Exploring Stem-Cell-Based Therapies for Retinal Regeneration
Abstract
:1. Introduction
2. Materials and Methods
3. Stem Cell Sources
3.1. Human Embryonic Stem Cells
3.2. Induced Pluripotent Stem Cells
3.3. Mesenchymal Stem Cells
4. Clinical Studies
4.1. Clinical Trials Using hESCs
4.2. Clinical Trials Using hiPSCs
4.3. Clinical Trials Using MSCs
5. Stem Cell Administration Method
6. Cell Suspension or Reconstructed Tissue
7. Ethical and Safety Issues of Stem-Cell-Based Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-Syndromic Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Voisin, A.; Gaillard, A.; Balbous, A.; Leveziel, N. Proteins Associated with Phagocytosis Alteration in Retinal Pigment Epithelial Cells Derived from Age-Related Macular Degeneration Patients. Antioxidants 2022, 11, 713. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, J.; Li, D. Functions and Diseases of the Retinal Pigment Epithelium. Front. Pharmacol. 2021, 12, 727870. [Google Scholar] [CrossRef] [PubMed]
- Lyle, W.M. The Retinal Pigment Epithelium: Function and Disease. Optom. Vis. Sci. 1999, 76, 193. [Google Scholar] [CrossRef]
- Somasundaran, S.; Constable, I.J.; Mellough, C.B.; Carvalho, L.S. Retinal Pigment Epithelium and Age-Related Macular Degeneration: A Review of Major Disease Mechanisms. Clin. Exp. Ophthalmol. 2020, 48, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Pan, C.K.; Klimanskaya, I.; Lanza, R. Retinal Degeneration. In Principles of Tissue Engineering, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 1427–1440. ISBN 9780123983589. [Google Scholar]
- Pellegrini, G.; De Luca, M.; Arsenijevic, Y. Towards Therapeutic Application of Ocular Stem Cells. Semin. Cell Dev. Biol. 2007, 18, 805–818. [Google Scholar] [CrossRef]
- Thomson, J.A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Voisin, A.; Pénaguin, A.; Gaillard, A.; Leveziel, N. Stem Cell Therapy in Retinal Diseases. Neural Regen. Res. 2023, 18, 1478–1485. [Google Scholar] [CrossRef]
- Ikelle, L.; Al-Ubaidi, M.R.; Naash, M.I. Pluripotent Stem Cells for the Treatment of Retinal Degeneration: Current Strategies and Future Directions. Front. Cell Dev. Biol. 2020, 8, 743. [Google Scholar] [CrossRef]
- Huo, D.M.; Dong, F.T.; Gao, F. Differentiation of Mesenchymal Stem Cell in the Microenviroment of Retinitis Pigmentosa. Int. J. Ophthalmol. 2010, 3, 216–219. [Google Scholar] [CrossRef]
- Liu, H.; Jing, L.; Sun, J.; Huang, D. An Overview of Scaffolds for Retinal Pigment Epithelium Research. Procedia Manuf. 2021, 53, 492–499. [Google Scholar] [CrossRef]
- Shintani, K.; Shechtman, D.L.; Gurwood, A.S. Review and Update: Current Treatment Trends for Patients with Retinitis Pigmentosa. Optometry 2009, 80, 384–401. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Lam, E.; Alvarez, D.; Sun, Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int. J. Mol. Sci. 2023, 24, 12090. [Google Scholar] [CrossRef]
- Du, Y.; Yan, B. Ocular Immune Privilege and Retinal Pigment Epithelial Cells. J. Leukoc. Biol. 2023, 113, 288–304. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Jaganathan, B.G. Stem Cell Therapy for Retinal Degeneration: The Evidence to Date. Biologics 2021, 15, 299–306. [Google Scholar] [CrossRef]
- Nair, D.S.R.; Thomas, B.B. Stem Cell-Based Treatment Strategies for Degenerative Diseases of the Retina. Curr. Stem Cell Res. Ther. 2021, 17, 214–225. [Google Scholar] [CrossRef]
- Jin, Z.B.; Okamoto, S.; Osakada, F.; Homma, K.; Assawachananont, J.; Hirami, Y.; Iwata, T.; Takahashi, M. Modeling Retinal Degeneration Using Patient-Specific Induced Pluripotent Stem Cells. PLoS ONE 2011, 6, e17084. [Google Scholar] [CrossRef]
- Tibbetts, M.D.; Samuel, M.A.; Chang, T.S.; Ho, A.C. Stem Cell Therapy for Retinal Disease. Curr. Opin. Ophthalmol. 2012, 23, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Morshedi Rad, D.; Mashhadi, S.S.; Ashouri, A.; Mojarrad, M.; Mozaffari-Jovin, S.; Farrokhi, S.; Hashemi, M.; Lotfi, M.; Ebrahimi Warkiani, M.; et al. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Stem Cell Rev. Rep. 2023, 19, 2576–2596. [Google Scholar] [CrossRef]
- Carlson-Stevermer, J.; Goedland, M.; Steyer, B.; Movaghar, A.; Lou, M.; Kohlenberg, L.; Prestil, R.; Saha, K. High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells. Stem Cell Rep. 2016, 6, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Quan, Y.; Yan, Q.; Morales, J.E.; Wetsel, R.A. Targeted Disruption of the β 2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Transl. Med. 2015, 4, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Petrus-Reurer, S.; Winblad, N.; Kumar, P.; Gorchs, L.; Chrobok, M.; Wagner, A.K.; Bartuma, H.; Lardner, E.; Aronsson, M.; Plaza Reyes, Á.; et al. Generation of Retinal Pigment Epithelial Cells Derived from Human Embryonic Stem Cells Lacking Human Leukocyte Antigen Class I and II. Stem Cell Rep. 2020, 14, 648–662. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Sugita, S.; Kamao, H.; Iwasaki, Y.; Okamoto, S.; Hashiguchi, T.; Iseki, K.; Hayashi, N.; Mandai, M.; Takahashi, M. Inhibition of T-Cell Activation by Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1051–1062. [Google Scholar] [CrossRef]
- Bharti, K.; Rao, M.; Hull, S.C.; Stroncek, D.; Brooks, B.P.; Feigal, E.; van Meurs, J.C.; Huang, C.A.; Miller, S.S. Developing Cellular Therapies for Retinal Degenerative Diseases. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1191–1201. [Google Scholar] [CrossRef]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; et al. Generation of Three-Dimensional Retinal Tissue with Functional Photoreceptors from Human IPSCs. Nat. Commun. 2014, 5, 4047. [Google Scholar] [CrossRef] [PubMed]
- Hallam, D.; Hilgen, G.; Dorgau, B.; Zhu, L.; Yu, M.; Bojic, S.; Hewitt, P.; Schmitt, M.; Uteng, M.; Kustermann, S.; et al. Human-Induced Pluripotent Stem Cells Generate Light Responsive Retinal Organoids with Variable and Nutrient-Dependent Efficiency. Stem Cells 2018, 36, 1535–1551. [Google Scholar] [CrossRef] [PubMed]
- Pera, M.F. Stem Cells: The Dark Side of Induced Pluripotency. Nature 2011, 471, 46–47. [Google Scholar] [CrossRef]
- Rohowetz, L.J.; Koulen, P. Stem Cell-Derived Retinal Pigment Epithelium Cell Therapy: Past and Future Directions. Front. Cell Dev. Biol. 2023, 11, 1098406. [Google Scholar] [CrossRef]
- Warren, L.; Lin, C. MRNA-Based Genetic Reprogramming. Mol. Ther. 2019, 27, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Xing, J.; Zhou, J.; Li, H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023, 11, 2913. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef]
- Ezquerra, S.; Zuleta, A.; Arancibia, R.; Estay, J.; Aulestia, F.; Carrion, F. Functional Properties of Human-Derived Mesenchymal Stem Cell Spheroids: A Meta-Analysis and Systematic Review. Stem Cells Int. 2021, 2021, 8825332. [Google Scholar] [CrossRef]
- Alvites, R.; Branquinho, M.; Sousa, A.C.; Lopes, B.; Sousa, P.; Maurício, A.C. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity—Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics 2022, 14, 381. [Google Scholar] [CrossRef]
- Hong, Y.; Xu, G.X. Proteome Changes during Bone Mesenchymal Stem Cell Differentiation into Photoreceptor-like Cells in Vitro. Int. J. Ophthalmol. 2011, 4, 466–473. [Google Scholar] [CrossRef]
- Aboutaleb Kadkhodaeian, H.; Tiraihi, T.; Ahmadieh, H.; Ziaei, H.; Daftarian, N.; Taheri, T. Generation of Retinal Pigmented Epithelium-Like Cells from Pigmented Spheres Differentiated from Bone Marrow Stromal Cell-Derived Neurospheres. Tissue Eng. Regen. Med. 2019, 16, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Park, U.C.; Park, S.S.; Kim, B.H.; Park, S.W.; Kim, Y.J.; Cary, W.; Anderson, J.D.; Nolta, J.A.; Yu, H.G. Subretinal versus Intravitreal Administration of Human CD34+ Bone Marrow-Derived Stem Cells in a Rat Model of Inherited Retinal Degeneration. Ann. Transl. Med. 2021, 9, 1275. [Google Scholar] [CrossRef]
- Sanz-Nogués, C.; O’Brien, T. Current Good Manufacturing Practice Considerations for Mesenchymal Stromal Cells as Therapeutic Agents. Biomater. Biosyst. 2021, 2, 100018. [Google Scholar] [CrossRef]
- Ochs, J.; Barry, F.; Schmitt, R.; Murphy, J.M. Advances in Automation for the Production of Clinical-Grade Mesenchymal Stromal Cells: The AUTOSTEM Robotic Platform. Cell Gene Ther. Insights 2017, 3, 739–748. [Google Scholar] [CrossRef]
- Cotrim, C.C.; Jorge, R.; de Oliveira, M.C.; Pieroni, F.; Messias, A.M.V.; Siqueira, R.C. Clinical Studies Using Stem Cells for Treatment of Retinal Diseases: State of the Art. Arq. Bras. Oftalmol. 2020, 83, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, N.; Li, J.; Zhao, M.; Huang, L. Stem Cell Therapy for Inherited Retinal Diseases: A Systematic Review and Meta-Analysis. Stem Cell Res. Ther. 2023, 14, 286. [Google Scholar] [CrossRef] [PubMed]
- Oswald, J.; Baranov, P. Regenerative Medicine in the Retina: From Stem Cells to Cell Replacement Therapy. Ther. Adv. Ophthalmol. 2018, 10, 2515841418774433. [Google Scholar] [CrossRef]
- Lu, B.; Malcuit, C.; Wang, S.; Girman, S.; Francis, P.; Lemieux, L.; Lanza, R.; Lund, R. Long-Term Safety and Function of RPE from Human Embryonic Stem Cells in Preclinical Models of Macular Degeneration. Stem Cells 2009, 27, 2126–2135. [Google Scholar] [CrossRef] [PubMed]
- Takagi, S.; Mandai, M.; Gocho, K.; Hirami, Y.; Yamamoto, M.; Fujihara, M.; Sugita, S.; Kurimoto, Y.; Takahashi, M. Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration. Ophthalmol. Retin. 2019, 3, 850–859. [Google Scholar] [CrossRef]
- Hinkle, J.W.; Mahmoudzadeh, R.; Kuriyan, A.E. Cell-Based Therapies for Retinal Diseases: A Review of Clinical Trials and Direct to Consumer “Cell Therapy” Clinics. Stem Cell Res. Ther. 2021, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.D.; Hubschman, J.-P.; Heilwell, G.; Franco-Cardenas, V.; Pan, C.K.; Ostrick, R.M.; Mickunas, E.; Gay, R.; Klimanskaya, I.; Lanza, R. Embryonic Stem Cell Trials for Macular Degeneration: A Preliminary Report. Lancet 2012, 379, 713–720. [Google Scholar] [CrossRef]
- Schwartz, S.D.; Regillo, C.D.; Lam, B.L.; Eliott, D.; Rosenfeld, P.J.; Gregori, N.Z.; Hubschman, J.P.; Davis, J.L.; Heilwell, G.; Spirn, M.; et al. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-up of Two Open-Label Phase 1/2 Studies. Lancet 2015, 385, 509–516. [Google Scholar] [CrossRef]
- Song, W.K.; Park, K.M.; Kim, H.J.; Lee, J.H.; Choi, J.; Chong, S.Y.; Shim, S.H.; Del Priore, L.V.; Lanza, R. Treatment of Macular Degeneration Using Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Preliminary Results in Asian Patients. Stem Cell Rep. 2015, 4, 860–872. [Google Scholar] [CrossRef]
- Mehat, M.S.; Sundaram, V.; Ripamonti, C.; Robson, A.G.; Smith, A.J.; Borooah, S.; Robinson, M.; Rosenthal, A.N.; Innes, W.; Weleber, R.G.; et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology 2018, 125, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Dang, W.; Lin, C.-M.; Mitra, D.; Zhu, D.; Thomas, B.B.; et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 2018, 10, eaao4097. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chen, S.; Chan, C.; Palejwala, N.; Ingram, A.; Dang, W.; et al. One-Year Follow-up in a Phase 1/2a Clinical Trial of an Allogeneic Rpe Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Liu, Y.; Wang, L.; Wang, F.; Zhao, T.T.; Li, Q.Y.; Xu, H.W.; Meng, X.H.; Hao, J.; Zhou, Q.; et al. A Phase I Clinical Trial of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells for Early-Stage Stargardt Macular Degeneration: 5-Years’ Follow-Up. Cell Prolif. 2021, 54, e13100. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y.H.; Ahmado, A.; Vernon, A.; Daniels, J.T.; Nommiste, B.; Hasan, S.M.; et al. Phase 1 Clinical Study of an Embryonic Stem Cell-Derived Retinal Pigment Epithelium Patch in Age-Related Macular Degeneration. Nat. Biotechnol. 2018, 36, 328–337. [Google Scholar] [CrossRef]
- Garber, K. RIKEN Suspends First Clinical Trial Involving Induced Pluripotent Stem Cells. Nat. Biotechnol. 2015, 33, 890–891. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Sugita, S.; Mandai, M.; Hirami, Y.; Takagi, S.; Maeda, T.; Fujihara, M.; Matsuzaki, M.; Yamamoto, M.; Iseki, K.; Hayashi, N.; et al. HLA-Matched Allogeneic IPS Cells-Derived Rpe Transplantation for Macular Degeneration. J. Clin. Med. 2020, 9, 2217. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, R.C.; Messias, A.; Voltarelli, J.C.; Scott, I.U.; Jorge, R. Intravitreal Injection of Autologous Bone Marrow-Derived Mononuclear Cells for Hereditary Retinal Dystrophy: A Phase i Trial. Retina 2011, 31, 1207–1214. [Google Scholar] [CrossRef]
- Siqueira, R.C.; Messias, A.; Messias, K.; Arcieri, R.S.; Ruiz, M.A.; Souza, N.F.; Martins, L.C.; Jorge, R. Quality of Life in Patients with Retinitis Pigmentosa Submitted to Intravitreal Use of Bone Marrow-Derived Stem Cells (Reticell-Clinical Trial). Stem Cell Res. Ther. 2015, 6, 29. [Google Scholar] [CrossRef]
- Park, S.S.; Bauer, G.; Abedi, M.; Pontow, S.; Panorgias, A.; Jonnal, R.; Zawadzki, R.J.; Werner, J.S.; Nolta, J. Intravitreal Autologous Bone Marrow Cd34+ Cell Therapy for Ischemic and Degenerative Retinal Disorders: Preliminary Phase 1 Clinical Trial Findings. Investig. Ophthalmol. Vis. Sci. 2015, 56, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Öner, A. Stem Cell Treatment in Retinal Diseases: Recent Developments. Turk. J. Ophthalmol. 2018, 48, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Satarian, L.; Nourinia, R.; Safi, S.; Kanavi, M.R.; Jarughi, N.; Daftarian, N.; Arab, L.; Aghdami, N.; Ahmadieh, H.; Baharvand, H. Intravitreal Injection of Bone Marrow Mesenchymal Stem Cells in Patients with Advanced Retinitis Pigmentosa; A Safety Study. J. Ophthalmic Vis. Res. 2017, 12, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Limoli, C.; Vingolo, E.M.; Scalinci, S.Z.; Nebbioso, M. Cell Surgery and Growth Factors in Dry Age-Related Macular Degeneration: Visual Prognosis and Morphological Study. Oncotarget 2016, 7, 46913–46923. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, X.R.; Zhang, X.M. Mesenchymal Stem Cell-Derived Extracellular Vesicles as a New Therapeutic Strategy for Ocular Diseases. World J. Stem Cells 2020, 12, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, A.; AboQuella, N.M.; Wang, H. Mesenchymal Stromal/Stem Cell (MSC)-Derived Exosomes in Clinical Trials. Stem Cell Res. Ther. 2023, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical Applications of Stem Cell-Derived Exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.Y.; Ahmad, H.; Lin, G.; Carbonneau, M.; Tran, S.D. Mesenchymal Stem Cell-Derived Exosomes in Ophthalmology: A Comprehensive Review. Pharmaceutics 2023, 15, 1167. [Google Scholar] [CrossRef]
- Tuekprakhon, A.; Sangkitporn, S.; Trinavarat, A.; Pawestri, A.R.; Vamvanij, V.; Ruangchainikom, M.; Luksanapruksa, P.; Pongpaksupasin, P.; Khorchai, A.; Dambua, A.; et al. Intravitreal Autologous Mesenchymal Stem Cell Transplantation: A Non-Randomized Phase I Clinical Trial in Patients with Retinitis Pigmentosa. Stem Cell Res. Ther. 2021, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular Delivery of Macromolecules. J. Control. Release 2014, 190, 172–181. [Google Scholar] [CrossRef]
- Kim, J.Y.; You, Y.S.; Kim, S.H.; Kwon, W. Epiretinal membrane formation after intravitreal autologous stem cell implantation in a retinitis pigmentosa patient. Retin. Cases Brief Rep. 2017, 11, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tang, L.; Zhou, Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Res. 2017, 58, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Zarbin, M. Cell-Based Therapy for Retinal Disease: The New Frontier. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1834, pp. 367–381. [Google Scholar]
- Chiang, B.; Jung, J.H.; Prausnitz, M.R. The Suprachoroidal Space as a Route of Administration to the Posterior Segment of the Eye. Adv. Drug Deliv. Rev. 2018, 126, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Vingolo, E.M.; Limoli, C.; Scalinci, S.Z.; Nebbioso, M. Regenerative Therapy by Suprachoroidal Cell Autograft in Dry Age-Related Macular Degeneration: Preliminary in Vivo Report. J. Vis. Exp. 2018, 2018, e56469. [Google Scholar] [CrossRef] [PubMed]
- Limoli, P.G.; Vingolo, E.M.; Morales, M.U.; Nebbioso, M.; Limoli, C. Preliminary Study on Electrophysiological Changes after Cellular Autograft in Age-Related Macular Degeneration. Medicine 2014, 93, e355. [Google Scholar] [CrossRef] [PubMed]
- Puertas-Neyra, K.; Usategui-Martín, R.; Coco, R.M.; Fernandez-Bueno, I. Intravitreal Stem Cell Paracrine Properties as a Potential Neuroprotective Therapy for Retinal Photoreceptor Neurodegenerative Diseases. Neural Regen. Res. 2020, 15, 1631–1638. [Google Scholar]
- Kador, K.E.; Goldberg, J.L. Scaffolds and Stem Cells: Delivery of Cell Transplants for Retinal Degenerations. Expert. Rev. Ophthalmol. 2012, 7, 459–470. [Google Scholar] [CrossRef]
- Nazari, H.; Zhang, L.; Zhu, D.; Chader, G.J.; Falabella, P.; Stefanini, F.; Rowland, T.; Clegg, D.O.; Kashani, A.H.; Hinton, D.R.; et al. Stem Cell Based Therapies for Age-Related Macular Degeneration: The Promises and the Challenges. Prog. Retin. Eye Res. 2015, 48, 1–39. [Google Scholar] [CrossRef]
- Rajendran Nair, D.S.; Seiler, M.J.; Patel, K.H.; Thomas, V.; Camarillo, J.C.M.; Humayun, M.S.; Thomas, B.B. Tissue Engineering Strategies for Retina Regeneration. Appl. Sci. 2021, 11, 2154. [Google Scholar] [CrossRef]
- Lu, B.; Zhu, D.; Hinton, D.; Humayun, M.S.; Tai, Y.C. Mesh-Supported Submicron Parylene-C Membranes for Culturing Retinal Pigment Epithelial Cells. Biomed. Microdevices 2012, 14, 659–667. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, N.; Holz, F.G.; Yang, F.; Stanzel, B.V. Enhancement of Retinal Pigment Epithelial Culture Characteristics and Subretinal Space Tolerance of Scaffolds with 200 Nm Fiber Topography. Biomaterials 2014, 35, 2837–2850. [Google Scholar] [CrossRef] [PubMed]
- Hotaling, N.A.; Khristov, V.; Wan, Q.; Sharma, R.; Jha, B.S.; Lotfi, M.; Maminishkis, A.; Simon, C.G.; Bharti, K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J. Ocul. Pharmacol. Ther. 2016, 32, 272–285. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, K.; Gao, G.; Song, X.; Xu, P.; Zeng, J.; Xie, B.; Zheng, D.; He, L.; Ji, J.; et al. Amniotic Membrane Enhances the Characteristics and Function of Stem Cell-Derived Retinal Pigment Epithelium Sheets by Inhibiting the Epithelial–Mesenchymal Transition. Acta Biomater. 2022, 151, 183–196. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Y.; Cui, Z.; Li, H.; Li, S.; Yang, X.; Yan, X.; Ding, C.; Tang, S.; Chen, J. The Construction of Retinal Pigment Epithelium Sheets with Enhanced Characteristics and Cilium Assembly Using IPS Conditioned Medium and Small Incision Lenticule Extraction Derived Lenticules. Acta Biomater. 2019, 92, 115–131. [Google Scholar] [CrossRef]
- Soroushzadeh, S.; Karamali, F.; Masaeli, E.; Atefi, A.; Nasr Esfahani, M.H. Scaffold Free Retinal Pigment Epithelium Sheet Engineering Using Modified Alginate-RGD Hydrogel. J. Biosci. Bioeng. 2022, 133, 579–586. [Google Scholar] [CrossRef]
- Fernandes, R.A.B.; Lojudice, F.H.; Zago Ribeiro, L.; Santos Da Cruz, N.F.; Polizelli, M.U.; Cristovam, P.C.; Innocenti, F.; Morimoto, L.; Magalhães, O.; Ferraz Sallum, J.M.; et al. Transplantation of subretinal stem cell-derived retinal pigment epithelium for stargardt disease: A phase I clinical trial. Retina 2023, 43, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Yu, B.; Ma, F.; Ren, X.; Li, X. Effects of Mesenchymal Stem Cells and Their Exosomes on the Healing of Large and Refractory Macular Holes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Re, F.; Gabusi, E.; Manferdini, C.; Russo, D.; Lisignoli, G. Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (Evs) Combined with Scaffolds: A Systematic Review. Biology 2021, 10, 579. [Google Scholar] [CrossRef]
- Alahmad, G.; Aljohani, S.; Najjar, M.F. Ethical Challenges Regarding the Use of Stem Cells: Interviews with Researchers from Saudi Arabia. BMC Med. Ethics 2020, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.M.; Breitenbach, M.; Rinnerthaler, M.; Virt, G. Ethical Considerations on Stem Cell Research. In Pluripotent Stem Cells; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef]
- Master, Z.; Matthews, K.R.W.; Abou-el-Enein, M. Unproven Stem Cell Interventions: A Global Public Health Problem Requiring Global Deliberation. Stem Cell Rep. 2021, 16, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
Number | Disease | Cell Type | Phase | No. of Patients | Administration Method | Status |
---|---|---|---|---|---|---|
NCT03305029 | AMD (GA) | hESC-RPE (SCNT-hES-RPE) | I | 3 | N/A | Unknown |
NCT02903576 | AMD; SMD | hESC-RPE | I/II | 15 | suspension vs. scaffold | Completed |
NCT03046407 | AMD (GA) | hESC-RPE | I | 10 | N/A | Unknown |
NCT02755428 | AMD | hESC-RPE (MA09-hRPE) | I | 10 | N/A | Unknown |
NCT02286089 | AMD (GA) | hESC-RPE | I/IIa | 24 | suspension | Ongoing |
NCT01344993 | AMD | hESC-RPE (MA09-hRPE) | I/II | 13 | suspension | Completed |
NCT02463344 | AMD | hESC-RPE | I/II | 11 | subretinal injection | Completed |
NCT01674829 | AMD | hESC-RPE | I/IIa | 10 | N/A | Completed |
NCT01691261 | AMD | hESC-RPE | I | 10 | N/A | Recruiting |
NCT03102138 | AMD | hESC-RPE | Obs. | 10 | N/A | Ongoing |
NCT02590692 | AMD (GA) | hESC-RPE | I/IIa | 16 | scaffold (parylene membrane) | Unknown |
NCT02749734 | AMD; SMD | hESC-RPE | I/II | 15 | N/A | Unknown |
NCT01345006 | SMD | hESC-RPE | I/II | 13 | subretinal injection | Completed |
NCT01469832 | SMD | hESC-RPE | I/II | 12 | N/A | Completed |
NCT01625559 | SMD | hESC-RPE | I | 3 | N/A | Completed |
NCT02941991 | SMD | hESC-RPE | Obs. | 12 | subretinal injection | Completed |
NCT02445612 | SMD | hESC-RPE | Obs. | 13 | subretinal injection | Completed |
NCT03944239 | RP | hESC-RPE | I | 10 | N/A | Unknown |
NCT03963154 | RP | hESC-RPE | I/II | 7 | N/A | Ongoing |
NCT05991986 | AMD | iPSC | Obs. | 10 | N/A | Ongoing |
NCT04339764 | AMD (GA) | iPSC-RPE | I/II | 20 | scaffold | Recruiting |
NCT02464956 | AMD | iPSC-RPE | Obs. | 3 | N/A | Completed |
NCT05445063 | AMD (GA) | iPSC-RPE | I | 10 | N/A | Recruiting |
NCT03372746 | AMD | iPSC | Obs. | 187 | N/A | Completed |
NCT02016508 | AMD | hBM-MSC | I/II | 1 | intravitreal injection | Unknown |
NCT05712148 | RP | MSC | I/II | 15 | suprachoroidal implantation | Completed |
NCT05786287 | RP | UC-MSC | Obs. | 18 | N/A | Ongoing |
NCT04315025 | RP | UC-MSC | I/II | 18 | suspension (peribulbar injection) | Completed |
NCT01531348 | RP | hBM-MSC | I | 14 | subretinal injection | Completed |
NCT04763369 | RP | UC-MSC | II | 50 | sub-tenon space injection | Unknown |
NCT01736059 | RP; AMD | BM-CD34+ | I | 15 | intravitreal injection | Ongoing |
Disease | Stem Cell Type | Clinical Trials and Phases | Key Findings and Outcomes | Challenges and Considerations |
---|---|---|---|---|
Age-Related Macular Degeneration (AMD) | ESCs, iPSCs, MSCs | NCT01345006 (Phase I/II), NCT01344993 (Phase I/II), [49,50] NCT01691261 (Phase I) [56] | Trials indicate safety and efficacy of ESCs and iPSCs in replacing damaged RPE cells. Some improvements in visual acuity noted. | Managing immune rejection, ensuring integration and long-term safety, ethical concerns with ESCs. |
Retinitis Pigmentosa | ESCs, iPSCs, MSCs | NCT01531348 (Phase I) [70], NCT01736059 (Phase I) [62] | Stem cell therapies shown to slow disease progression with potential restoration of some visual functions. MSCs highlighted for their neuroprotective effects. | Genetic stability of iPSCs, ethical considerations, technical delivery challenges. |
Stargardt’s Disease | ESCs, iPSCs, MSCs | NCT01345006 (Phase I/II) [49,50], NCT01469832 (Phase I/II) [52] | iPSC trials show potential in restoring visual function. Positive safety profiles and functional improvements in early results | Addressing immune rejection, long-term viability of transplanted cells, ethical and technical challenges. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, M.; Brănișteanu, D.C.; Pirvulescu, R.A.; Dumitrescu, O.M.; Ionescu, M.A.; Zemba, M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life 2024, 14, 668. https://doi.org/10.3390/life14060668
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life. 2024; 14(6):668. https://doi.org/10.3390/life14060668
Chicago/Turabian StyleRadu, Madalina, Daniel Constantin Brănișteanu, Ruxandra Angela Pirvulescu, Otilia Maria Dumitrescu, Mihai Alexandru Ionescu, and Mihail Zemba. 2024. "Exploring Stem-Cell-Based Therapies for Retinal Regeneration" Life 14, no. 6: 668. https://doi.org/10.3390/life14060668
APA StyleRadu, M., Brănișteanu, D. C., Pirvulescu, R. A., Dumitrescu, O. M., Ionescu, M. A., & Zemba, M. (2024). Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life, 14(6), 668. https://doi.org/10.3390/life14060668