Efficacy of Digital Therapeutics for Pulmonary Rehabilitation: A Multi-Center, Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- (1)
- Diagnosis with COPD, lung cancer, asthma, bronchiectasis, etc., and requiring PR due to respiratory symptoms such as dyspnea or difficulties in daily life.
- (2)
- Obstructive (ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) < 0.7) or restrictive (predicted FVC < 0.8) abnormalities in pulmonary function tests.
- (3)
- No difficulty using mobile applications on equipment such as smartphones or tablet computers and age ≥ 19 years.
2.2. Intervention (DTx for PR; EASYBREATH)
2.3. Primary and Secondary Outcomes
2.4. Statistical Analysis
3. Results
3.1. Demographics and Baseline Parameter
3.2. Primary Outcome
3.3. Secondary Outcomes
3.3.1. Modified Medical Research Council
3.3.2. COPD Assessment Test
3.3.3. St. George’s Respiratory Questionnaire
3.3.4. Hospital Anxiety and Depression Scale
3.3.5. Safety
3.3.6. DTx Usage and Compliance
- Very high: ≥80%;
- High: >60% but <80%;
- Normal: >40%~<60%;
- Discomfort: >20%~<40%;
- Very uncomfortable: <20%.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef]
- Witt Udsen, F.; Lilholt, P.H.; Hejlesen, O.; Ehlers, L. Cost-effectiveness of telehealthcare to patients with chronic obstructive pulmonary disease: Results from the Danish ‘TeleCare North’ cluster-randomised trial. BMJ Open 2017, 7, e014616. [Google Scholar] [CrossRef]
- Man, W.; Chaplin, E.; Daynes, E.; Drummond, A.; Evans, R.A.; Greening, N.J.; Nolan, C.; Pavitt, M.J.; Roberts, N.J.; Vogiatzis, I.; et al. British Thoracic Society Clinical Statement on pulmonary rehabilitation. Thorax 2023, 78, s2–s15. [Google Scholar] [CrossRef] [PubMed]
- Rochester, C.L.; Alison, J.A.; Carlin, B.; Jenkins, A.R.; Cox, N.S.; Bauldoff, G.; Bhatt, S.P.; Bourbeau, J.; Burtin, C.; Camp, P.G.; et al. Pulmonary Rehabilitation for Adults with Chronic Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2023, 208, e7–e26. [Google Scholar] [CrossRef]
- Wouters, E.F.; Augustin, I.M. Process of pulmonary rehabilitation and program organization. Eur. J. Phys. Rehabil. Med. 2011, 47, 475–482. [Google Scholar] [PubMed]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Garcia-Aymerich, J.; Lange, P.; Benet, M.; Schnohr, P.; Anto, J.M. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: A population based cohort study. Thorax 2006, 61, 772–778. [Google Scholar] [CrossRef]
- Watz, H.; Waschki, B.; Meyer, T.; Magnussen, H. Physical activity in patients with COPD. Eur. Respir. J. 2009, 33, 262–272. [Google Scholar] [CrossRef]
- Waschki, B.; Kirsten, A.; Holz, O.; Muller, K.C.; Meyer, T.; Watz, H.; Magnussen, H. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study. Chest 2011, 140, 331–342. [Google Scholar] [CrossRef]
- Jones, S.E.; Green, S.A.; Clark, A.L.; Dickson, M.J.; Nolan, A.M.; Moloney, C.; Kon, S.S.; Kamal, F.; Godden, J.; Howe, C.; et al. Pulmonary rehabilitation following hospitalisation for acute exacerbation of COPD: Referrals, uptake and adherence. Thorax 2014, 69, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Pitta, F.; Garvey, C.; ZuWallack, R.L.; Roberts, C.M.; Collins, E.G.; Goldstein, R.; McNamara, R.; Surpas, P.; Atsuyoshi, K.; et al. Differences in content and organisational aspects of pulmonary rehabilitation programmes. Eur. Respir. J. 2014, 43, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.; Bruton, A.; Ellis-Hill, C. Adherence to pulmonary rehabilitation: A qualitative study. Respir. Med. 2006, 100, 1716–1723. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.J.; Scharloo, M.; Abbink, J.J.; van ‘t Hul, A.J.; van Ranst, D.; Rudolphus, A.; Weinman, J.; Rabe, K.F.; Kaptein, A.A. Drop-out and attendance in pulmonary rehabilitation: The role of clinical and psychosocial variables. Respir. Med. 2009, 103, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzis, I.; Rochester, C.L.; Spruit, M.A.; Troosters, T.; Clini, E.M.; American Thoracic Society/European Respiratory Society Task Force on Policy in Pulmonary Rehabilitation. Increasing implementation and delivery of pulmonary rehabilitation: Key messages from the new ATS/ERS policy statement. Eur. Respir. J. 2016, 47, 1336–1341. [Google Scholar] [CrossRef]
- Bourne, S.; DeVos, R.; North, M.; Chauhan, A.; Green, B.; Brown, T.; Cornelius, V.; Wilkinson, T. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: Randomised controlled trial. BMJ Open 2017, 7, e014580. [Google Scholar] [CrossRef] [PubMed]
- Spielmanns, M.; Gloeckl, R.; Jarosch, I.; Leitl, D.; Schneeberger, T.; Boeselt, T.; Huber, S.; Kaur-Bollinger, P.; Ulm, B.; Mueller, C.; et al. Using a smartphone application maintains physical activity following pulmonary rehabilitation in patients with COPD: A randomised controlled trial. Thorax 2023, 78, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Redelmeier, D.A.; Bayoumi, A.M.; Goldstein, R.S.; Guyatt, G.H. Interpreting small differences in functional status: The Six Minute Walk test in chronic lung disease patients. Am. J. Respir. Crit. Care Med. 1997, 155, 1278–1282. [Google Scholar] [CrossRef]
- Kon, S.S.; Canavan, J.L.; Jones, S.E.; Nolan, C.M.; Clark, A.L.; Dickson, M.J.; Haselden, B.M.; Polkey, M.I.; Man, W.D. Minimum clinically important difference for the COPD Assessment Test: A prospective analysis. Lancet Respir. Med. 2014, 2, 195–203. [Google Scholar] [CrossRef]
- Janjua, S.; Banchoff, E.; Threapleton, C.J.; Prigmore, S.; Fletcher, J.; Disler, R.T. Digital interventions for the management of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2021, 4, CD013246. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, J.; Xie, Y.; Li, J. Effects of exercise-based pulmonary rehabilitation on adults with asthma: A systematic review and meta-analysis. Respir. Res. 2021, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Franssen, F.M.; Broekhuizen, R.; Janssen, P.P.; Wouters, E.F.; Schols, A.M. Effects of whole-body exercise training on body composition and functional capacity in normal-weight patients with COPD. Chest 2004, 125, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Gosselink, R.; Troosters, T.; De Paepe, K.; Decramer, M. Resistance versus endurance training in patients with COPD and peripheral muscle weakness. Eur. Respir. J. 2002, 19, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Stamatakis, E. Physical activity and mortality in men and women with diagnosed cardiovascular disease. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, Y.; Goldstein, R.; Lasserson, T.J.; Martin, S. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006, CD003793. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Fastenau, A.; van Schayck, O.C.; Gosselink, R.; Aretz, K.C.; Muris, J.W. Discrepancy between functional exercise capacity and daily physical activity: A cross-sectional study in patients with mild to moderate COPD. Prim. Care Respir. J. 2013, 22, 425–430. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, B.; Casey, D.; Devane, D.; Murphy, K.; Murphy, E.; Lacasse, Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015, 2015, CD003793. [Google Scholar] [CrossRef] [PubMed]
- Garvey, C.; Bayles, M.P.; Hamm, L.F.; Hill, K.; Holland, A.; Limberg, T.M.; Spruit, M.A. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: An Official Statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2016, 36, 75–83. [Google Scholar] [CrossRef]
- Cockram, J.; Cecins, N.; Jenkins, S. Maintaining exercise capacity and quality of life following pulmonary rehabilitation. Respirology 2006, 11, 98–104. [Google Scholar] [CrossRef]
- Shenkman, B. Factors contributing to attrition rates in a pulmonary rehabilitation program. Heart Lung 1985, 14, 53–58. [Google Scholar]
- Sabit, R.; Griffiths, T.L.; Watkins, A.J.; Evans, W.; Bolton, C.E.; Shale, D.J.; Lewis, K.E. Predictors of poor attendance at an outpatient pulmonary rehabilitation programme. Respir. Med. 2008, 102, 819–824. [Google Scholar] [CrossRef]
- Donesky-Cuenco, D.; Janson, S.; Neuhaus, J.; Neilands, T.B.; Carrieri-Kohlman, V. Adherence to a home-walking prescription in patients with chronic obstructive pulmonary disease. Heart Lung 2007, 36, 348–363. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.P.; Hewitt, A.B. A simple pulmonary rehabilitation program improves health outcomes and reduces hospital utilization in patients with COPD. Chest 2003, 124, 94–97. [Google Scholar] [CrossRef]
- California Pulmonary Rehabilitation Collaborative Group. Effects of pulmonary rehabilitation on dyspnea, quality of life, and healthcare costs in California. J. Cardiopulm. Rehabil. 2004, 24, 52–62. [Google Scholar] [CrossRef]
- Raskin, J.; Spiegler, P.; McCusker, C.; ZuWallack, R.; Bernstein, M.; Busby, J.; DiLauro, P.; Griffiths, K.; Haggerty, M.; Hovey, L.; et al. The effect of pulmonary rehabilitation on healthcare utilization in chronic obstructive pulmonary disease: The Northeast Pulmonary Rehabilitation Consortium. J. Cardiopulm. Rehabil. 2006, 26, 231–236. [Google Scholar] [CrossRef]
- Cecins, N.; Geelhoed, E.; Jenkins, S.C. Reduction in hospitalisation following pulmonary rehabilitation in patients with COPD. Aust. Health Rev. 2008, 32, 415–422. [Google Scholar] [CrossRef]
- Griffiths, T.L.; Burr, M.L.; Campbell, I.A.; Lewis-Jenkins, V.; Mullins, J.; Shiels, K.; Turner-Lawlor, P.J.; Payne, N.; Newcombe, R.G.; Ionescu, A.A.; et al. Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: A randomised controlled trial. Lancet 2000, 355, 362–368. [Google Scholar] [CrossRef]
- Guell, R.; Casan, P.; Belda, J.; Sangenis, M.; Morante, F.; Guyatt, G.H.; Sanchis, J. Long-term effects of outpatient rehabilitation of COPD: A randomized trial. Chest 2000, 117, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Man, W.D.; Polkey, M.I.; Donaldson, N.; Gray, B.J.; Moxham, J. Community pulmonary rehabilitation after hospitalisation for acute exacerbations of chronic obstructive pulmonary disease: Randomised controlled study. BMJ 2004, 329, 1209. [Google Scholar] [CrossRef] [PubMed]
- Eaton, T.; Young, P.; Fergusson, W.; Moodie, L.; Zeng, I.; O’Kane, F.; Good, N.; Rhodes, L.; Poole, P.; Kolbe, J. Does early pulmonary rehabilitation reduce acute health-care utilization in COPD patients admitted with an exacerbation? A randomized controlled study. Respirology 2009, 14, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Puhan, M.A.; Gimeno-Santos, E.; Cates, C.J.; Troosters, T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2016, 12, CD005305. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, T.L.; Phillips, C.J.; Davies, S.; Burr, M.L.; Campbell, I.A. Cost effectiveness of an outpatient multidisciplinary pulmonary rehabilitation programme. Thorax 2001, 56, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Chuatrakoon, B.; Uthaikhup, S.; Ngai, S.P.; Liwsrisakun, C.; Pothirat, C.; Sungkarat, S. The effectiveness of home-based balance and pulmonary rehabilitation program in individuals with chronic obstructive pulmonary disease: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2022, 58, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.; Williams, V.; Velardo, C.; Shah, S.A.; Yu, L.M.; Rutter, H.; Jones, L.; Williams, N.; Heneghan, C.; Price, J.; et al. Self-Management Support Using a Digital Health System Compared With Usual Care for Chronic Obstructive Pulmonary Disease: Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e144. [Google Scholar] [CrossRef]
- Zanaboni, P.; Dinesen, B.; Hoaas, H.; Wootton, R.; Burge, A.T.; Philp, R.; Oliveira, C.C.; Bondarenko, J.; Tranborg Jensen, T.; Miller, B.R.; et al. Long-term Telerehabilitation or Unsupervised Training at Home for Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 207, 865–875. [Google Scholar] [CrossRef]
Variables | Total (n = 84) | DTxG (n = 43) | CG (n = 41) | p-Value |
---|---|---|---|---|
Age, years | 65.54 ± 9.07 | 63.40 ± 10.36 | 67.78 ± 6.93 | 0.0355 ¥ |
Male | 70 (83.33) | 34 (79.07) | 36 (87.80) | 0.2829 † |
Height, cm | 166.48 ± 6.86 | 167.32 ± 6.93 | 165.61 ± 6.77 | 0.2578 * |
Body weight, kg | 64.88 ± 13.22 | 64.41 ± 12.14 | 65.37 ± 14.40 | 0.7418 * |
Resting HR, beats/min | 86.14 ± 12.43 | 86.14 ± 12.43 | 86.44 ± 9.20 | 0.9008 * |
Resting SBP, mmHg | 126.62 ± 15.36 | 129.40 ± 15.41 | 123.71 ± 14.94 | 0.0899 * |
Resting DBP, mmHg | 76.64 ± 11.04 | 77.58 ± 10.67 | 75.66 ± 11.46 | 0.4282 * |
Resting Saturation, % | 96.77 ± 1.94 | 96.72 ± 1.98 | 96.83 ± 1.92 | 0.5283 ¥ |
FEV1, % predicted | 66.49 ± 17.12 | 63.10 ± 16.74 | 69.97 ± 17.02 | 0.082 ¥ |
FEV1/FVC, % | 61.73 ± 15.38 | 59.28 ± 15.35 | 64.24 ± 15.21 | 0.083 ¥ |
Ever smoker | 63 (75) | 33 (76.74) | 30 (73.17) | 0.191 † |
History of Acute Exacerbation | 15 (17.86) | 7 (16.28) | 8 (19.51) | 0.731 † |
Incidence of Acute Exacerbation | ||||
Moderate Exacerbation | 4 (4.76) | 2 (4.65) | 2 (4.88) | 1.000 ‡ |
Severe Exacerbation | 13 (15.48) | 5 (11.63) | 8 (19.51) | 0.097 ‡ |
Variables | Total (n = 84) | DTxG (n = 43) | CG (n = 41) |
---|---|---|---|
Diabetes mellitus | 17 | 8 | 9 |
Hypertension | 18 | 9 | 9 |
Liver disease | 4 | 3 | 1 |
Tuberculosis | 8 | 3 | 5 |
NTM-PD | 1 | 1 | 0 |
COPD | 49 | 23 | 26 |
GERD | 7 | 2 | 5 |
CVA | 4 | 2 | 2 |
Heart disease | 15 | 8 | 7 |
Kidney disease | 3 | 2 | 1 |
Cancer | 4 | 1 | 3 |
6MWD, m | Total (n = 84) | DTxG (n = 43) | CG (n = 41) | p-Value |
---|---|---|---|---|
Visit 1 (Pre-treatment) | 485.36 ± 69.20 | 495.67 ± 64.15 | 474.54 ± 73.36 | 0.1632 * |
Visit 4 (Week 8) | 525.48 ± 89.50 | 553.35 ± 86.41 | 496.25 ± 84.07 | 0.0034 ¥ |
Change at Visit 4 (after 8 weeks) | 40.12 ± 55.84 | 57.68 ± 56.25 | 21.71 ± 49.70 | 0.0008 ¥ |
mMRC | Total (n = 84) | DTxG (n = 43) | CG (n = 41) | p-Value |
---|---|---|---|---|
Visit 1 (Pre-treatment) | 1.31 ± 0.69 | 1.33 ± 0.71 | 1.29 ± 0.68 | 0.8859 * |
Visit 3 (Week 4) | 1.31 ± 0.64 | 1.21 ± 0.64 | 1.41 ± 0.63 | 0.2099 * |
Change at Visit 3 (after 4 weeks) | 0.00 ± 0.54 | −0.12 ± 0.63 | 0.12 ± 0.40 | 0.0212 * |
Visit 4 (Week 8) | 1.19 ± 0.67 | 1.00 ± 0.65 | 1.39 ± 0.63 | 0.0072 * |
Change at Visit 4 (after 8 weeks) | −0.12 ± 0.63 | −0.33 ± 0.71 | 0.10 ± 0.44 | 0.0008 * |
Total (n = 84) | DTxG (n = 43) | CG (n = 41) | p-Value | |
---|---|---|---|---|
CAT | ||||
Visit 1 (Pre-treatment) | 17.65 ± 6.69 | 17.67 ± 6.03 | 17.63 ± 7.39 | 0.9782 * |
Visit 3 (Week 4) | 16.10 ± 6.97 | 13.37 ± 5.29 | 18.95 ± 7.43 | 0.0002 * |
Change at Visit 3 (after 4 weeks) | −1.56 ± 5.33 | −4.30 ± 4.79 | 1.32 ± 4.27 | <0.0001 ¥ |
Visit 4 (Week 8) | 15.80 ± 7.80 | 12.81 ± 6.35 | 18.93 ± 8.02 | 0.0002 * |
Change at Visit 4 (after 8 weeks) | −1.86 ± 6.62 | −4.86 ± 7.00 | 1.29 ± 4.45 | <0.0001 ¥ |
SGRQ | ||||
Visit 1 (Pre-treatment) | 29.28 ± 13.38 | 30.06 ± 12.90 | 28.45 ± 13.99 | 0.3734 ¥ |
Visit 3 (Week 4) | 29.03 ± 13.80 | 28.06 ± 13.68 | 30.05 ± 14.02 | 0.4871 ¥ |
Change at Visit 3 (after 4 weeks) | −0.24 ± 6.58 | −2.00 ± 7.69 | 1.59 ± 4.58 | 0.0035 ¥ |
Visit 4 (Week 8) | 29.09 ± 14.26 | 26.74 ± 14.51 | 31.56 ± 13.73 | 0.0688 ¥ |
Change at Visit 4 (after 8 weeks) | −0.18 ± 8.52 | −3.32 ± 9.12 | 3.11 ± 6.45 | 0.0003 * |
HADS | ||||
Visit 1 (Pre-treatment) | 9.54 ± 5.71 | 9.12 ± 5.62 | 9.98 ± 5.83 | 0.4938 * |
Visit 3 (Week 4) | 8.70 ± 5.68 | 7.14 ± 5.42 | 10.34 ± 5.53 | 0.0093 ¥ |
Change at Visit 3 (after 4 weeks) | −0.83 ± 4.63 | −1.98 ± 4.60 | 0.37 ± 4.40 | 0.0195 * |
Visit 4 (Week 8) | 8.35 ± 6.11 | 7.53 ± 6.03 | 9.20 ± 6.14 | 0.2278 ¥ |
Change at Visit 4 (after 8 weeks) | −1.19 ± 4.25 | −1.58 ± 4.52 | −0.78 ± 3.97 | 0.3915 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Choi, H.-E.; Rhee, C.K.; Song, J.H.; Lee, J.H. Efficacy of Digital Therapeutics for Pulmonary Rehabilitation: A Multi-Center, Randomized Controlled Trial. Life 2024, 14, 469. https://doi.org/10.3390/life14040469
Kim C, Choi H-E, Rhee CK, Song JH, Lee JH. Efficacy of Digital Therapeutics for Pulmonary Rehabilitation: A Multi-Center, Randomized Controlled Trial. Life. 2024; 14(4):469. https://doi.org/10.3390/life14040469
Chicago/Turabian StyleKim, Chul, Hee-Eun Choi, Chin Kook Rhee, Jun Hyeong Song, and Jae Ha Lee. 2024. "Efficacy of Digital Therapeutics for Pulmonary Rehabilitation: A Multi-Center, Randomized Controlled Trial" Life 14, no. 4: 469. https://doi.org/10.3390/life14040469
APA StyleKim, C., Choi, H.-E., Rhee, C. K., Song, J. H., & Lee, J. H. (2024). Efficacy of Digital Therapeutics for Pulmonary Rehabilitation: A Multi-Center, Randomized Controlled Trial. Life, 14(4), 469. https://doi.org/10.3390/life14040469