The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Association between Vitamin D Levels and Hashimoto’s Thyroiditis
4.2. Genetic Factors and Population Differences
4.3. Mechanisms of Vitamin D in Autoimmune Regulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, R.S. Autoimmune thyroid disease: Unlocking a complex puzzle. Curr. Opin. Pediatr. 2009, 21, 523–528. [Google Scholar] [CrossRef]
- Hiromatsu, Y.; Satoh, H.; Amino, N. Hashimoto’s thyroiditis: History and future outlook. Hormones 2013, 12, 12–18. [Google Scholar] [CrossRef]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.H.; Ghalambor, C.K.; Donahue, S.W. Evolutionary physiology of bone: Bone metabolism in changing environments. Physiology 2015, 30, 17–29. [Google Scholar] [CrossRef]
- van de Peppel, J.; van Leeuwen, J.P. Vitamin D and gene networks in human osteoblasts. Front. Physiol. 2014, 5, 137. [Google Scholar] [CrossRef]
- Heaney, R.P. Vitamin D in health and disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Nurminen, V.; Neme, A.; Seuter, S.; Carlberg, C. Modulation of vitamin D signaling by the pioneer factor CEBPA. Biochim. Biophys. Acta 2019, 1862, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Seuter, S.; Neme, A.; Carlberg, C.; Epigenomic, P.U. 1-VDR crosstalk modulates vitamin D signalling. Biochim. Biophys. Acta 2017, 1860, 405–415. [Google Scholar] [CrossRef]
- Mocanu, V.; Oboroceanu, T.; Zugun-Eloae, F. Current status in vitamin D and regulatory T cells—Immunological implications. Rev. Med. Chir. Soc. Med. Nat. Iasi 2013, 117, 965–973. [Google Scholar] [PubMed]
- Gregori, S.; Giarratana, N.; Smiroldo, S.; Uskokovic, M.; Adorini, L.A. 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes 2002, 51, 1367–1374. [Google Scholar] [CrossRef]
- Navarro-Triviño, F.J.; Arias-Santiago, S.; Gilaberte-Calzada, Y. Vitamin D and the Skin: A Review for Dermatologists. Actas Dermosifiliogr. (Engl. Ed.) 2019, 110, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Huiberts, L.M.; Smolders, K.C.H.J. Effects of Vitamin D on Mood and Sleep in the Healthy Population: Interpretations from the Serotonergic Pathway. Sleep. Med. Rev. 2021, 55, 101379. [Google Scholar] [CrossRef] [PubMed]
- Egierska, D.; Pietruszka, P.; Burzyńska, P.; Chruścicka, I.; Buchta, J. Pleiotropic Effects of Vitamin D3. J. Educ. Health Sport. 2021, 11, 143–155. [Google Scholar] [CrossRef]
- Bektas Uysal, H.; Ayhan, M. Autoimmunity affects health-related quality of life in patients with Hashimoto’s thyroiditis. Kaohsiung J. Med. Sci. 2016, 32, 427–433. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Maugeri, N.J.; Handunnetthi, L.; Lincoln, M.R.; Orton, S.M.; Deluca, G.C.; Herrera, B.M.; Chao, M.J.; Sadovnick, A.D.; Ebers, G.C.; et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009, 5, e1000369. [Google Scholar] [CrossRef]
- Fletcher, J.; Cooper, S.C.; Ghosh, S.; Hewison, M. The role of vitamin D in Inflammatory bowel disease: Mechanism to management. Nutrients 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.J.; Wang, X.H.; Liu, Z.D.; Cao, W.L.; Han, Y.; Ma, A.G.; Xu, S.F. Vitamin D deficiency and the risk of tuberculosis: A meta-analysis. Drug Des. Dev. Ther. 2017, 11, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Battault, S.; Whiting, S.J.; Peltier, S.L.; Sadrin, S.; Gerber, G.; Maixent, J.M. Vitamin D metabolism, functions and needs: From science to health claims. Eur. J. Nutr. 2013, 52, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C. Vitamin D and the immune system. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Yoon, J.W.; Jun, H.S. Autoimmune destruction of pancreatic beta cells. Am. J. Ther. 2005, 12, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Clark, S.A.; Gill, R.K.; Christakos, S. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: Vitamin D receptors, gene expression, and insulin secretion. Endocrinology 1994, 134, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Hanel, A.; Carlberg, C. Time-resolved gene expression analysis monitors the regulation of inflammatory mediators and attenuation of adaptive immune response by vitamin D. Int. J. Mol. Sci. 2022, 23, 911. [Google Scholar] [CrossRef] [PubMed]
- Mazokopakis, E.E.; Papadomanolaki, M.G.; Tsekouras, K.C.; Evangelopoulos, A.D.; Kotsiris, D.A.; Tzortzinis, A.A. Is Vitamin D Related to Pathogenesis and Treatment of Hashimoto’s Thyroiditis? Hell J. Nucl. Med. 2015, 18, 222–227. [Google Scholar] [PubMed]
- Barragan, M.; Good, M.; Kolls, J.K. Regulation of Dendritic Cell Function by Vitamin D. Nutrients 2015, 7, 8127–8151. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Mari, D.; Prolo, S.; Fatti, L.M.; Cantone, M.C.; Garagnani, P.; Arosio, B.; Di Somma, C.; Vitale, G. 25 Hydroxyvitamin D deficienty and its relationship to autoimmune thyroid disease in the Elderly. Int. J. Environ. Res. Public Health 2016, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Konca, D.C.; Aktas, Y.B.; Balos, T.F.; Kalkanci, A.; Turhan Iyidir, O.; Fidan, I.; Yesilyurt, E.; Cakır, N.; Kustimur, S.; Arslan, M. Circulating Th17 Cytokine Levels Are Altered in Hashimoto’s Thyroiditis. Cytokine 2016, 80, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Cvek, M.; Kaličanin, D.; Barić, A.; Vuletić, M.; Gunjača, I.; Torlak Lovrić, V.; Škrabić, V.; Punda, A.; Boraska Perica, V. Vitamin D and Hashimoto’s Thyroiditis: Observations from CROHT Biobank. Nutrients 2021, 13, 2793. [Google Scholar] [CrossRef] [PubMed]
- Hanna, H.W.Z.; Rizzo, C.; Abdel, H.R.M.; El Haddad, H.E.; Salam, R.; Abou-Youssef, H.E.S. Vitamin D Status in Hashimoto’s Thyroiditis and Its Association with Vitamin D Receptor Genetic Variants. J. Steroid Biochem. Mol. Biol. 2021, 212, 105922. [Google Scholar] [CrossRef]
- Taheriniya, S.; Arab, A.; Hadi, A.; Fadel, A.; Askari, G. Vitamin D and Thyroid Disorders: A Systematic Review and Meta-Analysis of Observational Studies. BMC Endocr. Disord. 2021, 21, 171. [Google Scholar] [CrossRef]
- Turashvili, N.; Javashvili, L.; Giorgadze, E. Vitamin D Deficiency Is More Common in Women with Autoimmune Thyroiditis: A Retrospective Study. Int. J. Endocrinol. 2021, 2021, 4465563. [Google Scholar] [CrossRef] [PubMed]
- Štefanić, M.; Tokić, S. Serum 25-Hydoxyvitamin D Concentrations in Relation to Hashimoto’s Thyroiditis: A Systematic Review, Meta-Analysis and Meta-Regression of Observational Studies. Eur. J. Nutr. 2020, 59, 859–872. [Google Scholar] [CrossRef] [PubMed]
- Tokić, S.; Štefanić, M.; Karner, I.; Glavaš-Obrovac, L. Altered Expression of CTLA-4, CD28, VDR, and CD45 MRNA in T Cells of Patients with Hashimoto’s Thyroiditis—A Pilot Study. Endokrynol. Pol. 2017, 68, 274–828. [Google Scholar] [CrossRef]
- Bozkurt, N.C.; Karbek, B.; Ucan, B.; Sahin, M.; Cakal, E.; Ozbek, M.; Delibasi, T. The Association between Severity of Vitamin D Deficiency and Hashimoto’s Thyroiditis. Endocr. Pract. 2013, 19, 479–484. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Ma, Y.; Zhu, J. Vitamin D receptor gene FokI but not TaqI, ApaI, BsmI polymorphism is associated with Hashimoto’s thyroiditis: A meta-analysis. Sci. Rep. 2017, 7, 41540. [Google Scholar] [CrossRef]
- Filipova, L.; Lazurova, Z.; Fulop, P.; Lazurova, I. Vitamin D insufficiency is not associated with thyroid autoimmunity in Slovak women with Hashimoto’s disease. Bratisl. Lek. Listy 2023, 124, 182–186. [Google Scholar] [CrossRef]
- Mazokopakis, E.E.; Kotsiris, D.A. Hashimoto’s autoimmune thyroiditis and vitamin D deficienty. Current aspects. Hell. J. Nucl. Med. 2014, 17, 37–40. [Google Scholar] [CrossRef]
- Feng, M.; Li, H.; Chen, S.F.; Li, W.F.; Zhang, F.B. Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: A meta-analysis. Endocrine 2013, 43, 318–326. [Google Scholar] [CrossRef]
- Mueller, S.N.; Gebhardt, T.; Carbone, F.R.; Heath, W.R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 2013, 31, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Kivity, S.; Agmon-Levin, N.; Zisappl, M.; Shapira, Y.; Nagy, E.V.; Dankó, K.; Szekanecz, Z.; Langevitz, P.; Shoenfeld, Y. Vitamin D and autoimmune thyroid diseases. Cell Mol. Immunol. 2011, 8, 243–247. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, W.; Ma, C.; Zhao, Y.; Xiong, R.; Wang, H.; Chen, W.; Zheng, S.G. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021, 12, 574967. [Google Scholar] [CrossRef] [PubMed]
- Rydzewska, M.; Jaromin, M.; Pasierowska, I.E.; Stożek, K.; Bossowski, A. Role of the T and B Lymphocytes in Pathogenesis of Autoimmune Thyroid Diseases. Thyroid. Res. 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, D.S.; Platzer, M.; Davies, T.F. Reovirus induction of MHC class II antigen in rat thyroid cells. Endocrinology 1989, 124, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Luty, J.; Ruckemann-Dziurdzińska, K.; Witkowski, J.M.; Bryl, E. Immunological Aspects of Autoimmune Thyroid Disease—Complex Interplay between Cells and Cytokines. Cytokine 2019, 116, 128–133. [Google Scholar] [CrossRef] [PubMed]
[Ref] | Consequences of the Deficit | Vitamin D Role | Apparatus or System |
---|---|---|---|
[4,5] | Bone deformation, stunted growth, osteomalacia, delayed mineralization | Bone health and metabolism, mineralization | Skeletal |
[11] | Dry and brittle skin | Linked to skin health via keratinocyte function and immune modulation | Integumentary |
[12] | Hypertension, atherosclerosis | Prevention of chronic cardiovascular diseases | Cardiovascular |
[13,14] | Depression, stress, bad mood | Mood regulation | Depression and anxiety |
[7,8] | Increased risk of infections | Activation of pathogen recognizing TLR receptors; Stimulation of antimicrobial activity by macrophages/monocytes with VDR-RXR signaling; Increased production of IL-1 | Innate/Adaptive immune system: Bacterial infection |
[15,16] | Increased Tregs and Th2 cells | ||
[17,18,19,20,21,22] | Pro-inflammatory M1→M2 shift | ||
[9,10] | Interaction with APC and differentiation of Tregs | ||
[23] | Limited risk of autoimmune diseases | Action on HLA |
Results | Study and Methodology | Control | HT Patients | Study Focus | Year | Author |
---|---|---|---|---|---|---|
Significant differences correlated with the presence of antithyroid Abs (p = 0.01) and abnormal thyroid function tests (p = 0.059) | LIAISON chemiluminescence immunoassay | 42 | 50 | Presence of antithyroid antibodies | 2011 | Kivity et al. [40] |
Serum vitamin D levels directly correlated with thyroid volume (p < 0.001) and inversely correlated with anti-TPO (p < 0.001) and anti-TG levels (p < 0.001) | Thyroid ultrasound, evaluation of vitamin D serum, anti-TPO, and anti-TG | 180 | 180 | Vitamin D and HT pathogenesis | 2013 | Bozkurt et al. [34] |
Significant negative correlation between vitamin D levels and anti-TPO (p < 0.0001) and anti-TG (p < 0.001) | HT patients received vitamin D3 orally for 4 months (1200–4000 IU) | NA | 218 | Vitamin D and HT pathogenesis | 2015 | Mazokopakis et al. [24] |
Higher levels in euthyroid HT group (p = 0.041 for IL-17 and p < 0.001 for IL-23) | Study of IL-17 and IL-23 levels | 26 | 46 | Interleukin levels | 2016 | Konca et al. [27] |
Higher incidence of thyroid diseases in subjects with vitamin D deficiency (p = 0.002). No correlation between vitamin D levels and TG-Ab (p = 0.25) | NA | 168 | NA | Thyroid diseases and vitamin D deficiency | 2016 | Muscogiuri et al. [26] |
Higher expression levels of VDR CTLA4 CD28 CD45RAB mRNA in T-lymphocytes of healthy controls compared to HT (no p values) | NA | 13 | 45 | Altered CTLA-4 expression | 2017 | Tokić et al. [33] |
No significant correlation between BsmI polymorphism (p = 0.727), ApaI polymorphism (p = 0.869), and HT risk | VDR genotyped by PCR and MALDI-TOF-MS | 1303 | 1338 | VDR gene polymorphisms and HT risk | 2017 | Wang et al. [35] |
General deficiency of vitamin D in HT patients (p = 1.5 × 10−5) compared to healthy controls (p = 5.7 × 10−6) | NA | 2263 | 2695 | General vitamin D levels | 2020 | Štefanić et al. [32] |
Significant differences in vitamin D levels between subgroups (p = 0.023) | Vitamin D measured from stored serum samples | 176 | 461 | Severity of HT related to vitamin D levels | 2021 | Cvek et al. [28] |
Higher presence of FokI in HT patients (p = 0.02); no significant difference in serum vitamin D levels between HT and control (p = 0.223) | Serum vitamin D analyzed using HPLC-UV method | 48 | 272 | Vitamin D deficiency in HT and implications | 2021 | Hanna et al. [29] |
Elevated TSH levels in the majority; lower vitamin D levels in primary hypothyroidism; negative association between TSH and vitamin D in women <45 years (p = 0.036). Significant negative association between heterogeneous thyroid parenchyma and vitamin D in women (p = 0.048) | NA | NA | 1295 | HT in women | 2021 | Turashvili et al. [31] |
No significant differences in patients and control groups. No significant correlation between vitamin D and thyroid autoantibodies | Vitamin D, thyroid autoantibodies (a-TPO, a-TG), free T4 and TSH levels | 41 | 57 | HT in in premenopausal women | 2023 | Filipova et al. [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soda, M.; Priante, C.; Pesce, C.; De Maio, G.; Lombardo, M. The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review. Life 2024, 14, 771. https://doi.org/10.3390/life14060771
Soda M, Priante C, Pesce C, De Maio G, Lombardo M. The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review. Life. 2024; 14(6):771. https://doi.org/10.3390/life14060771
Chicago/Turabian StyleSoda, Michela, Claudia Priante, Ciro Pesce, Giovanni De Maio, and Mauro Lombardo. 2024. "The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review" Life 14, no. 6: 771. https://doi.org/10.3390/life14060771
APA StyleSoda, M., Priante, C., Pesce, C., De Maio, G., & Lombardo, M. (2024). The Impact of Vitamin D on Immune Function and Its Role in Hashimoto’s Thyroiditis: A Narrative Review. Life, 14(6), 771. https://doi.org/10.3390/life14060771