Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. AI Diagnosis Model
- Class 1: Migraines and MOHs (ICHD-3 codes 1 and 8.2);
- Class 2: TTHs (code 2);
- Class 3: TACs (code 3);
- Class 4: Other primary headaches (code 4);
- Class 5: Other headaches (other codes; secondary).
2.2. Validation Cohort and Procedure
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Validation Cohort’s Characteristics
3.2. External Validation Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsumori, Y.; Ueda, K.; Komori, M.; Zagar, A.J.; Kim, Y.; Jaffe, D.H.; Takeshima, T.; Hirata, K. Burden of Migraine in Japan: Results of the ObserVational Survey of the Epidemiology, TReatment, and Care Of MigrainE (OVERCOME [Japan]) Study. Neurol. Ther. 2022, 11, 205–222. [Google Scholar] [CrossRef]
- Katsuki, M.; Matsumori, Y.; Kawahara, J.; Yamagishi, C.; Koh, A.; Kawamura, S.; Kashiwagi, K.; Kito, T.; Oguri, M.; Mizuno, S.; et al. Headache Education by Leaflet Distribution during COVID-19 Vaccination and School-based On-demand E-learning: Itoigawa Geopark Headache Awareness Campaign. Headache J. Head Face Pain 2023, 63, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, T.; Ueda, K.; Komori, M.; Zagar, A.J.; Kim, Y.; Jaffe, D.H.; Matsumori, Y.; Hirata, K. Potential Unmet Needs in Acute Treatment of Migraine in Japan: Results of the OVERCOME (Japan) Study. Adv. Ther. 2022, 39, 5176–5190. [Google Scholar] [CrossRef]
- Lebedeva, E.R.; Olesen, J.; Osipova, V.V.; Volkova, L.I.; Tabeeva, G.R.; Steiner, T.J. The Yekaterinburg Headache Initiative: An Interventional Project, within the Global Campaign against Headache, to Reduce the Burden of Headache in Russia. J. Headache Pain 2013, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Bøe, M.G.; Thortveit, E.; Vatne, A.; Mygland, Å. Chronic Headache with Medication Overuse: Long-Term Prognosis after Withdrawal Therapy. Cephalalgia 2017, 37, 1215–1221. [Google Scholar] [CrossRef]
- Zidverc-Trajkovic, J.J.; Pekmezovic, T.; Jovanovic, Z.; Pavlovic, A.; Mijajlovic, M.; Radojicic, A.; Sternic, N. Long-Term Predictors of Remission in Patients Treated for Medication-Overuse Headache at a Specialized Headache Center: A Prospective Cohort Study. Cephalalgia 2018, 38, 265–273. [Google Scholar] [CrossRef]
- Diener, H.-C.; Dodick, D.; Evers, S.; Holle, D.; Jensen, R.H.; Lipton, R.B.; Porreca, F.; Silberstein, S.; Schwedt, T. Pathophysiology, Prevention, and Treatment of Medication Overuse Headache. Lancet Neurol. 2019, 18, 891–902. [Google Scholar] [CrossRef]
- Schembri, E.; Barrow, M.; McKenzie, C.; Dawson, A. The Evolving Classifications and Epidemiological Challenges Surrounding Chronic Migraine and Medication Overuse Headache: A Review. Korean J. Pain 2022, 35, 4–13. [Google Scholar] [CrossRef]
- Lipton, R.B.; Buse, D.C.; Serrano, D.; Holland, S.; Reed, M.L. Examination of Unmet Treatment Needs among Persons with Episodic Migraine: Results of the American Migraine Prevalence and Prevention (AMPP) Study. Headache 2013, 53, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Ueda, K.; Komori, M.; Zagar, A.J.; Selzler, K.J.; Nelson, A.M.; Han, Y.; Jaffe, D.H.; Matsumori, Y.; Takeshima, T. Comprehensive Population-Based Survey of Migraine in Japan: Results of the ObserVational Survey of the Epidemiology, TReatment, and Care Of MigrainE (OVERCOME [Japan]) Study. Curr. Med. Res. Opin. 2021, 37, 1945–1955. [Google Scholar] [CrossRef]
- Ojo, A.; Zhang, S.; Bleibdrey, N.; Zimskind, D.; Keshvani, N.; Chalmers, R. Persistence and Switching Patterns of Migraine Prophylactic Medications in Canada: A Retrospective Claims Analysis Comparing Adherence and Evaluating the Economic Burden of Illness. J. Pharm. Pharm. Sci. 2023, 25, 402–417. [Google Scholar] [CrossRef] [PubMed]
- Genc, D.; Vaičienė-Magistris, N.; Zaborskis, A.; Şaşmaz, T.; Tunç, A.Y.; Uluduz, D.; Wöber, C.; Wöber-Bingöl, Ç.; Steiner, T.J. The Burden Attributable to Headache Disorders in Children and Adolescents in Lithuania: Estimates from a National Schools-Based Study. J. Headache Pain 2021, 22, 24. [Google Scholar] [CrossRef]
- Lipton, R.B.; Buse, D.C.; Sandoe, C.H.; Ford, J.H.; Hand, A.L.; Jedynak, J.P.; Port, M.D.; Detke, H.C. Changes in Migraine Interictal Burden Following Treatment with Galcanezumab: Results from a Phase III Randomized, Placebo-Controlled Study. Headache 2023, 63, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Korolainen, M.A.; Kurki, S.; Lassenius, M.I.; Toppila, I.; Costa-Scharplatz, M.; Purmonen, T.; Nissilä, M. Burden of Migraine in Finland: Health Care Resource Use, Sick-Leaves and Comorbidities in Occupational Health Care. J. Headache Pain 2019, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Kikui, S.; Chen, Y.; Todaka, H.; Asao, K.; Adachi, K.; Takeshima, T. Burden of Migraine among Japanese Patients: A Cross-Sectional National Health and Wellness Survey. J. Headache Pain 2020, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, T.; Wan, Q.; Zhang, Y.; Komori, M.; Stretton, S.; Rajan, N.; Treuer, T.; Ueda, K. Prevalence, Burden, and Clinical Management of Migraine in China, Japan, and South Korea: A Comprehensive Review of the Literature. J. Headache Pain 2019, 20, 111. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia 2018, 38, 1–211. [CrossRef]
- Katsuki, M.; Matsumori, Y.; Kawahara, J.; Yamagishi, C.; Koh, A.; Kawamura, S.; Kashiwagi, K.; Kito, T.; Oguri, M.; Mizuno, S.; et al. School-Based Online Survey on Chronic Headache, Migraine, and Medication-Overuse Headache Prevalence among Children and Adolescents in Japanese One City—Itoigawa Benizuwaigani Study. Clin. Neurol. Neurosurg. 2023, 226, 107610. [Google Scholar] [CrossRef]
- Sakai, F.; Igarashi, H. Prevalence of Migraine in Japan: A Nationwide Survey. Cephalalgia 1997, 17, 15–22. [Google Scholar] [CrossRef]
- Takeshima, T.; Ishizaki, K.; Fukuhara, Y.; Ijiri, T.; Kusumi, M.; Wakutani, Y.; Mori, M.; Kawashima, M.; Kowa, H.; Adachi, Y.; et al. Population-Based Door-to-Door Survey of Migraine in Japan: The Daisen Study. Headache J. Head Face Pain 2004, 44, 8–19. [Google Scholar] [CrossRef]
- Suzuki, N.; Ishikawa, Y.; Gomi, S.; Ito, N.; Watanabe, S.; Yokoyama, M.; Funatsu, K.; Miyake, H.; Yokoyama, H.; Shimizu, T.; et al. Prevalence and Characteristics of Headaches in a Socially Active Population Working in the Tokyo Metropolitan Area-Surveillance by an Industrial Health Consortium. Intern. Med. 2014, 53, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Fumal, A.; Schoenen, J. Tension-Type Headache: Current Research and Clinical Management. Lancet Neurol. 2008, 7, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Crystal, S.C.; Grosberg, B.M. Tension-Type Headache in the Elderly. Curr. Pain. Headache Rep. 2009, 13, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Imai, N.; Yagi, N.; Kuroda, R.; Konishi, T.; Serizawa, M.; Kobari, M. Clinical Profile of Cluster Headaches in Japan: Low Prevalence of Chronic Cluster Headache, and Uncoupling of Sense and Behaviour of Restlessness. Cephalalgia 2011, 31, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Headache Clinical Practice Guideline Development Committee, C. [Clinical Practice Guideline for Headache Disorders 2021] (Japanese); Japanese Society of Neurology, Japanese Headache Society, Japanese Society of Neurological Therapeutics, Eds.; Igaku-Shoin: Tokyo, Japan, 2021. [Google Scholar]
- Ailani, J.; Lipton, R.B.; Goadsby, P.J.; Guo, H.; Miceli, R.; Severt, L.; Finnegan, M.; Trugman, J.M.; ADVANCE Study Group Atogepant for the Preventive Treatment of Migraine. Atogepant for the Preventive Treatment of Migraine. N. Engl. J. Med. 2021, 385, 695–706. [Google Scholar] [CrossRef]
- Hirata, K.; Sakai, F.; Takeshima, T.; Imai, N.; Matsumori, Y.; Yoshida, R.; Numachi, Y.; Peng, C.; Mikol, D.D.; Cheng, S. Efficacy and Safety of Erenumab in Japanese Migraine Patients with Prior Preventive Treatment Failure or Concomitant Preventive Treatment: Subgroup Analyses of a Phase 3, Randomized Trial. J. Headache Pain 2021, 22, 110. [Google Scholar] [CrossRef]
- Takizawa, T.; Kitano, T.; Iijima, M.; Togo, K.; Yonemoto, N. Treatment Patterns and Characteristics of Patients with Migraine: Results from a Retrospective Database Study in Japan. J. Headache Pain 2024, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Chanchlani, R.; Agrawal, A.; Janjua, D.; Hafsa, S.N. The Efficacy of Different Triptans for the Treatment of Acute Headache in Pediatric Migraine: A Systematic Review. Indian Pediatr. 2023, 60, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, R.W.; Szépligeti, S.K.; Xue, F.; Pedersen, L.; Sørensen, H.T.; Ehrenstein, V. Patterns of Initial Migraine Treatment in Denmark: A Population-Based Study. Pharmacoepidemiol. Drug Saf. 2019, 28, 322–329. [Google Scholar] [CrossRef]
- Tatsumoto, M.; Suzuki, E.; Nagata, M.; Suzuki, K.; Hirata, K. Prophylactic Treatment for Patients with Migraine Using Blue Cut for Night Glass. Intern. Med. 2022; in press. [Google Scholar] [CrossRef]
- Katsuki, M.; Kawahara, J.; Matsumori, Y.; Yamagishi, C.; Koh, A.; Kawamura, S.; Kashiwagi, K.; Kito, T.; Entani, A.; Yamamoto, T.; et al. Questionnaire-Based Survey during COVID-19 Vaccination on the Prevalence of Elderly’s Migraine, Chronic Daily Headache, and Medication-Overuse Headache in One Japanese City—Itoigawa Hisui Study. J. Clin. Med. 2022, 11, 4707. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, M.; Yamagishi, C.; Matsumori, Y.; Koh, A.; Kawamura, S.; Kashiwagi, K.; Kito, T.; Entani, A.; Yamamoto, T.; Ikeda, T.; et al. Questionnaire-Based Survey on the Prevalence of Medication-Overuse Headache in Japanese One City-Itoigawa Study. Neurol. Sci. 2022, 43, 3811–3822. [Google Scholar] [CrossRef]
- Buse, D.C.; Armand, C.E.; Charleston, L.; Reed, M.L.; Fanning, K.M.; Adams, A.M.; Lipton, R.B. Barriers to Care in Episodic and Chronic Migraine: Results from the Chronic Migraine Epidemiology and Outcomes Study. Headache 2021, 61, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, M.; Kashiwagi, K.; Kawamura, S.; Koh, A. The Efficacy of Japanese Herbal Kampo Medicine as an Acute and Prophylactic Medication to Treat Chronic Daily Headache and Medication Overuse Headache: -Single Arm Retrospective Study. Cureus 2022, 14, e25419. [Google Scholar] [CrossRef]
- Carlsen, L.N.; Westergaard, M.L.; Bisgaard, M.; Schytz, J.B.; Jensen, R.H. National Awareness Campaign to Prevent Medication-Overuse Headache in Denmark. Cephalalgia 2018, 38, 1316–1325. [Google Scholar] [CrossRef]
- Lai, J.T.F.; Dereix, J.D.C.; Ganepola, R.P.; Nightingale, P.G.; Markey, K.A.; Aveyard, P.N.; Sinclair, A.J. Should We Educate about the Risks of Medication Overuse Headache? J. Headache Pain 2014, 15, 10. [Google Scholar] [CrossRef]
- Tepper, S.J. Chronic Migraine and Medication Overuse Headache. Headache 2014, 54, 1249–1250. [Google Scholar] [CrossRef] [PubMed]
- Alstadhaug, K.B.; Ofte, H.K.; Kristoffersen, E.S. Preventing and Treating Medication Overuse Headache. Pain Rep. 2017, 2, e612. [Google Scholar] [CrossRef]
- Westergaard, M.L.; Lau, C.J.; Allesøe, K.; Gjendal, S.T.; Jensen, R.H. Monitoring Chronic Headache and Medication-Overuse Headache Prevalence in Denmark. Cephalalgia 2020, 40, 6–18. [Google Scholar] [CrossRef]
- Da Silva, A.N.; Lake, A.E. Clinical Aspects of Medication Overuse Headaches. Headache J. Head Face Pain 2014, 54, 211–217. [Google Scholar] [CrossRef]
- Jonsson, P.; Hedenrud, T.; Linde, M. Epidemiology of Medication Overuse Headache in the General Swedish Population. Cephalalgia 2011, 31, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; De Icco, R.; Allena, M.; Sances, G.; Højland, J.R.; Katsarava, Z.; Lainez, M.J.A.; Fadic, R.; Goicochea, M.T.; Nappi, G.; et al. Clinical Subtypes of Medication Overuse Headache—Findings from a Large Cohort. Headache J. Head Face Pain 2019, 59, 1481–1491. [Google Scholar] [CrossRef]
- Thorlund, K.; Sun-Edelstein, C.; Druyts, E.; Kanters, S.; Ebrahim, S.; Bhambri, R.; Ramos, E.; Mills, E.J.; Lanteri-Minet, M.; Tepper, S. Risk of Medication Overuse Headache across Classes of Treatments for Acute Migraine. J. Headache Pain 2016, 17, 107. [Google Scholar] [CrossRef] [PubMed]
- Westergaard, M.L.; Glümer, C.; Hansen, E.H.; Jensen, R.H. Prevalence of Chronic Headache with and without Medication Overuse: Associations with Socioeconomic Position and Physical and Mental Health Status. Pain 2014, 155, 2005–2013. [Google Scholar] [CrossRef]
- Mathew, N.T. Transformed Migraine, Analgesic Rebound, and Other Chronic Daily Headaches. Neurol. Clin. 1997, 15, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, S.; Lipton, R. Chronic Daily Headache, Including Transformed Migraine, Chronic Tension-Type Headache and Medication Overuse. In Wolff’s Headache and Other Head Pain; Silberstein, S., Lipton, R., Dalessio, D., Eds.; Oxford University Press: New York, NY, USA, 2001; pp. 247–282. [Google Scholar]
- May, A.; Schulte, L.H. Chronic Migraine: Risk Factors, Mechanisms and Treatment. Nat. Rev. Neurol. 2016, 12, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.H.; Allers, A.; May, A. Hypothalamus as a Mediator of Chronic Migraine: Evidence from High-Resolution FMRI. Neurology 2017, 88, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Nicholson, R.A.; Reed, M.L.; Araujo, A.B.; Jaffe, D.H.; Faries, D.E.; Buse, D.C.; Shapiro, R.E.; Ashina, S.; Cambron-Mellott, M.J.; et al. Diagnosis, Consultation, Treatment, and Impact of Migraine in the US: Results of the OVERCOME (US) Study. Headache J. Head Face Pain 2022, 62, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Katsarava, Z.; Mania, M.; Lampl, C.; Herberhold, J.; Steiner, T.J. Poor Medical Care for People with Migraine in Europe—Evidence from the Eurolight Study. J. Headache Pain 2018, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Roxas, A.; Quiles, L.E.; Wang, S.-J. Delivery of Care for Migraine in the Asian Oceanian Region: A Cross-Sectional Study. Cephalalgia 2021, 41, 1348–1358. [Google Scholar] [CrossRef]
- Woldeamanuel, Y.W. Headache in Resource-Limited Settings. Curr. Pain. Headache Rep. 2017, 21, 51. [Google Scholar] [CrossRef] [PubMed]
- Okiyama, S.; Fukuda, M.; Sode, M.; Takahashi, W.; Ikeda, M.; Kato, H.; Tsugawa, Y.; Iwagami, M. Examining the Use of an Artificial Intelligence Model to Diagnose Influenza: Development and Validation Study. J. Med. Internet Res. 2022, 24, e38751. [Google Scholar] [CrossRef] [PubMed]
- Hisaki, F.; Aga, M.; Tomitani, N.; Okawara, Y.; Harada, N.; Kario, K. Daily Self-Reported Behavioural Efficacy Records on Hypertension Digital Therapeutics as Digital Metrics Associated with the Reduction in Morning Home Blood Pressure: Post-Hoc Analysis of HERB-DH1 Trial. Hypertens. Res. 2024, 47, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Harada, N.; Okura, A. The First Software as Medical Device of Evidence-Based Hypertension Digital Therapeutics for Clinical Practice. Hypertens. Res. 2022, 45, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Noda, Y.; So, R.; Sonoda, M.; Tabuchi, T.; Nomura, A. The Usefulness of a Smartphone App-Based Smoking Cessation Program for Conventional Cigarette Users, Heated Tobacco Product Users, and Dual Users: Retrospective Study. J. Med. Internet Res. 2023, 25, e42776. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, M.; Narita, N.; Matsumori, Y.; Ishida, N.; Watanabe, O.; Cai, S.; Tominaga, T. Preliminary Development of a Deep Learning-Based Automated Primary Headache Diagnosis Model Using Japanese Natural Language Processing of Medical Questionnaire. Surg. Neurol. Int. 2020, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Woldeamanuel, Y.W.; Cowan, R.P. Computerized Migraine Diagnostic Tools: A Systematic Review. Ther. Adv. Chronic Dis. 2022, 13, 20406223211065236. [Google Scholar] [CrossRef]
- Cowan, R.P.; Rapoport, A.M.; Blythe, J.; Rothrock, J.; Knievel, K.; Peretz, A.M.; Ekpo, E.; Sanjanwala, B.M.; Woldeamanuel, Y.W. Diagnostic Accuracy of an Artificial Intelligence Online Engine in Migraine: A Multi-Center Study. Headache, 2022; online ahead. [Google Scholar] [CrossRef] [PubMed]
- Walters, A.B.; Smitherman, T.A. Development and Validation of a Four-Item Migraine Screening Algorithm among a Nonclinical Sample: The Migraine-4. Headache 2016, 56, 86–94. [Google Scholar] [CrossRef]
- Yin, Z.; Dong, Z.; Lu, X.; Yu, S.; Chen, X.; Duan, H. A Clinical Decision Support System for the Diagnosis of Probable Migraine and Probable Tension-Type Headache Based on Case-Based Reasoning. J. Headache Pain 2015, 16, 29. [Google Scholar] [CrossRef]
- Vandewiele, G.; De Backere, F.; Lannoye, K.; Vanden Berghe, M.; Janssens, O.; Van Hoecke, S.; Keereman, V.; Paemeleire, K.; Ongenae, F.; De Turck, F. A Decision Support System to Follow up and Diagnose Primary Headache Patients Using Semantically Enriched Data. BMC Med. Inform. Decis. Mak. 2018, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Lee, H.; Cho, S.; Chung, C.S.; Lee, M.J.; Park, H. Machine Learning-Based Automated Classification of Headache Disorders Using Patient-Reported Questionnaires. Sci. Rep. 2020, 10, 14062. [Google Scholar] [CrossRef]
- Katsuki, M.; Shimazu, T.; Kikui, S.; Danno, D.; Miyahara, J.; Takeshima, R.; Takeshima, E.; Shimazu, Y.; Nakashima, T.; Matsuo, M.; et al. Developing an Artificial Intelligence-Based Headache Diagnostic Model and Its Utility for Non-Specialists’ Diagnostic Accuracy. Cephalalgia 2023, 43, 033310242311569. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, M.; Matsumori, Y.; Kawamura, S.; Kashiwagi, K.; Koh, A.; Tachikawa, S.; Yamagishi, F. Developing an Artificial Intelligence-Based Diagnostic Model of Headaches from a Dataset of Clinic Patients’ Records. Headache 2023, 63, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Phung, D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.; Dimitrova, N.; Ho, T.B.; et al. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View. J. Med. Internet Res. 2016, 18, e323. [Google Scholar] [CrossRef]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Zamanipoor Najafabadi, A.H.; Ramspek, C.L.; Dekker, F.W.; Heus, P.; Hooft, L.; Moons, K.G.M.; Peul, W.C.; Collins, G.S.; Steyerberg, E.W.; van Diepen, M. TRIPOD Statement: A Preliminary Pre-Post Analysis of Reporting and Methods of Prediction Models. BMJ Open 2020, 10, e041537. [Google Scholar] [CrossRef]
- Roesch, A.; Dahlem, M.A.; Neeb, L.; Kurth, T. Validation of an Algorithm for Automated Classification of Migraine and Tension-Type Headache Attacks in an Electronic Headache Diary. J. Headache Pain 2020, 21, 75. [Google Scholar] [CrossRef]
- Do, T.P.; Remmers, A.; Schytz, H.W.; Schankin, C.; Nelson, S.E.; Obermann, M.; Hansen, J.M.; Sinclair, A.J.; Gantenbein, A.R.; Schoonman, G.G. Red and Orange Flags for Secondary Headaches in Clinical Practice: SNNOOP10 List. Neurology 2019, 92, 134–144. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Fang, X.; Horvath, Z.; Cadiou, F.; Urani, A.; Poh, W.; Narimatsu, H.; Cheng, Y.; Dodick, D.W. Simultaneous Comparisons of 25 Acute Migraine Medications Based on 10 Million Users’ Self-Reported Records from a Smartphone Application. Neurology 2023, 101, e2560–e2570. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Pagán, J.; Sanz-García, A.; García-Azorín, D.; Rodríguez-Vico, J.S.; Jaimes, A.; García, A.G.; de Terán, J.D.; González-García, N.; Quintas, S.; et al. Machine-Learning-Based Approach for Predicting Response to Anti-Calcitonin Gene-Related Peptide (CGRP) Receptor or Ligand Antibody Treatment in Patients with Migraine: A Multicenter Spanish Study. Eur. J. Neurol. 2022, 29, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
- Chartier, C.; Gfrerer, L.; Knoedler, L.; Austen, W.G. Artificial Intelligence-Enabled Evaluation of Pain Sketches to Predict Outcomes in Headache Surgery. Plast. Reconstr. Surg. 2023, 151, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-C.; Luo, M.; Dumkrieger, G.; Trivedi, S.; Chen, Y.-C.; Chao, C.-J.; Schwedt, T.J.; Sarker, A.; Banerjee, I. A Large Language Model-Based Generative Natural Language Processing Framework Finetuned on Clinical Notes Accurately Extracts Headache Frequency from Electronic Health Records. medRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Cady, R.K.; Borchert, L.D.; Spalding, W.; Hart, C.C.; Sheftell, F.D. Simple and Efficient Recognition of Migraine with 3-Question Headache Screen. Headache 2004, 44, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Dodick, D.; Sadovsky, R.; Kolodner, K.; Endicott, J.; Hettiarachchi, J.; Harrison, W. ID Migraine validation study A Self-Administered Screener for Migraine in Primary Care: The ID Migraine Validation Study. Neurology 2003, 61, 375–382. [Google Scholar] [CrossRef]
- Aygun, D.; Bildik, F. Clinical Warning Criteria in Evaluation by Computed Tomography the Secondary Neurological Headaches in Adults. Eur. J. Neurol. 2003, 10, 437–442. [Google Scholar] [CrossRef]
Training Data * | Test Data * | Validation Data | |
---|---|---|---|
n = 2800 | n = 1200 | n = 59 | |
Mean age (standard deviation) | 41.27 (17.69) | 41.38 (18.27) | 42.55 (12.74) |
Biological sex (%Female) | 64.80% | 63.20% | 86.67% |
Class 1: Migraines or MOHs | 1597 (57.03%) | 708 (59.00%) | 56 (94.92%) |
Class 2: TTHs | 522 (18.64%) | 197 (16.42%) | 3 (5.08%) |
Class 3: TACs | 244 (8.71%) | 101 (8.42%) | 0 |
Class 4: Other primary headaches | 55 (1.96%) | 30 (2.50%) | 0 |
Class 5: Other headaches (secondary) | 382 (13.64%) | 164 (13.67%) | 0 |
Prediction by AI | Performance Index | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class 1: Migraine or MOH | Class 2: TTH | Class 3; TACs | Class 4: Other Primary Headaches | Class 5: Other Headache (Secondary) | Total | Accuracy | Sensitivity (Recall) | Precision | Specificity | F-Value | ||
Ground truth by headache specialist | Class 1: Migraines or MOHs | 55 | 0 | 1 | 0 | 0 | 56 | 98.21% | 98.21% | 98.21% | 66.67% | 98.21% |
Class 2: TTHs | 1 | 2 | 0 | 0 | 0 | 3 | 66.67% | 66.67% | 100.00% | 100.00% | 80.00% | |
Class 3: TACs | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | 100% | - | |
Class 4: Other primary headaches | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | 100% | - | |
Class 5: Other headaches (secondary) | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | 100% | - | |
Total | 56 | 2 | 1 | 0 | 0 | 59 | 94.92% | - | - | - | - |
Author | Year | Data Source | Output by the Model | Methods | Variables | Training Sample Number | Test Sample Number | Validation Sample Number | %Migraine | Accuracy | Sensitivity (Recall) | Specificity | Precision | F-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yin [62] | 2015 | The International Headache Center in Chinese PLA General Hospital | Class 2: migraine or TTHs | Case-based reasoning + genetic algorithm | 81 | 676 | 222 | Not performed | 76.1% | 93.0% | 97.0% | 79.2% | 93.1% | 95.0% |
Walters [61] | 2016 | University students | Class 2: migraines or other headache disorders | Logistic regression | 4 | 887 | 942 | Not performed | 9.4% | 92% | 94% | 92% | 64% | 93% |
Vandewiele [63] | 2018 | Patients with headache at the Department of Neurology, Ghent University Hospital. Migbase dataset. | Class 3: migraines, TTHs, TACs | Decision tree | Not described | 849 | - | 32 | Not described | 98% | 98% | 98% | Not described | Not described |
Kwon [64] | 2020 | Samsung Medical Center headache clinic | Class 5: migraines, TTHs, TACs, thunderclap headaches, epicranial headaches | eXtreme gradient boosting | 75 | 1286 | 876 | Not performed | 68.5% | 58.6% † | 58.7% † | 85.6% † | 65.3% † | 58.6% †,‡ |
Cowan [60] | 2022 | Patients at three academic headache centers | Class 2: migraines or other headache disorders | Decision tree | 135 | - | - | 212 | 62% | 92% | 89% | 97% | 98% | 93% |
Katsuki [65] | 2023 | Headache Center, Tominaga Hospital | Class 5: migraines or MOHs, TTHs, TACs, other primary headaches, or secondary headaches | Light gradient-boosting machine | 17 | 2800 | 1200 | 50 | 60.0% | 90.0% | 68.6% | 95.0% | 96.4% | 88.1% |
Katsuki [66] | 2023 | Sendai Headache and Neurology Clinic | Class 5: migraines or MOHs, TTHs, TACs, other primary headaches, or other headaches | Gradient-boosting classifier | 22 | 4240 | 1818 | Not performed. | 79.7% | 93.7% † | 40.6% † | 48.5% † | 88.7% † | 43.5% †,‡ |
Ours [65] | 2023 | Headache Center, Tominaga Hospital | Class 5: migraines or MOHs, TTHs, TACs, other primary headaches, or secondary headaches | Light gradient-boosting machine | 17 | 2800 | 1200 | 59 | 89.83% | 92.11% § | 92.11% § | 92.86% § | 33.33% § | 95.41% § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, M.; Katsuki, M.; Shimazu, T.; Takeshima, T.; Mitsufuji, T.; Ito, Y.; Ohbayashi, K.; Imai, N.; Miyahara, J.; Matsumori, Y.; et al. Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study. Life 2024, 14, 744. https://doi.org/10.3390/life14060744
Okada M, Katsuki M, Shimazu T, Takeshima T, Mitsufuji T, Ito Y, Ohbayashi K, Imai N, Miyahara J, Matsumori Y, et al. Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study. Life. 2024; 14(6):744. https://doi.org/10.3390/life14060744
Chicago/Turabian StyleOkada, Mariko, Masahito Katsuki, Tomokazu Shimazu, Takao Takeshima, Takashi Mitsufuji, Yasuo Ito, Katsumi Ohbayashi, Noboru Imai, Junichi Miyahara, Yasuhiko Matsumori, and et al. 2024. "Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study" Life 14, no. 6: 744. https://doi.org/10.3390/life14060744
APA StyleOkada, M., Katsuki, M., Shimazu, T., Takeshima, T., Mitsufuji, T., Ito, Y., Ohbayashi, K., Imai, N., Miyahara, J., Matsumori, Y., Nakazato, Y., Fujita, K., Hoshino, E., & Yamamoto, T. (2024). Preliminary External Validation Results of the Artificial Intelligence-Based Headache Diagnostic Model: A Multicenter Prospective Observational Study. Life, 14(6), 744. https://doi.org/10.3390/life14060744