Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. In-Solution Digestion
2.2. LC-MS Analysis
2.3. Database Search
2.4. Label-Free Quantification
3. Results
4. Discussion
4.1. Impaired Cellular Transportation
4.2. Trypsin Metabolism
4.3. Coagulation Balance
4.4. Lipid Metabolism
4.5. Inflammation and Complement Proteins
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Kaarniranta, K.; Blasiak, J.; Liton, P.; Boulton, M.; Klionsky, D.J.; Sinha, D. Autophagy in Age-Related Macular Degeneration. Autophagy 2023, 19, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Heloterä, H.; Kaarniranta, K. A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells 2022, 11, 3453. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.T.; Zhang, P.; Dufresne, C.; Ferrucci, L.; Semba, R.D. The Human Eye Proteome Project: Updates on an Emerging Proteome. Proteomics 2018, 18, 1700394. [Google Scholar] [CrossRef] [PubMed]
- Rinsky, B.; Beykin, G.; Grunin, M.; Amer, R.; Khateb, S.; Tiosano, L.; Almeida, D.; Hagbi-Levi, S.; Elbaz-Hayoun, S.; Chowers, I. Analysis of the Aqueous Humor Proteome in Patients with Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2021, 62, 18. [Google Scholar] [CrossRef] [PubMed]
- Cehofski, L.J.; Honoré, B.; Vorum, H. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders. Int. J. Mol. Sci. 2017, 18, 907. [Google Scholar] [CrossRef] [PubMed]
- García-Quintanilla, L.; Rodríguez-Martínez, L.; Bandín-Vilar, E.; Gil-Martínez, M.; González-Barcia, M.; Mondelo-García, C.; Fernández-Ferreiro, A.; Mateos, J. Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14759. [Google Scholar] [CrossRef]
- Winiarczyk, M.; Kaarniranta, K.; Winiarczyk, S.; Adaszek, Ł.; Winiarczyk, D.; Mackiewicz, J. Tear Film Proteome in Age-Related Macular Degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Winiarczyk, M.; Winiarczyk, D.; Michalak, K.; Kaarniranta, K.; Adaszek, Ł.; Winiarczyk, S.; Mackiewicz, J. Dysregulated Tear Film Proteins in Macular Edema Due to the Neovascular Age-Related Macular Degeneration Are Involved in the Regulation of Protein Clearance, Inflammation, and Neovascularization. J. Clin. Med. 2021, 10, 3060. [Google Scholar] [CrossRef]
- Winiarczyk, M.; Biela, K.; Michalak, K.; Winiarczyk, D.; Mackiewicz, J. Changes in Tear Proteomic Profile in Ocular Diseases. Int. J. Environ. Res. Public Health 2022, 19, 13341. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Kustatscher, G.; Grabowski, P.; Schrader, T.A.; Passmore, J.B.; Schrader, M.; Rappsilber, J. Co-Regulation Map of the Human Proteome Enables Identification of Protein Functions. Nat. Biotechnol. 2019, 37, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Strauss, O. The Retinal Pigment Epithelium in Visual Function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Ferrington, D.A. Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Invest Ophthalmol Vis Sci 2018, 59, AMD41–AMD47. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investig. Ophthalmol. Vis. Sci. 2018, 59, AMD160–AMD181. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.; Lee, T.J.; Sene, A.; Choudhary, M.; Lekwuwa, M.; Dong, Z.; Santeford, A.; Lin, J.B.; Malek, G.; Ory, D.S.; et al. Impaired Monocyte Cholesterol Clearance Initiates Age-Related Retinal Degeneration and Vision Loss. JCI Insight 2018, 3, e120824. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Hussain, A.A.; Seok, J.-H.; Kim, S.-H.; Marshall, J. Modulating the Transport Characteristics of Bruch’s Membrane with Steroidal Glycosides and Its Relevance to Age-Related Macular Degeneration (AMD). Investig. Ophthalmol. Vis. Sci. 2015, 56, 8403–8418. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, R.; Bertelli, M.; Scaffidi, E.; Fulceri, F.; Busceti, C.L.; Biagioni, F.; Fornai, F. Measurement of Drusen and Their Correlation with Visual Symptoms in Patients Affected by Age-Related Macular Degeneration. Arch. Ital. Biol. 2020, 158, 82–104. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Salminen, A.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Age-Related Macular Degeneration (AMD): Alzheimer’s Disease in the Eye? J. Alzheimers Dis. 2011, 24, 615–631. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Dobri, N.; Freeman, E.E.; Conlon, M.P.; Chen, P.; Stafford, D.G.; Schwarz, D.M.C.; Golden, K.C.; Zhu, L.; Kitchen, D.B.; et al. Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J. Med. Chem. 2014, 57, 7731–7757. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Racz, B.; Freeman, E.E.; Conlon, M.P.; Chen, P.; Stafford, D.G.; Schwarz, D.M.C.; Zhu, L.; Kitchen, D.B.; Barnes, K.D.; et al. Bicyclic [3.3.0]-Octahydrocyclopenta[c]Pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J. Med. Chem. 2015, 58, 5863–5888. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Priefer, R. Retinol Binding Protein 4 Antagonists and Protein Synthesis Inhibitors: Potential for Therapeutic Development. Eur. J. Med. Chem. 2021, 226, 113856. [Google Scholar] [CrossRef] [PubMed]
- Grigg, J.R.; Chen, F.K.; Chen, T.-C.; Jamieson, R.V.; Scholl, H.P.; Mata, N.L.; Nguyen, Q.D. A Phase 1b/2 Study of the Safety and Tolerability of Tinlarebant in Adolescent Patients Affected by Stargardt Disease– 15 Month Preliminary Data. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2597. [Google Scholar]
- Schilling, O.; Biniossek, M.L.; Mayer, B.; Elsässer, B.; Brandstetter, H.; Goettig, P.; Stenman, U.-H.; Koistinen, H. Specificity Profiling of Human Trypsin-Isoenzymes. Biol. Chem. 2018, 399, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Koss, M.J.; Hoffmann, J.; Nguyen, N.; Pfister, M.; Mischak, H.; Mullen, W.; Husi, H.; Rejdak, R.; Koch, F.; Jankowski, J.; et al. Proteomics of Vitreous Humor of Patients with Exudative Age-Related Macular Degeneration. PLoS ONE 2014, 9, e96895. [Google Scholar] [CrossRef]
- Boehm, N.; Wolters, D.; Thiel, U.; Lossbrand, U.; Wiegel, N.; Pfeiffer, N.; Grus, F.H. New Insights into Autoantibody Profiles from Immune Privileged Sites in the Eye: A Glaucoma Study. Brain Behav. Immun. 2012, 26, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.-C.; Xu, D.; Li, T.-T.; Zhang, J.-F.; Liu, F. iTRAQ-Based Proteomics Analysis of Aqueous Humor in Patients with Dry Age-Related Macular Degeneration. Int. J. Ophthalmol. 2019, 12, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
- Petrey, A.; de la Motte, C. Hyaluronan, a Crucial Regulator of Inflammation. Front. Immunol. 2014, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Paris, S.; Sesboüé, R.; Delpech, B.; Chauzy, C.; Thiberville, L.; Martin, J.-P.; Frébourg, T.; Diarra-Mehrpour, M. Inhibition of Tumor Growth and Metastatic Spreading by Overexpression of Inter-Alpha-Trypsin Inhibitor Family Chains. Int. J. Cancer 2002, 97, 615–620. [Google Scholar] [CrossRef]
- Cuvelier, A.; Muir, J.F.; Martin, J.P.; Sesboüé, R. Proteins of the inter-alpha trypsin inhibitor (ITI) family. A major role in the biology of the extracellular matrix. Rev. Mal. Respir. 2000, 17, 437–446. [Google Scholar]
- Haas, P.; Aggermann, T.; Steindl, K.; Krugluger, W.; Pühringer, H.; Oberkanins, C.; Frantal, S.; Binder, S. Genetic Cardiovascular Risk Factors and Age-Related Macular Degeneration. Acta Ophthalmol. 2011, 89, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, A.R.; MacCallum, P.K.; Whitelocke, R.; Meade, T.W. Circulating Markers of Arterial Thrombosis and Late-Stage Age-Related Macular Degeneration: A Case–Control Study. Eye 2010, 24, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos, C.D.; Makri, O.E.; Pallikari, A.; Kagkelaris, K.; Plotas, P.; Grammenou, V.; Emmanuil, A. Effect of Intravitreal Injection of Aflibercept on Blood Coagulation Parameters in Patients with Age-Related Macular Degeneration. Ophthalmol. Eye Dis. 2020, 12, 2515841420903929. [Google Scholar] [CrossRef] [PubMed]
- Altinkaynak, H.; Kars, M.E.; Kurkcuoglu, P.Z.; Ugurlu, N. Blood Coagulation Parameters after Intravitreal Injection of Aflibercept in Patients with Neovascular Age-Related Macular Degeneration. Int. Ophthalmol. 2018, 38, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyk, M.; Natorska, J.; Undas, A. Factor XIII and Fibrin Clot Properties in Acute Venous Thromboembolism. Int. J. Mol. Sci. 2021, 22, 1607. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Rallo, V.; Pinna, A.; Steri, M.; Piras, M.G.; Marongiu, M.; Coscas, F.; Gorospe, M.; Schlessinger, D.; Fiorillo, E.; et al. Polygenic Risk Score and Biochemical/Environmental Variables Predict a Low-Risk Profile of Age-Related Macular Degeneration in Sardinia. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical Risk Factors for Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. BMC Ophthalmol. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Mitchell, P.; Leeder, S.R.; Wang, J.J. Plasma Fibrinogen Levels, Other Cardiovascular Risk Factors, and Age-Related Maculopathy: The Blue Mountains Eye Study. Arch. Ophthalmol. 1998, 116, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Sridevi Gurubaran, I.; Heloterä, H.; Marry, S.; Koskela, A.; Hyttinen, J.M.T.; Paterno, J.J.; Urtti, A.; Chen, M.; Xu, H.; Kauppinen, A.; et al. Oxidative Stress and Mitochondrial Damage in Dry Age-Related Macular Degeneration Like NFE2L2/PGC-1α -/- Mouse Model Evoke Complement Component C5a Independent of C3. Biology 2021, 10, 622. [Google Scholar] [CrossRef]
- Parmeggiani, F.; Costagliola, C.; Gemmati, D.; D’Angelo, S.; Perri, P.; Scapoli, G.L.; Catozzi, L.; Federici, F.; Sebastiani, A.; Incorvaia, C. Predictive Role of Coagulation-Balance Gene Polymorphisms in the Efficacy of Photodynamic Therapy with Verteporfin for Classic Choroidal Neovascularization Secondary to Age-Related Macular Degeneration. Pharmacogenetics Genom. 2007, 17, 1039. [Google Scholar] [CrossRef]
- Al-Shanqeeti, A.; Vlieg, A.v.H.; Berntorp, E.; Rosendaal, F.; Broze, G.J., Jr. Protein Z and Protein Z-Dependent Protease Inhibitor. Thromb. Haemost. 2005, 93, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Fiehler, R.; Broze, G.J., Jr. Characterization of the Protein Z–Dependent Protease Inhibitor. Blood 2000, 96, 3049–3055. [Google Scholar] [CrossRef] [PubMed]
- Koren-Michowitz, M.; Eting, E.; Rahimi-Levene, N.; Garach-Jehoshua, O.; Volcheck, Y.; Kornberg, A. Protein Z Levels and Central Retinal Vein or Artery Occlusion. Eur. J. Haematol. 2005, 75, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Woo, S.J.; Suh, E.J.; Ahn, J.; Park, J.H.; Hong, H.K.; Lee, J.E.; Ahn, S.J.; Hwang, D.J.; Kim, K.W.; et al. Identification of Vinculin as a Potential Plasma Marker for Age-Related Macular Degeneration. Invest. Ophthalmol. Vis. Sci. 2014, 55, 7166–7176. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Uchino, M.; Sastry, S.M.; Schaumberg, D.A. Age-Related Macular Degeneration and the Incidence of Cardiovascular Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e89600. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Datta, S.; Wang, L.; Pegany, R.; Cano, M.; Handa, J.T. The Impact of Lipids, Lipid Oxidation, and Inflammation on AMD, and the Potential Role of miRNAs on Lipid Metabolism in the RPE. Exp. Eye Res. 2019, 181, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Guo, X.; Sun, Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis. 2021, 12, 529–551. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, Y.; Gong, Z.; Zhu, M.; Qiu, B.; Wang, Q. Plasma Apolipoproteins Predicting the Occurrence and Severity of Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus. Front. Endocrinol. 2022, 13, 915575. [Google Scholar] [CrossRef] [PubMed]
- Kelly, U.L.; Grigsby, D.; Cady, M.A.; Landowski, M.; Skiba, N.P.; Liu, J.; Remaley, A.T.; Klingeborn, M.; Rickman, C.B. High-Density Lipoproteins Are a Potential Therapeutic Target for Age-Related Macular Degeneration. J. Biol. Chem. 2020, 295, 13601–13616. [Google Scholar] [CrossRef]
- van Leeuwen, E.M.; Emri, E.; Merle, B.M.J.; Colijn, J.M.; Kersten, E.; Cougnard-Gregoire, A.; Dammeier, S.; Meester-Smoor, M.; Pool, F.M.; de Jong, E.K.; et al. A New Perspective on Lipid Research in Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2018, 67, 56–86. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, B.; Gong, Z.; Chen, X.; Wang, Y.; Nie, Y. Differentially Regulated Apolipoproteins and Lipid Profiles as Novel Biomarkers for Polypoidal Choroidal Vasculopathy and Neovascular Age-Related Macular Degeneration. Front. Endocrinol. 2022, 13, 946327. [Google Scholar] [CrossRef] [PubMed]
- Ruberti, J.W.; Curcio, C.A.; Millican, C.L.; Menco, B.P.M.; Huang, J.-D.; Johnson, M. Quick-Freeze/Deep-Etch Visualization of Age-Related Lipid Accumulation in Bruch’s Membrane. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1753–1759. [Google Scholar] [CrossRef]
- Haimovici, R.; Gantz, D.L.; Rumelt, S.; Freddo, T.F.; Small, D.M. The Lipid Composition of Drusen, Bruch’s Membrane, and Sclera by Hot Stage Polarizing Light Microscopy. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1592–1599. [Google Scholar]
- Cao, X.; Sanchez, J.C.; Dinabandhu, A.; Guo, C.; Patel, T.P.; Yang, Z.; Hu, M.-W.; Chen, L.; Wang, Y.; Malik, D.; et al. Aqueous Proteins Help Predict the Response of Patients with Neovascular Age-Related Macular Degeneration to Anti-VEGF Therapy. J. Clin. Investig. 2022, 132, e144469. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Huang, J.-D.; Rudolf, M. Aging, Age-Related Macular Degeneration, and the Response-to-Retention of Apolipoprotein B-Containing Lipoproteins. Prog. Retin. Eye Res. 2009, 28, 393–422. [Google Scholar] [CrossRef]
- Tabas, I.; Williams, K.J.; Borén, J. Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis: Update and Therapeutic Implications. Circulation 2007, 116, 1832–1844. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ong, J.-S.; Hewitt, A.W.; Gharahkhani, P.; MacGregor, S. The Effects of Eight Serum Lipid Biomarkers on Age-Related Macular Degeneration Risk: A Mendelian Randomization Study. Int. J. Epidemiol. 2021, 50, 325–336. [Google Scholar] [CrossRef]
- Paun, C.C.; Ersoy, L.; Schick, T.; Groenewoud, J.M.M.; Lechanteur, Y.T.; Fauser, S.; Hoyng, C.B.; de Jong, E.K.; den Hollander, A.I. Genetic Variants and Systemic Complement Activation Levels Are Associated With Serum Lipoprotein Levels in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7766–7773. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Huang, J.-D.; Rudolf, M. Apolipoprotein B-Containing Lipoproteins in Retinal Aging and Age-Related Macular Degeneration. J. Lipid Res. 2010, 51, 451–467. [Google Scholar] [CrossRef]
- Armento, A.; Schmidt, T.L.; Sonntag, I.; Merle, D.A.; Jarboui, M.A.; Kilger, E.; Clark, S.J.; Ueffing, M. CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. Int. J. Mol. Sci. 2021, 22, 8727. [Google Scholar] [CrossRef]
- Čolak, E.; Majkić-Singh, N.; Žorić, L.; Radosavljević, A.; Kosanović-Jaković, N. The Impact of Inflammation to the Antioxidant Defense Parameters in AMD Patients. Aging Clin. Exp. Res. 2012, 24, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, A.; Paterno, J.J.; Blasiak, J.; Salminen, A.; Kaarniranta, K. Inflammation and Its Role in Age-Related Macular Degeneration. Cell. Mol. Life Sci. 2016, 73, 1765–1786. [Google Scholar] [CrossRef] [PubMed]
- Kemper, C.; Atkinson, J.P.; Hourcade, D.E. Properdin: Emerging Roles of a Pattern-Recognition Molecule. Annu Rev Immunol 2010, 28, 131–155. [Google Scholar] [CrossRef] [PubMed]
- Armento, A.; Ueffing, M.; Clark, S.J. The Complement System in Age-Related Macular Degeneration. Cell. Mol. Life Sci. 2021, 78, 4487–4505. [Google Scholar] [CrossRef]
- McHarg, S.; Clark, S.J.; Day, A.J.; Bishop, P.N. Age-Related Macular Degeneration and the Role of the Complement System. Mol. Immunol. 2015, 67, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, K.-D.; Xu, G.-Z. Association between Variant Y402H in Age-Related Macular Degeneration (AMD) Susceptibility Gene CFH and Treatment Response of AMD: A Meta-Analysis. PLoS ONE 2012, 7, e42464. [Google Scholar] [CrossRef] [PubMed]
- Marazita, M.C.; Dugour, A.; Marquioni-Ramella, M.D.; Figueroa, J.M.; Suburo, A.M. Oxidative Stress-Induced Premature Senescence Dysregulates VEGF and CFH Expression in Retinal Pigment Epithelial Cells: Implications for Age-Related Macular Degeneration. Redox Biol. 2016, 7, 78–87. [Google Scholar] [CrossRef]
- Lin, T.; Maita, D.; Thundivalappil, S.R.; Riley, F.E.; Hambsch, J.; Van Marter, L.J.; Christou, H.A.; Berra, L.; Fagan, S.; Christiani, D.C.; et al. Hemopexin in Severe Inflammation and Infection: Mouse Models and Human Diseases. Crit. Care 2015, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Detzel, M.S.; Schmalohr, B.F.; Steinbock, F.; Hopp, M.-T.; Ramoji, A.; George, A.A.P.; Neugebauer, U.; Imhof, D. Revisiting the Interaction of Heme with Hemopexin. Biol. Chem. 2021, 402, 675–691. [Google Scholar] [CrossRef]
- Sniatecki, J.J.; Ho-Yen, G.; Clarke, B.; Barbara, R.; Lash, S.; Papathomas, T.; Antonakis, S.; Gupta, B. Treatment of Submacular Hemorrhage with Tissue Plasminogen Activator and Pneumatic Displacement in Age-Related Macular Degeneration. Eur. J. Ophthalmol. 2021, 31, 643–648. [Google Scholar] [CrossRef]
- Suhre, K.; Arnold, M.; Bhagwat, A.M.; Cotton, R.J.; Engelke, R.; Raffler, J.; Sarwath, H.; Thareja, G.; Wahl, A.; DeLisle, R.K.; et al. Connecting Genetic Risk to Disease End Points through the Human Blood Plasma Proteome. Nat. Commun. 2017, 8, 14357. [Google Scholar] [CrossRef] [PubMed]
- Lauwen, S.; Bakker, B.; de Jong, E.K.; Fauser, S.; Hoyng, C.B.; Lefeber, D.J.; den Hollander, A.I. Analysis of Hemopexin Plasma Levels in Patients with Age-Related Macular Degeneration. Mol. Vis. 2022, 28, 536–543. [Google Scholar] [PubMed]
- Iii, A.E.D.; Lu, F.; Mejia, P. C1 Inhibitor, a Multi-Functional Serine Protease Inhibitor. Thromb. Haemost. 2010, 104, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.; Hakobyan, S.; Cree, A.J.; Collins, A.; Harris, C.L.; Ennis, S.; Morgan, B.P.; Lotery, A.J. Variation in Complement Component C1 Inhibitor in Age-Related Macular Degeneration. Immunobiology 2012, 217, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ung, T. Effect of Alpha-1-Acid Glycoprotein Binding on Pharmacokinetics and Pharmacodynamics. Curr. Drug Metab. 2013, 14, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Kang, J.W.; Ahn, J.; Lee, E.K.; Cho, K.-C.; Han, B.N.R.; Hong, N.Y.; Park, J.; Kim, K.P. Proteomic Analysis of the Aqueous Humor in Age-Related Macular Degeneration (AMD) Patients. J. Proteome Res. 2012, 11, 4034–4043. [Google Scholar] [CrossRef] [PubMed]
- Allyn, M.M.; Rincon-Benavides, M.A.; Chandler, H.L.; Higuita-Castro, N.; Palmer, A.F.; Swindle-Reilly, K.E. Sustained Release of Heme–Albumin as a Potential Novel Therapeutic Approach for Age-Related Macular Degeneration. Biomater. Sci. 2022, 10, 7004–7014. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.K.; Kaur, P.; Fadel, A.; Younes, N.; Zirie, M.; Rizk, N.M. Integrated Datasets of Proteomic and Metabolomic Biomarkers to Predict Its Impacts on Comorbidities of Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2020, 13, 2409–2431. [Google Scholar] [CrossRef]
- Du, H.; Rao, Y.; Liu, R.; Deng, K.; Guan, Y.; Luo, D.; Mao, Q.; Yu, J.; Bo, T.; Fan, Z.; et al. Proteomics and Metabolomics Analyses Reveal the Full Spectrum of Inflammatory and Lipid Metabolic Abnormalities in Dyslipidemia. Biomed. Chromatogr. 2021, 35, e5183. [Google Scholar] [CrossRef]
- Carrasco-Zanini, J.; Pietzner, M.; Lindbohm, J.V.; Wheeler, E.; Oerton, E.; Kerrison, N.; Simpson, M.; Westacott, M.; Drolet, D.; Kivimaki, M.; et al. Proteomic Signatures for Identification of Impaired Glucose Tolerance. Nat. Med. 2022, 28, 2293–2300. [Google Scholar] [CrossRef]
Name | Accession Number | Entry Name | Ratio | Score |
---|---|---|---|---|
RET4_HUMAN | P02753 | Retinol-binding protein 4 | 1.00:0.27 | 200 |
ITIH2_HUMAN | P19823 | Inter-alpha-trypsin inhibitor heavy chain H2 | 1.00:0.27 | 137.34 |
C1QB_HUMAN | P02746 | Complement C1q subcomponent subunit B | 1.00:0.36 | 118.75 |
APOA2_HUMAN | P02652 | Apolipoprotein A-II | 1.00:0.36 | 117.69 |
ITIH1_HUMAN | P19827 | Inter-alpha-trypsin inhibitor heavy chain H1 | 1.00:0.26 | 101.39 |
HEMO_HUMAN | P02790 | Hemopexin | 1.00:0.40 | 84.1 |
APOB_HUMAN | P04114 | Apolipoprotein B-100 | 1.00:0.40 | 71.24 |
A1AG1_HUMAN | P02763 | Alpha-1-acid glycoprotein 1 | 1.00:0.26 | 70.02 |
IC1_HUMAN | P05155 | Plasma protease C1 inhibitor | 1.00:0.44 | 61.55 |
ALBU_HUMAN | P02768 | Albumin | 1.00:0.49 | 59.92 |
ZPI_HUMAN | Q9UK55 | Protein Z-dependent protease inhibitor | 1.00:0.46 | 48.72 |
Name | Accession Number | Entry Name | Ratio | Score |
---|---|---|---|---|
THRB_HUMAN | P00734 | Prothrombin | 1.00:2.61 | 131.67 |
PROP_HUMAN | P27918 | Properdin | 1.00:2.23 | 98.24 |
F13A_HUMAN | P00488 | Coagulation factor XIII A chain | 1.00:3.51 | 72.72 |
A1AT_HUMAN | P01009 | Alpha-1-antitrypsin | 1.00:2.66 | 48.01 |
TRY1_HUMAN | P07477 | Trypsin-1 | 1.00:2.52 | 44.2 |
FIBA_HUMAN | P02671 | Fibrinogen alpha chain | 1.00:2.07 | 39.49 |
Protein Name | STRING Abbreviation | Function According to STRING |
---|---|---|
RET4_HUMAN | RBP4 | Transporting retinol from liver to tissues |
ITIH2_HUMAN | ITIH2 | Binding agent between hyaluronan and serum proteins |
ITIH1_HUMAN | ITIH1 | Binding agent between hyaluronan and serum proteins |
C1QB_HUMAN | C1QB | Cooperation with the proenzymes C1r and C1s to yield C1 |
APOA2_HUMAN | APOA2 | Taking part in HDL metabolism and its stabilization |
APOB_HUMAN | APOB | Recognition signal for the cellular binding and internalization of LDL particles by the apo-B/E receptor |
HEMO_HUMAN | HPX | Taking part in heme binding and transporting it to the liver |
A1AG1_HUMAN | ORM1 | Transporting numerous ligands in the blood stream |
IC1_HUMAN | IC1 | Probably taking part in blood coagulation, fibrinolysis and the generation of kinins |
ALBU_HUMAN | ALB | Binding ions such as Ca(II), Na(I), K(I) and also particles like fatty acids, hormones, bilirubin and drugs |
ZPI_HUMAN | SERPINA10 | Together with PROZ, calcium and phospholipids, blocking coagulation protease factor Xa |
THRB_HUMAN | F2 | Active in inflammation and wound healing |
PROP_HUMAN | CFP | Taking part in CFI-CFH-mediated degradation of Complement C3 beta chain (C3b) |
F13A_HUMAN | F13A1 | Stabilizing the fibrin clot |
A1AT_HUMAN | SERPINA 1 | Inactivating of serine proteases |
TRY1_HUMAN | PRSS1 | Belongs to the peptidase S1 family |
FIBA_HUMAN | FGA | Basic component of blood clots |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiarczyk, M.; Thiede, B.; Utheim, T.P.; Kaarniranta, K.; Winiarczyk, D.; Michalak, K.; Mackiewicz, J. Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration. Life 2024, 14, 624. https://doi.org/10.3390/life14050624
Winiarczyk M, Thiede B, Utheim TP, Kaarniranta K, Winiarczyk D, Michalak K, Mackiewicz J. Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration. Life. 2024; 14(5):624. https://doi.org/10.3390/life14050624
Chicago/Turabian StyleWiniarczyk, Mateusz, Bernd Thiede, Tor Paaske Utheim, Kai Kaarniranta, Dagmara Winiarczyk, Katarzyna Michalak, and Jerzy Mackiewicz. 2024. "Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration" Life 14, no. 5: 624. https://doi.org/10.3390/life14050624
APA StyleWiniarczyk, M., Thiede, B., Utheim, T. P., Kaarniranta, K., Winiarczyk, D., Michalak, K., & Mackiewicz, J. (2024). Oxidative Stress, Persistent Inflammation and Blood Coagulation Alterations in Serum Proteome of Patients with Neovascular Age-Related Macular Degeneration. Life, 14(5), 624. https://doi.org/10.3390/life14050624