostino, R.B., Sr. Cardiovascular Risk Prediction Functions Underestimate Risk in HIV Infection. Circulation 2018, 137, 2203–2214. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Xia, H.; Zhang, J. Influence of Statin Therapy on the Incidence of Cardiovascular Events, Cancer, and All-Cause Mortality in People Living With HIV: A Meta-Analysis. Front. Med. 2021, 8, 769740. [Google Scholar] [CrossRef]
- Funderburg, N.T.; Jiang, Y.; Debanne, S.M.; Storer, N.; Labbato, D.; Clagett, B.; Robinson, J.; Lederman, M.M.; McComsey, G.A. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin. Infect. Dis. 2014, 58, 588–595. [Google Scholar] [CrossRef]
- Grinspoon, S.K.; Fitch, K.V.; Zanni, M.V.; Fichtenbaum, C.J.; Umbleja, T.; Aberg, J.A.; Overton, E.T.; Malvestutto, C.D.; Bloomfield, G.S.; Currier, J.S.; et al. Pitavastatin to Prevent Cardiovascular Disease in HIV Infection. N. Engl. J. Med. 2023, 389, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, R.; Johns, K.; Frohlich, J.; Bennett, M.T.; Bondy, G. Lipid lowering efficacy and safety of Ezetimibe combined with rosuvastatin compared with titrating rosuvastatin monotherapy in HIV-positive patients. Lipids Health Dis. 2015, 14, 57. [Google Scholar] [CrossRef]
- Boccara, F.; Caramelli, B.; Calmy, A.; Kumar, P.; Lopez, J.A.G.; Bray, S.; Cyrille, M.; Rosenson, R.S.; investigators of the BEIJERINCK study. Long-term effects of evolocumab in participants with HIV and dyslipidemia: Results from the open-label extension period. AIDS 2022, 36, 675–682. [Google Scholar] [CrossRef]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.A.; Liu, W.; Delaney, J.A.; Brown, E.; Mugavero, M.J.; Mathews, W.C.; Napravnik, S.; Willig, J.H.; Eron, J.J.; Hunt, P.W.; et al. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J. Acquir. Immune Defic. Syndr. 2013, 64, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam. Clin. Pharmacol. 2005, 19, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.A. Statins-Almost 30 Years of Use in the United States and Still Not Quite There. JAMA Cardiol. 2017, 2, 66. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.D.; Bartlett, J.G.; Gallant, J.E. Association between use of HMG CoA reductase inhibitors and mortality in HIV-infected patients. PLoS ONE 2011, 6, e21843. [Google Scholar] [CrossRef] [PubMed]
- Schonbeck, U.; Libby, P. Inflammation, immunity, and HMG-CoA reductase inhibitors: Statins as antiinflammatory agents? Circulation 2004, 109, II18–II26. [Google Scholar] [CrossRef] [PubMed]
- Phipps, R.P.; Blumberg, N. Statin islands and PPAR ligands in platelets. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Wolfrum, S.; Jensen, K.S.; Liao, J.K. Endothelium-dependent effects of statins. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 729–736. [Google Scholar] [CrossRef]
- Laufs, U.; Liao, J.K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 1998, 273, 24266–24271. [Google Scholar] [CrossRef]
- Loppnow, H.; Zhang, L.; Buerke, M.; Lautenschlager, M.; Chen, L.; Frister, A.; Schlitt, A.; Luther, T.; Song, N.; Hofmann, B.; et al. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. J. Cell. Mol. Med. 2011, 15, 994–1004. [Google Scholar] [CrossRef]
- Kosmidou, I.; Moore, J.P.; Weber, M.; Searles, C.D. Statin treatment and 3′ polyadenylation of eNOS mRNA. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Lorido, J.C. Clinical relevance for lowering C-reactive protein with statins. Ann. Med. 2016, 48, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Tani, S.; Takahashi, A.; Nagao, K.; Hirayama, A. Contribution of apolipoprotein A-I to the reduction in high-sensitivity C-reactive protein levels by different statins: Comparative study of pitavastatin and atorvastatin. Heart Vessel. 2015, 30, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nat. Rev. Immunol. 2006, 6, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, S.; Maric, G.; Cvetinovic, N.; Lepojevic-Stefanovic, D.; Bozic Cvijan, B. Anti-Inflammatory Effects of Lipid-Lowering Drugs and Supplements—A Narrative Review. Nutrients 2023, 15, 1517. [Google Scholar] [CrossRef] [PubMed]
- Nixon, D.E.; Bosch, R.J.; Chan, E.S.; Funderburg, N.T.; Hodder, S.; Lake, J.E.; Lederman, M.M.; Klingman, K.L.; Aberg, J.A.; AIDS Clinical Trials Group Study A5275 Team. Effects of atorvastatin on biomarkers of immune activation, inflammation, and lipids in virologically suppressed, human immunodeficiency virus-1-infected individuals with low-density lipoprotein cholesterol < 130 mg/dL (AIDS Clinical Trials Group Study A5275). J. Clin. Lipidol. 2017, 11, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Calza, L.; Colangeli, V.; Borderi, M.; Beci, G.; Esposito, F.; Bon, I.; Re, M.C.; Viale, P. Rosuvastatin decreases serum inflammatory markers and slows atherosclerosis progression rate in treated HIV-infected patients with metabolic syndrome. Infect. Dis. 2021, 53, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Glynn, R.J.; Hsia, J.; MacFadyen, J.G.; Genest, J.; Ridker, P.M. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: Results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation 2010, 121, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists, C.; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef]
- Calza, L.; Manfredi, R.; Colangeli, V.; Pocaterra, D.; Pavoni, M.; Chiodo, F. Rosuvastatin, pravastatin, and atorvastatin for the treatment of hypercholesterolaemia in HIV-infected patients receiving protease inhibitors. Curr. HIV Res. 2008, 6, 572–578. [Google Scholar] [CrossRef]
- Lo, J.; Lu, M.T.; Ihenachor, E.J.; Wei, J.; Looby, S.E.; Fitch, K.V.; Oh, J.; Zimmerman, C.O.; Hwang, J.; Abbara, S.; et al. Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: A randomised, double-blind, placebo-controlled trial. Lancet HIV 2015, 2, e52–e63. [Google Scholar] [CrossRef]
- Rahman, A.P.; Eaton, S.A.; Nguyen, S.T.; Bain, A.M.; Payne, K.D.; Bedimo, R.; Busti, A.J. Safety and efficacy of simvastatin for the treatment of dyslipidemia in human immunodeficiency virus-infected patients receiving efavirenz-based highly active antiretroviral therapy. Pharmacotherapy 2008, 28, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Sabin, C.A.; Yee, T.T.; Devereux, H.; Griffioen, A.; Loveday, C.; Phillips, A.N.; Lee, C.A. Two decades of HIV infection in a cohort of haemophilic individuals: Clinical outcomes and response to highly active antiretroviral therapy. AIDS 2000, 14, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Aberg, J.A.; Sponseller, C.A.; Ward, D.J.; Kryzhanovski, V.A.; Campbell, S.E.; Thompson, M.A. Pitavastatin versus pravastatin in adults with HIV-1 infection and dyslipidaemia (INTREPID): 12 week and 52 week results of a phase 4, multicentre, randomised, double-blind, superiority trial. Lancet HIV 2017, 4, e284–e294. [Google Scholar] [CrossRef] [PubMed]
- Myerson, M.; Malvestutto, C.; Aberg, J.A. Management of lipid disorders in patients living with HIV. J. Clin. Pharmacol. 2015, 55, 957–974. [Google Scholar] [CrossRef] [PubMed]
- Gervasoni, C.; Riva, A.; Rizzardini, G.; Clementi, E.; Galli, M.; Cattaneo, D. Potential association between rosuvastatin use and high atazanavir trough concentrations in ritonavir-treated HIV-infected patients. Antivir. Ther. 2015, 20, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, B.; Drouot, S.; Barrail-Tran, A.; Taburet, A.M. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. Clin. Pharmacokinet. 2013, 52, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Ieiri, I.; Tsunemitsu, S.; Maeda, K.; Ando, Y.; Izumi, N.; Kimura, M.; Yamane, N.; Okuzono, T.; Morishita, M.; Kotani, N.; et al. Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; micro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs. J. Clin. Pharmacol. 2013, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Aberg, J.A.; Rosenkranz, S.L.; Fichtenbaum, C.J.; Alston, B.L.; Brobst, S.W.; Segal, Y.; Gerber, J.G.; ACTG A5108 team. Pharmacokinetic interaction between nelfinavir and pravastatin in HIV-seronegative volunteers: ACTG Study A5108. AIDS 2006, 20, 725–729. [Google Scholar] [CrossRef]
- Fichtenbaum, C.J.; Gerber, J.G.; Rosenkranz, S.L.; Segal, Y.; Aberg, J.A.; Blaschke, T.; Alston, B.; Fang, F.; Kosel, B.; Aweeka, F.; et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 2002, 16, 569–577. [Google Scholar] [CrossRef]
- Hare, C.B.; Vu, M.P.; Grunfeld, C.; Lampiris, H.W. Simvastatin-nelfinavir interaction implicated in rhabdomyolysis and death. Clin. Infect. Dis. 2002, 35, e111–e112. [Google Scholar] [CrossRef]
- Courlet, P.; Decosterd, L.A.; Alves Saldanha, S.; Cavassini, M.; Stader, F.; Stoeckle, M.; Buclin, T.; Marzolini, C.; Csajka, C.; Guidi, M.; et al. Influence of Drug-Drug Interactions on the Pharmacokinetics of Atorvastatin and Its Major Active Metabolite ortho-OH-Atorvastatin in Aging People Living with HIV. Clin. Pharmacokinet. 2020, 59, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Gibert, C.L. Treatment Guidelines for the Use of Antiretroviral Agents in HIV-Infected Adults and Adolescents: An Update. Fed. Pract. 2016, 33, 31S–36S. [Google Scholar] [PubMed]
- Custodio, J.M.; Wang, H.; Hao, J.; Lepist, E.I.; Ray, A.S.; Andrews, J.; Ling, K.H.; Cheng, A.; Kearney, B.P.; Ramanathan, S. Pharmacokinetics of cobicistat boosted-elvitegravir administered in combination with rosuvastatin. J. Clin. Pharmacol. 2014, 54, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, N.; Avendano, E.E.; Morin, R.A. Effectiveness of ezetimibe in human immunodeficiency virus patients treated for hyperlipidaemia: A systematic review and meta-analysis. Infect. Dis. 2022, 54, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Sala, L.A.; Cachofeiro, V.; Masana, L.; Suarez, C.; Pinilla, B.; Plana, N.; Trias, F.; Moreno, M.A.; Gambus, G.; Lahera, V.; et al. Effects of fluvastatin extended-release (80 mg) alone and in combination with ezetimibe (10 mg) on low-density lipoprotein cholesterol and inflammatory parameters in patients with primary hypercholesterolemia: A 12-week, multicenter, randomized, open-label, parallel-group study. Clin. Ther. 2008, 30, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, H.; Green, K.; Abuaysheh, S.; Patel, R.; Batra, M.; Chaudhuri, A.; Makdissi, A.; Kuhadiya, N.D.; Dandona, P. Ezetimibe and simvastatin combination inhibits and reverses the pro-inflammatory and pro-atherogenic effects of cream in obese patients. Atherosclerosis 2017, 263, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Kunz, H.E.; Hart, C.R.; Gries, K.J.; Parvizi, M.; Laurenti, M.; Dalla Man, C.; Moore, N.; Zhang, X.; Ryan, Z.; Polley, E.C.; et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am. J. Physiol. -Endocrinol. Metab. 2021, 321, E105–E121. [Google Scholar] [CrossRef]
- Qin, L.; Yang, Y.B.; Yang, Y.X.; Zhu, N.; Li, S.X.; Liao, D.F.; Zheng, X.L. Anti-inflammatory activity of ezetimibe by regulating NF-kappaB/MAPK pathway in THP-1 macrophages. Pharmacology 2014, 93, 69–75. [Google Scholar] [CrossRef]
- Scherer, D.J.; Nelson, A.J.; Psaltis, P.J.; Nicholls, S.J. Targeting low-density lipoprotein cholesterol with PCSK9 inhibitors. Intern. Med. J. 2017, 47, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; Ballantyne, C.M.; Somaratne, R.; Legg, J.; Wasserman, S.M.; et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 2015, 372, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Leucker, T.M.; Gerstenblith, G.; Schar, M.; Brown, T.T.; Jones, S.R.; Afework, Y.; Weiss, R.G.; Hays, A.G. Evolocumab, a PCSK9-Monoclonal Antibody, Rapidly Reverses Coronary Artery Endothelial Dysfunction in People Living With HIV and People With Dyslipidemia. J. Am. Heart Assoc. 2020, 9, e016263. [Google Scholar] [CrossRef] [PubMed]
- Bernelot Moens, S.J.; Neele, A.E.; Kroon, J.; van der Valk, F.M.; Van den Bossche, J.; Hoeksema, M.A.; Hoogeveen, R.M.; Schnitzler, J.G.; Baccara-Dinet, M.T.; Manvelian, G.; et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur. Heart J. 2017, 38, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Jiang, L.; Peng, J.; Ren, Z.; Wei, D.; Wu, C.; Pan, L.; Jiang, Z.; Liu, L. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int. J. Mol. Med. 2012, 30, 931–938. [Google Scholar] [CrossRef]
- Agha, A.M.; Jones, P.H.; Ballantyne, C.M.; Virani, S.S.; Nambi, V. Greater than expected reduction in low-density lipoprotein-cholesterol (LDL-C) with bempedoic acid in a patient with heterozygous familial hypercholesterolemia (HeFH). J. Clin. Lipidol. 2021, 15, 649–652. [Google Scholar] [CrossRef]
- Burke, A.C.; Telford, D.E.; Sutherland, B.G.; Edwards, J.Y.; Sawyez, C.G.; Barrett, P.H.R.; Newton, R.S.; Pickering, J.G.; Huff, M.W. Bempedoic Acid Lowers Low-Density Lipoprotein Cholesterol and Attenuates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient (LDLR(+/−) and LDLR(−/−)) Yucatan Miniature Pigs. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1178–1190. [Google Scholar] [CrossRef]
- Banach, M.; Duell, P.B.; Gotto, A.M., Jr.; Laufs, U.; Leiter, L.A.; Mancini, G.B.J.; Ray, K.K.; Flaim, J.; Ye, Z.; Catapano, A.L. Association of Bempedoic Acid Administration With Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients With Hypercholesterolemia. JAMA Cardiol. 2020, 5, 1124–1135. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Laufs, U.; Ray, K.K.; Leiter, L.A.; Bays, H.E.; Goldberg, A.C.; Stroes, E.S.; MacDougall, D.; Zhao, X.; Catapano, A.L. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur. J. Prev. Cardiol. 2020, 27, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Cincione, I. Evaluating pharmacokinetics of bempedoic acid in the treatment of hypercholesterolemia. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Kytikova, O.Y.; Perelman, J.M.; Novgorodtseva, T.P.; Denisenko, Y.K.; Kolosov, V.P.; Antonyuk, M.V.; Gvozdenko, T.A. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res. 2020, 2020, 8906968. [Google Scholar] [CrossRef] [PubMed]
- Busse, K.H.; Hadigan, C.; Chairez, C.; Alfaro, R.M.; Formentini, E.; Kovacs, J.A.; Penzak, S.R. Gemfibrozil concentrations are significantly decreased in the presence of lopinavir-ritonavir. J. Acquir. Immune Defic. Syndr. 2009, 52, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Nakagomi-Hagihara, R.; Nakai, D.; Tokui, T.; Abe, T.; Ikeda, T. Gemfibrozil and its glucuronide inhibit the hepatic uptake of pravastatin mediated by OATP1B1. Xenobiotica 2007, 37, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.J.; Leyden, W.; Hurley, L.; Go, A.S.; Quesenberry, C.P., Jr.; Klein, D.; Horberg, M.A. Response to newly prescribed lipid-lowering therapy in patients with and without HIV infection. Ann. Intern. Med. 2009, 150, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Grandi, A.M.; Nicolini, E.; Rizzi, L.; Caputo, S.; Annoni, F.; Cremona, A.M.; Marchesi, C.; Guasti, L.; Maresca, A.M.; Grossi, P. Dyslipidemia in HIV-positive patients: A randomized, controlled, prospective study on ezetimibe+fenofibrate versus pravastatin monotherapy. J. Int. AIDS Soc. 2014, 17, 19004. [Google Scholar] [CrossRef]
- Das Pradhan, A.; Glynn, R.J.; Fruchart, J.C.; MacFadyen, J.G.; Zaharris, E.S.; Everett, B.M.; Campbell, S.E.; Oshima, R.; Amarenco, P.; Blom, D.J.; et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N. Engl. J. Med. 2022, 387, 1923–1934. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Effects of Icosapent Ethyl on Total Ischemic Events: From REDUCE-IT. J. Am. Coll. Cardiol. 2019, 73, 2791–2802. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; MacFadyen, J.; Glynn, R.J.; Jiao, L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Tardif, J.C.; et al. Effects of Randomized Treatment With Icosapent Ethyl and a Mineral Oil Comparator on Interleukin-1beta, Interleukin-6, C-Reactive Protein, Oxidized Low-Density Lipoprotein Cholesterol, Homocysteine, Lipoprotein(a), and Lipoprotein-Associated Phospholipase A2: A REDUCE-IT Biomarker Substudy. Circulation 2022, 146, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.S.; Wierzbicki, A.S.; Moyle, G.; Nair, D.; Brockmeyer, N. The effect of a 12-week course of omega-3 polyunsaturated fatty acids on lipid parameters in hypertriglyceridemic adult HIV-infected patients undergoing HAART: A randomized, placebo-controlled pilot trial. Clin. Ther. 2012, 34, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.G.; Kitch, D.W.; Fichtenbaum, C.J.; Zackin, R.A.; Charles, S.; Hogg, E.; Acosta, E.P.; Connick, E.; Wohl, D.; Kojic, E.M.; et al. Fish oil and fenofibrate for the treatment of hypertriglyceridemia in HIV-infected subjects on antiretroviral therapy: Results of ACTG A5186. J. Acquir. Immune Defic. Syndr. 2008, 47, 459–466. [Google Scholar] [CrossRef]
- Fogacci, F.; Strocchi, E.; Veronesi, M.; Borghi, C.; Cicero, A.F.G. Effect of Omega-3 Polyunsaturated Fatty Acids Treatment on Lipid Pattern of HIV Patients: A Meta-Analysis of Randomized Clinical Trials. Mar. Drugs 2020, 18, 292. [Google Scholar] [CrossRef]
Drug Class | Antiretroviral Drug | Total Cholesterol | LDL-C | HDL-C | Triglycerides |
---|---|---|---|---|---|
Protease inhibitors (PIs) | Atazanavir/ritonavir | ↔ | ↑ | ↔ | ↑ |
Darunavir/ritonavir | ↔ | ↑ | ↔ | ↑ | |
Indinavir | ↑ | ↑ | ↑ | ↑ | |
Lopinavir/ritonavir | ↑↑ | ↑ | ↔ | ↑↑ | |
Nelfinavir | ↑ | ↑↑ | ↔ | ↑ | |
Nucleotide reverse transcriptase inhibitors (NRTIs) | Abacavir | ↑ | ↑ | ↔ | ↑ |
Zidovudine | ↑ | ↑ | ↔ | ↑ | |
Emtricitabine | ↔ | ↔ | ↔ | ↔ | |
Lamivudine | ↔ | ↔ | ↔ | ↔ | |
Stavudine | ↑ | ↑ | ↓ | ↑ | |
Tenofovir alafenamide | ↔ | ↑ | ↑ | ↑ | |
Tenofovir disoproxil | ↓ | ↔ | ↓ | ↔ | |
Non-nucleotide reverse transcriptase inhibitors (NNRTIs) | Efavirenz | ↑ | ↑ | ↑ | ↑ |
Etravirine | ↔ | ↔ | ↔ | ↔ | |
Nevirapine | ↑ | ↑ | ↑↑ | ↑ | |
Rilpivirine | ↑ | ↑ | ↔ | ↔ | |
Integrase strand transfer inhibitors (INSTIs) | Raltegravir | ↔ | ↔ | ↑ | ↓ |
Dolutegravir | ↔ | ↔ | ↑ | ↓ | |
Bictegravir | ↑ | ↓ | ↑ | ↓ | |
Cabotegravir | ↓ | ↔ | ↑ | ↓ |
Study/Year | (n) | Study Aim | Subject Characteristics | Clinical Outcome |
---|---|---|---|---|
Li et al. (2021) [147] | 36,253 | Effect of statins on the risk of CVD, cancer, and all-cause mortality | PLHIV under stable HAART | Statins reduced the risk of cancer and mortality but not CVD |
Funderburg et al. (2014) [148] | 147 | Effect of rosuvastatin vs. placebo on inflammatory markers of CVD | PLHIV under stable HAART, HIV RNA < 1000 copies/mL, LDL ≤ 130 mg/dL, TG ≤ 500 mg/dL, without CVD/DM | Rosuvastatin decreased sCD14 and proportions of CD14Dim and CD16+ monocytes |
Gili et al. (2016) [12] | 736 | Efficacy and safety of statins on TC, LDL, HDL, and TG levels | PLHIV under stable HAART | Reduced TC with rosuvastatin and atorvastatin; reduced LDL with rosuvastatin, atorvastatin, and simvastatin; reduced TG with rosuvastatin, simvastatin, and atorvastatin; and increased HDL with pravastatin, rosuvastatin, and atorvastatin |
Grinspoon et al. (2023) [149] | 7769 | Effect of pitavastatin vs. placebo on MACEs | PLHIV under stable HAART with low-to-moderate CVD risk | Incidence of MACEs was significantly lower in the pitavastatin group vs. the placebo group. Major outcome led to early termination of the study |
Saeedi et al. (2015) [150] | 43 | Effect of ezetimibe/rosuvastatin vs. rosuvastatin on apoB, LDL, TC, TG, HDL, non-HDL, apoA1, apoB/apoA1, TC/HDL and CRP levels | PLHIV under stable HAART with apoB >80 mg/dL | ApoB, TC, TG, and non-HDL levels reduced more significantly in ezetimibe/rosuvastatin vs. rosuvastatin group |
Boccara et al. (2022) [151] | 467 | Efficacy of evolocumab on the reduction of LDL, TG, non-HDL, apoB, TC, VLDL, and Lp(a) and potential increase in HDL levels | PLHIV under stable HAART with mean LDL of 133 mg/dL, CVD, DM, and intermediate/high 10-year-ASCVD risk | Significant decrease in LDL, TG, non-HDL, apoB, TC, VLDL, and Lp(a) levels, with concomitant increase in HDL levels |
Nissen et al. (2023) [152] | 13,970 | Efficacy of bempedoic acid on MACEs (cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, and coronary revascularization) and LDL levels | Statin-intolerant with mean LDL of 139 mg/dL and high CVD risk | Bempedoic acid reduced LDL and incidence of all MACE points, except nonfatal stroke, death from CVD, and death from any cause |
Muñoz et al. (2013) [153] | 493 | Efficacy of fish oil, fenofibrate, gemfibrozil, and atorvastatin on TG levels | PLHIV under stable HAART | All treatment options reduced TG levels, with fibrates being more effective and atorvastatin less effective than fish oils |
Hypolipidemic Agent | PIs | NNRTIs | NRTIs | INSTIs | Recommendations |
---|---|---|---|---|---|
Rosuvastatin | ↑ C with ATV/r, LPV/r, DRV/r | - | - | ↑ C with EVG/c | Initial dose 5 mg with slow titration, do not exceed 20 mg with cobicistat-boosted drugs |
Fluvastatin | ↓ C with NFV | ↓ C with EFV | - | - | Initial dose > 20 mg |
Pravastatin | ↓ C with SQV/r, ↑ C with LPV/r, DRV/r | ↓ C with EFV | - | - | Suitable dose adjustment |
Lovastatin | Contraindicated | Possible ↑ C | - | Contraindicated with EVG/c | Consider low initial dose |
Simvastatin | Contraindicated | Possible ↑ C | - | Contraindicated with EVG/c | Consider low initial dose |
Atorvastatin | ↑ C with SQV/r, LPV/r | ↓ C with EFV, ETV | - | ↑ C with EVG/c | Dose 10–40 mg for PIs, 40–80 mg for NNRTIs, lowest effective dose for cobicistat-boosted drugs |
Pitavastatin | - | - | - | - | No dose adjustment |
Ezetimibe | - | - | - | - | No dose adjustment |
PCSK9i | - | - | - | - | No dose adjustment |
Bempedoic acid | - | - | - | - | No dose adjustment |
Fenofibrate | - | - | - | - | No dose adjustment |
Gemfibrozil | ↑ C with LPV/r | - | - | - | Consider low initial dose |
Fish oils | - | - | - | - | Possible pill burden |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papantoniou, E.; Arvanitakis, K.; Markakis, K.; Papadakos, S.P.; Tsachouridou, O.; Popovic, D.S.; Germanidis, G.; Koufakis, T.; Kotsa, K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life 2024, 14, 449. https://doi.org/10.3390/life14040449
Papantoniou E, Arvanitakis K, Markakis K, Papadakos SP, Tsachouridou O, Popovic DS, Germanidis G, Koufakis T, Kotsa K. Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life. 2024; 14(4):449. https://doi.org/10.3390/life14040449
Chicago/Turabian StylePapantoniou, Eleni, Konstantinos Arvanitakis, Konstantinos Markakis, Stavros P. Papadakos, Olga Tsachouridou, Djordje S. Popovic, Georgios Germanidis, Theocharis Koufakis, and Kalliopi Kotsa. 2024. "Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas" Life 14, no. 4: 449. https://doi.org/10.3390/life14040449
APA StylePapantoniou, E., Arvanitakis, K., Markakis, K., Papadakos, S. P., Tsachouridou, O., Popovic, D. S., Germanidis, G., Koufakis, T., & Kotsa, K. (2024). Pathophysiology and Clinical Management of Dyslipidemia in People Living with HIV: Sailing through Rough Seas. Life, 14(4), 449. https://doi.org/10.3390/life14040449