Familial Resemblance of Bone Health in Maternal Lineage Pairs and Triads: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Charting the Data
Category | Definitions |
---|---|
Late adolescent/young adult | The group who had menstruated and had a mean age of <25 |
Pre-menopausal | The group with a mean age ≥ 25 yrs, whose bone growth was largely finished [12,13] and who were not menopausal |
Post-menopausal | The group wherein the women no longer menstruated |
Mixed-menopausal | A group of both pre- and post-menopausal women |
2.4. Ratios of Statistical Significance Results
3. Results
Study and Sub-Population | Full Pairing and Triad Numbers | Daughters | Mothers | Grandmothers | ||||
---|---|---|---|---|---|---|---|---|
Author, Year, Country | Pairs (Triads) | Pairing Category | n | Age (yrs) Mean ± SD (Range) | n | Age (yrs) Mean ± SD (Range) | n | Age (yrs) Mean ± SD (Range) |
Blain et al., 2006 [23], France | 86 a | Mixed-Menopausal Daughters and Mothers | 90 | 35.5 ± 13.1 (18–64) | 82 | 62.9 ± 12.8 (38–90) | ||
Cheng et al., 2009 [25], Finland | 144 | Adolescent Daughters and Pre-Menopausal Mothers | 144 | 18.3 (18–20) | 144 | 45.0 (32–54) | ||
Danielson et al., 1999 [26], USA | 207 | Mixed-Menopausal Daughters and Post-Menopausal Mothers | 207 | 48.5 ± 7.3 (30–70) | 207 | 71.7 ± 4.6 (>65) | ||
Drozdzowska and Pluskiewicz, 2001 [27], Poland | 48 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 48 | 43.2 ± 5.7 | 48 | 70.9 ± 5.2 | ||
Ferrari et al., 2006 [28], Switzerland | 93 | Adolescent Daughters and Pre-Menopausal Mothers | 93 | 16.4 ± 0.5 | 93 | 39 | ||
Francois et al., 1999 [29], France | 175 | Adolescent Daughters and Pre-Menopausal Mothers | 175 | 17.4 ± 2.03 (13.4–23.5) | 175 | 42.6 ± 4.1 | ||
Hansen et al., 1992 [22], Denmark
| 101 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 144 | 35 ± 5 | 101 | 62 ± 3 (50 ± 3) | ||
Hansen et al., 1992 [22], Denmark
| 148 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 195 | 42 ± 5 | 148 | 70 ± 1 | ||
Henderson et al., 1995 [30], Australia | 115 c | Adolescent Daughters and Mixed-Menopausal Mothers | 115 | 18–18.9 | 107 | 46.7 ± 4.3 | ||
Jouanny et al., 1995 [31], France | 98 a | Adolescent Daughters and Pre-Menopausal Mothers | 98 | 18.1 ± 2.0 | 129 | 41.9 ± 3.6 | ||
Krall and Dawson-Hughes, 1993 [32], USA | 40 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 40 | 31 ± 6 (21–45) | 40 | 60 ± 6 (43–71) | ||
Lee et al., 2020 [33], Singapore | 10 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 10 | 29 ± 5 (22–39) | 10 | 63 ± 2 (60–71) | ||
Lutz and Tesar, 1990 [34], USA | 37 | Pre-Menopausal Daughters and Mixed-Menopausal Mothers | 37 | 25 ± 4 (20–34) | 37 | 52 ± 7 (41–68) | ||
Margarey et al., 1999 [35], Australia | 39 a | Adolescent Daughters and Mixed-Menopausal Mothers | 39 | 17–17.9 | 98 | 44.6 ± 4.8 | ||
McKay et al., 1994 [36], Canada | 24 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 24 | 40.0 ± 5.4 (26.3–49.1) | 24 | 67.3 ± 6.7 (57.1–78.9) | ||
Nabulsi et al., 2013 [37], Lebanon | 91 b | Adolescent Daughters and Pre-Menopausal Mothers | 91 | 13.8 ± 9.9 | 169 | 40.5 ± 5.2 (30–55) | ||
Nagy et al., 2013 [38], France
| 115 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 115 | 42.9 ± 7.7 | 92 | 72.1 ± 7.8 | ||
Nagy et al., 2013 [38], France
| 206 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 206 | 38.7 ± 9.2 | 179 | 66.7 ± 8.2 | ||
Nagy et al., 2015 [39], France | 210 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 210 | 38 ± 9 | 171 | 65 ± 9 | ||
Ohta et al., 2010 [40], Japan | 339 DM (34 MG) | Full Triads: Adolescent Daughters, Pre-Menopausal Mothers and Post-Menopausal Grandmothers | 339 | 14.8 ± 1.7 (12–18) | 339 | 46.4 ± 4.0 | 34 | 77.9 ± 4.5 |
Pepe et al., 2017 [41], Switzerland | 102 | Adolescent Daughters and Mixed-Menopausal Mothers | 102 | 20.4 ± 0.5 | 102 | 50.6 ± 4.1 | ||
Picard et al., 2001 [42], Canada | 70 b | Pre-Menopausal Daughters and Mothers | 70 | 26.6 ± 4.7 | 58 | 44.1 ± 2.7 | ||
Runyan et al., 2003 [43], USA | 22 a | Pre-Menopausal Daughters and Post-Menopausal Mothers | 72 | 42.4 ± 4.2 (33–51) | 22 | 67.6 ± 8.8 (52–87) | ||
Seeman et al., 1989 [44], Australia
| 22 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 22 | 34.6 ± 1.9 | 20 | 62.8 ± 2.3 | ||
Seeman et al., 1989 [44], Australia
| 32 b | Pre-Menopausal Daughters and Post-Menopausal Mothers | 32 | 36.9 ± 1.4 | 25 | 67.9 ± 1.5 | ||
Shetty et al., 2016 [45], India | 150 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 150 | 35.6 ± 5.4 | 150 | 59.0 ± 5.4 | ||
Sowers et al., 1986 [46], USA | 34 b | Mixed-Menopausal Daughters and Mothers | 36 | 31 ± 9 | 34 | 56 ± 10 | ||
Tylvasky et al., 1989 [47], USA | 84 | Adolescent Daughters and Pre-Menopausal Mothers | 84 | 18.6 ± 0.1 (17–23) | 84 | 44.2 ± 0.4 (35–39) | ||
Ulrich et al., 1996 [48], USA | 25 | Pre-Menopausal Daughters and Post-Menopausal Mothers | 25 | 41 ± 5 | 25 | 72 ± 5 | ||
Wang et al., 2011 [49], Finland | 55 DM,MG (55) | Full Triads: Adolescent Daughters, Pre-Menopausal Mothers and Post-Menopausal Grandmothers | 55 | 18.1 ± 1.0 | 55 | 43.6 ± 3.1 | 55 | 68.0 ± 4.4 |
Wang et al., 2015 [50], Finland | 128 DM,MG (128) | Full Triads: Adolescent Daughters, Pre-Menopausal Mothers and Post-Menopausal Grandmothers | 224 | 18.3 ± 1.1 | 128 | 44.9 ± 4.1 | 128 | 70.0 ± 6.3 |
Xu et al., 2010 [51], Finland | 100 DM a (44 MG a) a | Full Triads: Adolescent Daughters, Pre-Menopausal Mothers and Post-Menopausal Grandmothers | 235 | 18.3 ± 1.1 | 138 | 44.7± 4.1 | 114 | 70.7 ± 6.3 |
3.1. Study Characteristics
3.2. Daughter-Mother and Triad Groupings
3.3. Multiple Populations
3.4. Multiple Daughters
3.5. Secondary Outcomes: Mother–Daughter Bone Health Results
3.5.1. Familial Bone Differences
Adolescent/Young Adult-Aged Daughters and Pre-Menopausal Mothers
Pre-Menopausal Daughters and Mothers
Adolescent/Young Adult-Aged Daughters and Mixed-Menopausal Mothers
Pre-Menopausal Daughters and Mixed-Menopausal Mothers
Pre-Menopausal Daughters and Post-Menopausal Mothers
Adolescent/Young Adult Daughters, Pre-Menopausal Mothers and Post-Menopausal Grandmothers
Adolescent/Young Adult-Aged Daughters and Post-Menopausal Grandmothers
3.5.2. Familial Bone Regressions/Correlations
Adolescent/Young Adult-Aged Daughters and Pre-Menopausal Mothers
Pre-Menopausal Daughters and Mother
Adolescent/Young Adult-Aged Daughters and Mixed-Menopausal Mothers
Pre-Menopausal Daughters and Mixed-Menopausal Mothers
Mixed-Menopausal Daughters and Mothers
Pre-Menopausal Daughters and Post-Menopausal Mothers
Mixed-Menopausal Daughters and Post-Menopausal Mothers
Post-Menopausal Daughters and Mothers
Adolescent/Young Adult-Aged Daughters and Post-Menopausal Grandmothers
3.5.3. Familial Bone Heritability
Adolescent/Young Adult-Aged Daughters and Pre-Menopausal Mothers
Adolescent/Young Adult-Aged Daughters and Mixed-Menopausal Mothers
Mixed-Menopausal Daughters and Mothers
Adolescent/Young Adult-Aged Daughters and Post-Menopausal Mothers
Pre-Menopausal Daughters and Post-Menopausal Mothers
Post-Menopausal Daughters and Mothers
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Peck, W.A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [Google Scholar]
- Wilson, S.; Sharp, C.A.; Davie, M.W.J. Health-related quality of life in patients with osteoporosis in the absence of vertebral fracture: A systematic review. Osteoporos. Int. 2012, 23, 2749–2768. [Google Scholar] [CrossRef] [PubMed]
- Hopman, W.; The CaMos Research Group; Berger, C.; Joseph, L.; Morin, S.; Towheed, T.; Anastassiades, T.; Adachi, J.; Hanley, D.; Prior, J.; et al. Longitudinal assessment of health-related quality of life in osteoporosis: Data from the population-based Canadian Multicentre Osteoporosis Study. Osteoporos. Int. 2019, 30, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.D.; Ioannidis, G.; Pickard, L.; Berger, C.; Prior, J.C.; Joseph, L.; Hanley, D.A.; Olszynski, W.P.; Murray, T.M.; Anastassiades, T.; et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos. Int. 2003, 14, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.; Johnell, O.; De Laet, C.; Johansson, H.; Oden, A.; Delmas, P.; Eisman, J.; Fujiwara, S.; Garnero, P.; Kroger, H.; et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone 2004, 35, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, G.; Papaioannou, A.; Hopman, W.M.; Akhtar-Danesh, N.; Anastassiades, T.; Pickard, L.; Kennedy, C.C.; Prior, J.C.; Olszynski, W.P.; Davison, K.S.; et al. Relation between fractures and mortality: Results from the Canadian Multicentre Osteoporosis Study. Can. Med. Assoc. J. 2009, 181, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Garriguet, D. Bone health: Osteoporosis, calcium and vitamin D. Health Rep. 2011, 22, 7. [Google Scholar] [PubMed]
- Lam, A.; Leslie, W.D.; Lix, L.M.; Yogendran, M.; Morin, S.N.; Majumdar, S.R. Major osteoporotic to hip fracture ratios in canadian men and women with swedish comparisons: A population-based analysis. J. Bone Miner. Res. 2014, 29, 1067–1073. [Google Scholar] [CrossRef]
- World Health Organization. Prevention and Management of Osteoporosis: Report of a WHO Scientific Group; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Riggs, B.L.; Khosla, S.; Melton, L.J., 3rd. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 1998, 13, 763–773. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.; Faulkner, R.A.; Forwood, M.R.; Mirwald, R.L.; Bailey, D.A. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Goltzman, D.; Langsetmo, L.; Joseph, L.; Jackson, S.; Kreiger, N.; Tenenhouse, A.; Davison, K.S.; Josse, R.G.; Prior, J.C.; et al. Peak bone mass from longitudinal data: Implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 2010, 25, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- NIH Consensus Development Panel. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- Eisman, J.A. Genetics of Osteoporosis. Endocr. Rev. 1999, 20, 788–804. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H.; Munn, Z. JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2020; pp. 406–451. [Google Scholar]
- Tricco, A.C. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Boisvert, N.M.; Hayden, K.A.; Doyle-Baker, P.K. Familial resemblance of bone health in maternal lineage pairs and triads: A scoping review protocol. Kinesiol. Res. Publ. 2021. [Google Scholar] [CrossRef]
- Jackson, J.L.; Kuriyama, A.; Anton, A.; Choi, A.; Fournier, J.-P.; Geier, A.-K.; Jacquerioz, F.; Kogan, D.; Scholcoff, C.; Sun, R. The accuracy of Google translate for abstracting data from non–english-language trials for systematic reviews. Ann. Intern. Med. 2019, 171, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Sornay-Rendu, E.; Boutroy, S.; Munoz, F.; Delmas, P.D. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: The OFELY study. J. Bone Miner. Res. 2007, 22, 425–433. [Google Scholar] [CrossRef]
- Dane, C.; Dane, B.; Cetin, A.; Erginbas, M. The role of quantitative ultrasound in predicting osteoporosis defined by dual-energy X-ray absorptiometry in pre- and postmenopausal women. Climacteric 2008, 11, 296–303. [Google Scholar] [CrossRef]
- Hansen, M.A.; Hassager, C.; Jensen, S.B.; Christiansen, C. Is heritability a risk factor for postmenopausal osteoporosis? J. Bone Miner. Res. 1992, 7, 1037–1043. [Google Scholar] [CrossRef]
- Blain, H.; Vuillemin, A.; Guillemin, F.; Jouanny, P.; Jeandel, C.; Bihan, E. Lean mass plays a gender-specific role in familial resemblance for femoral neck bone mineral density in adult subjects. Osteoporos. Int. 2006, 17, 897–907, Erratum in Osteoporos. Int. 2006, 17, 1703. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; E McKenzie, J.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; A Akl, E.; E Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Völgyi, E.; Tylavsky, F.A.; Lyytikäinen, A.; Törmäkangas, T.; Xu, L.; Kujala, U.M. Trait-specific tracking and determinants of body composition: A 7-year follow-up study of pubertal growth in girls. BMC Med. 2009, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Danielson, M.E.; Cauley, J.A.; Baker, C.E.; Newman, A.B.; Dorman, J.S.; Towers, J.D.; Kuller, L.H. Familial resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: The BMD in mothers and daughters study. J. Bone Miner. Res. 1999, 14, 102–110. [Google Scholar] [CrossRef]
- Drozdzowska, B.; Pluskiewicz, W. Quantitative ultrasound at the calcaneus in premenopausal women and their postmenopausal mothers. Bone 2001, 29, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.L.; Chevalley, T.; Bonjour, J.P.; Rizzoli, R. Childhood fractures are associated with decreased bone mass gain during puberty: An early marker of persistent bone fragility? J. Bone Miner. Res. 2006, 21, 501–507. [Google Scholar] [CrossRef] [PubMed]
- François, S.; Benmalek, A.; Guaydier-Souquières, G.; Sabatier, J.P.; Marcelli, C. Heritability of bone mineral density. Rev. Du Rhum. 1999, 66, 146–151. [Google Scholar]
- Henderson, N.K.; Price, R.I.; Cole, J.H.; Gutteridge, D.H.; Bhagat, C.I. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. J. Bone Miner. Res. 1995, 10, 384–393. [Google Scholar] [CrossRef]
- Jouanny, P.; Jeandel, C.; Pourel, J.; Guillemin, F.; Kuntz, C. Environmental and genetic factors affecting bone mass similarity of bone density among members of healthy families. Arthritis Rheum. 1995, 38, 61–67. [Google Scholar] [CrossRef]
- Krall, E.A.; Dawson-Hughes, B. Heritable and life-style determinants of bone mineral density. J. Bone Miner. Res. 1993, 8, 1–9. [Google Scholar] [CrossRef]
- Lee, S.Y.; Fam, K.D.; Chia, K.L.; Yap, M.M.C.; Goh, J.; Yeo, K.P.; Yap, E.P.H.; Chotirmall, S.H.; Lim, C.L. Age-related bone loss is associated with FGF21 but not IGFBP1 in healthy adults. Exp. Physiol. 2020, 105, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.; Tesar, R. Mother-daughter pairs: Spinal and femoral bone densities and dietary intakes. Am. J. Clin. Nutr. 1990, 52, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Magarey, A.M.; Boulton, T.J.C.; Chatterton, B.E.; Schultz, C.; Nordin, B.E.C. Familial and environmental influences on bone growth from 11–17 years. Acta Paediatr. 1999, 88, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- McKay, H.; Bailey, D.; Wilkinson, A.; Houston, C. Familial comparison of bone mineral density at the proximal femur and lumbar spine. Bone Miner. 1994, 24, 95–107. [Google Scholar] [CrossRef]
- Nabulsi, M.; Mahfoud, Z.; El-Rassi, R.; Al-Shaar, L.; Maalouf, J.; Fuleihan, G.E.-H. Gender Differences in the heritability of musculoskeletal and body composition parameters in mother-daughter and mother-son pairs. J. Clin. Densitom. 2013, 16, 223–230. [Google Scholar] [CrossRef]
- Nagy, H.; Sornay-Rendu, E.; Boutroy, S.; Vilayphiou, N.; Szulc, P.; Chapurlat, R. Impaired trabecular and cortical microarchitecture in daughters of women with osteoporotic fracture: The MODAM study. Osteoporos. Int. 2013, 24, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Nagy, H.; Chapurlat, R.; Sornay-Rendu, E.; Boutroy, S.; Szulc, P. Family resemblance of bone turnover rate in mothers and daughters—The MODAM study. Osteoporos. Int. 2015, 26, 921–930. [Google Scholar] [CrossRef]
- Ohta, H.; Kuroda, T.; Onoe, Y.; Nakano, C.; Yoshikata, R.; Ishitani, K.; Hashimoto, K.; Kume, M. Familial correlation of bone mineral density, birth data and lifestyle factors among adolescent daughters, mothers and grandmothers. J. Bone Miner. Metab. 2010, 28, 690–695. [Google Scholar] [CrossRef]
- Pepe, J.; Biver, E.; Bonnet, N.; Herrmann, F.R.; Rizzoli, R.; Chevalley, T.; Ferrari, S.L. Within and across-sex inheritance of bone microarchitecture. J. Clin. Endocrinol. Metab. 2017, 102, 40–45. [Google Scholar] [CrossRef]
- Picard, D.; Imbach, A.; Couturier, M.; Lepage, R.; Picard, M. Familial resemblance of bone mineral density between females 18 years and older and their mothers. Can. J. Public Health 2001, 92, 353–358. [Google Scholar] [CrossRef]
- Runyan, S.M.; Stadler, D.D.; Bainbridge, C.N.; Miller, S.C.; Moyer-Mileur, L.J. Familial resemblance of bone mineralization, calcium intake, and physical activity in early-adolescent daughters, their mothers, and maternal grandmothers. J. Am. Diet. Assoc. 2003, 103, 1320–1325. [Google Scholar] [CrossRef]
- Seeman, E.; Hopper, J.L.; Bach, L.A.; Cooper, M.E.; Parkinson, E.; McKay, J.; Jerums, G. Reduced bone mass in daughters of women with osteoporosis. New Engl. J. Med. 1989, 320, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Kapoor, N.; Bondu, J.D.; Antonisamy, B.; Thomas, N.; Paul, T.V. Bone turnover markers and bone mineral density in healthy mother–daughter pairs from South India. Clin. Endocrinol. 2016, 85, 725–732. [Google Scholar] [CrossRef]
- Sowers, M.R.; Burns, T.L.; Wallace, R.B.; Rao, D.C. Familial resemblance of bone mass in adult women. Genet. Epidemiol. 1986, 3, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Tylavsky, F.A.; Bortz, A.D.; Hancock, R.L.; Anderson, J.J.B. Familial resemblance of radial bone mass between premenopausal mothers and their college-age daughters. Calcif. Tissue Int. 1989, 45, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, C.M.; Georgiou, C.C.; Snow-Harter, C.M.; Gillis, D. Bone mineral density in mother-daughter pairs: Relations to lifetime exercise, lifetime milk consumption, and calcium supplements. Am. J. Clin. Nutr. 1996, 63, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, L.; Wang, Q.; Chen, D.; Tian, H.; Lu, C.; Cheng, S. Is bone loss the reversal of bone accrual? evidence from a cross-sectional study in daughter-mother-grandmother trios. J. Bone Miner. Res. 2011, 26, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, D.; Cheng, S.M.; Nicholson, P.; Alen, M.; Cheng, S. Growth and aging of proximal femoral bone: A study with women spanning three generations. J. Bone Miner. Res. 2015, 30, 528–534. [Google Scholar] [CrossRef]
- Xu, L.; Nicholson, P.; Wang, Q.-J.; Wang, Q.; Alén, M.; Cheng, S. Fat mass accumulation compromises bone adaptation to load in finnish women: A cross-sectional study spanning three generations. J. Bone Miner. Res. 2010, 25, 2341–2349. [Google Scholar] [CrossRef]
- Cheng, S.; Lyytikäinen, A.; Kröger, H.; Lamberg-Allardt, C.; Alén, M.; Koistinen, A.; Tylavsky, F. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10–12-y-old girls: A 2-y randomized trial. Am. J. Clin. Nutr. 2005, 82, 1115–1126. [Google Scholar] [CrossRef]
- Lyytikäinen, A.; Lamberg-Allardt, C.; Kannas, L.; Cheng, S. Food consumption and nutrient intakes with a special focus on milk product consumption in early pubertal girls in Central Finland. Public Health Nutr 2005, 8, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Nicholson, P.; Wang, Q.; Alén, M.; Cheng, S. Bone and muscle development during puberty in girls: A seven-year longitudinal study. J. Bone Miner. Res. 2009, 24, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Arlot, M.E.; Sornay-Rendu, E.; Garnero, P.; Vey-Marty, B.; Delmas, P.D. Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: The OFELY cohort. J. Bone Miner. Res. 1997, 12, 683–690. [Google Scholar] [CrossRef]
- Cummings, S.R.; Black, D.M.; Nevitt, M.C.; Browner, W.S.; Cauley, J.A.; Genant, H.K.; Vogt, T.M. Appendicular bone density and age predict hip fracture in women. JAMA 1990, 263, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Donner, A.; Hennekens, C.H. Significance testing of interclass correlations from familial data. Biometrics 1979, 35, 461. [Google Scholar] [CrossRef]
- Blake, G.M.; Fogelman, I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad. Med-Ical J. 2007, 83, 509–517. [Google Scholar] [CrossRef]
- Lees, B.; Stevenson, J.C. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporos. Int. 1992, 2, 146–152. [Google Scholar] [CrossRef]
- Boutroy, S.; Bouxsein, M.L.; Munoz, F.; Delmas, P.D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2005, 90, 6508–6515. [Google Scholar] [CrossRef]
- Liu, X.S.; Cohen, A.; Shane, E.; Yin, P.T.; Stein, E.M.; Rogers, H.; Guo, X.E. Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J. Bone Miner. Res. 2010, 25, 2229–2238. [Google Scholar] [CrossRef]
- Colt, E.; Akram, M.; Pi Sunyer, F.X. Comparison of high resolution peripheral quantitative compterized tomography (HR-pQCT) with dual energy x-ray absorptiometry (DXA) for measuring bone mineral denisty (BMD). Eur. J. Clin. Nutr. 2017, 71, 778–781. [Google Scholar] [CrossRef]
- Amstrup, A.K.; Jakobsen, N.F.B.; Moser, E.; Sikjaer, T.; Mosekilde, L.; Rejnmark, L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J. Bone Miner. Metab. 2016, 34, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.Y.; Griffith, J.F.; Qin, L.; Hung, V.W.; Fong, T.N.; Kwok, A.W.; Tam, L.S. Bone density and microarchitecture: Relationship between hand, peripheral, and axial skeletal sites assessed by HR-pQCT and DXA in rheumatoid arthritis. Calcif. Tissue Int. 2012, 91, 343–355. [Google Scholar] [CrossRef]
- Hamdy, R.C.; Petak, S.M.; Lenchik, L. Which central dual X-ray absorptiometry skeletal sites and regions of interest should be used to determine the diagnosis of osteoporosis? J. Clin. Densitom. 2002, 5, s11–s17. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.N.; Feldman, S.; Funnell, L.; Giangregorio, L.; Kim, S.; McDonald-Blumer, H.; Wark, J.D. Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update. CMAJ 2023, 195, E1333–E1348. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.J.; Beaupré, G.S.; Carter, D.R. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos. Int. 2003, 14, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Goldstein, H. Multilevel Statistical Models, 4th ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jacquard, A. Heritability: One word, three concepts. Biometrics 1983, 39, 465–477. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics, 3rd ed.; Longman Scientific & Technical: Harlow, UK, 1989. [Google Scholar]
- Bonnick, S.L.; Lewis, L.A. Bone Densitometry for Technologists, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
PCC Category | Sub-Category | Criteria |
---|---|---|
Population | Female |
|
Pairs |
| |
Reproductive |
| |
Medical |
| |
Concept | Familial Resemblance |
|
Bone Health |
| |
Context | Design, Setting, Publication Type |
|
Language, Country, Year |
|
Study Characteristics (N = 29) | Count (Studies) | |
---|---|---|
Population Continent | ||
North America | 9 | [26,32,34,36,42,43,46,47,48] |
Europe | 13 | [22,23,25,27,28,29,31,38,39,41,49,50,51] |
Oceania | 3 | [30,35,44] |
Asia | 4 | [33,37,40,45] |
Publication Year | ||
1985–1989 | 3 | [44,46,47] |
1990–1994 | 4 | [22,32,34,36] |
1995–1999 | 6 | [26,29,30,31,35,48]; |
2000–2004 | 3 | [27,42,43]; |
2005–2009 | 3 | [23,25,28]; |
2010–2014 | 5 | [37,38,40,49,51]; |
2015–2019 | 4 | [39,41,45,50]; |
2020 | 1 | [33] |
Imaging Modality | ||
DXA | 18 | [22,23,25,26,28,30,31,32,33,36,37,38,39,41,43,45,48,50] |
DPA | 5 | [29,32,34,42,44] |
SPA | 5 | [22,32,35,46,47] |
HR-pQCT | 3 | [38,39,41] |
pQCT | 2 | [49,51] |
QUS | 2 | [26,27] |
SXA | 1 | [26] |
ROI Category: # of ROIs | ||
Whole Body (WB): 1 ROI | 7 | [25,26,31,32,33,37,48] |
Radius (Rad): 3 ROIs | 8 | [28,32,38,39,41,46,47,49] |
Forearm: 1 ROI | 2 | [22,35] |
Lumbar Spine (LS): 2 ROIs | 15 | [22,26,28,29,30,32,34,36,37,38,39,40,41,42,43] |
Hip: 5 ROIs | 17 | [22,23,26,28,30,32,33,34,36,37,38,39,41,43,44,45,50] |
Femur (Fem): 1 ROI | 3 | [28,30,44] |
Tibia (Tib): 2 ROIs | 5 | [38,39,41,49,51] |
Heel/Calcaneus: 1 ROI | 3 | [26,27,32] |
Study | Scan Modalities | Radius (Rad) | Lumbar Spine (LS) | Hip | Tibia (Tib) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author, Year | DXA | DPA | SPA | HR-pQCT | pQCT | QUS | SXA | Whole Body | Forearm | Ultra-Distal (UDRad) | Mid-Distal (MDRad) | Mid (MRad) | LS (L1–4) | L2–4 | Total Hip (TH) | Femoral Neck (FN) | Trochanter (Troch) | Inter-Trochanter (iTroch) | Ward’s Area (Wards) | Femur (Fem): Mid-Shaft/Diaphysis | Proximal (Prox) | Distal (Dist) | Heel |
Blain et al., 2006 [23] | X | X DXA: aBMD | |||||||||||||||||||||
Cheng et al., 2009 [25] | X | X DXA: BM (kg) | |||||||||||||||||||||
Danielson et al., 1999 [26] | X | X | X | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X SXA: aBMD QUS: BUA | |||||||||||||||
Drozdzowska and Pluskiewicz, 2001 [27] | X | X QUS: BUA | |||||||||||||||||||||
Ferrari et al., 2006 [28] | X | X DXA: BMC | X DXA: BMC | X DXA: BMC | X DXA: BMC | X DXA: BMC | X DXA: BMC | ||||||||||||||||
Francois et al., 1999 [29] | X | X DPA: aBMD | |||||||||||||||||||||
Hansen et al., 1992 [22] | X | X | X c SPA: BMC | X d DXA: aBMD | X e DXA: aBMD | X e DXA: aBMD | X e DXA: aBMD | ||||||||||||||||
Henderson et al., 1995 [30] | X | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | ||||||||||||||||
Jouanny et al., 1995 [31] | X | X DXA: aBMD | |||||||||||||||||||||
Krall and Dawson-Hughes, 1993 [32] a | X | X | X | X DXA: aBMD | X SPA: aBMD | X DXA: aBMD | X DXA: aBMD | X SPA: aBMD | |||||||||||||||
Lee et al., 2020 [33] | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | |||||||||||||||||||
Lutz and Tesar, 1990 [34] | X | X DPA: aBMD | X DPA: aBMD | X DPA: aBMD | X DPA: aBMD | X DPA: aBMD | |||||||||||||||||
Margarey et al., 1999 [35] | X | X SPA: vBMD | |||||||||||||||||||||
McKay et al., 1994 [36] | X | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | ||||||||||||||||||
Nabulsi et al., 2013 [37] | X | X DXA: aBMD and Z-score | X DXA: aBMD and Z-score | X DXA: aBMD and Z-score | X DXA: aBMD and Z-score | ||||||||||||||||||
Nagy et al., 2013 [38] | X | X | X DXA: aBMD HR-pQCT: Tt.vBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD HR-pQCT: Tt.vBMD | ||||||||||||||
Nagy et al., 2015 [39] | X | X | X DXA: aBMD HR-pQCT: Tt.vBMD | X b DXA | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD HR-pQCT: Tt.vBMD | ||||||||||||||||
Ohta et al., 2010 [40] | X | X DXA: aBMD | X HR-pQCT: Tt.vBMD | ||||||||||||||||||||
Pepe et al., 2017 [41] | X | X | X DXA: aBMD HR-pQCT: Tt.vBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | ||||||||||||||||
Picard et al., 2001 [42] | X | X DXA: aBMD | |||||||||||||||||||||
Runyan et al., 2003 [43] | X | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | X DXA: aBMD | |||||||||||||||||
Seeman et al., 1989 [44] | X | X DPA: BM(g) | X DPA: aBMD | X DPA: BMC (g/cm) | |||||||||||||||||||
Shetty et al., 2016 [45] | X | X DXA: aBMD | X DXA: aBMD | ||||||||||||||||||||
Sowers et al., 1986 [46] | X | X SPA: aBMD | |||||||||||||||||||||
Tylvasky et al., 1989 [47] | X | X SPA: aBMD | X SPA: aBMD | ||||||||||||||||||||
Ulrich et al., 1996 [48] | X | X DXA: aBMD | |||||||||||||||||||||
Wang et al., 2011 [49] | X | X pQCT: Tt.vBMD | X pQCT: Tt.vBMD | ||||||||||||||||||||
Wang et al., 2015 [50] | X | X DXA: aBMD | X DXA: aBMD | ||||||||||||||||||||
Xu et al., 2010 [51] | X | X pQCT: Ct.vBMD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boisvert, N.M.J.; McElroy, M.R.; Hayden, K.A.; Doyle-Baker, P.K. Familial Resemblance of Bone Health in Maternal Lineage Pairs and Triads: A Scoping Review. Life 2024, 14, 819. https://doi.org/10.3390/life14070819
Boisvert NMJ, McElroy MR, Hayden KA, Doyle-Baker PK. Familial Resemblance of Bone Health in Maternal Lineage Pairs and Triads: A Scoping Review. Life. 2024; 14(7):819. https://doi.org/10.3390/life14070819
Chicago/Turabian StyleBoisvert, Nicole M. J., Melissa R. McElroy, K. Alix Hayden, and Patricia K. Doyle-Baker. 2024. "Familial Resemblance of Bone Health in Maternal Lineage Pairs and Triads: A Scoping Review" Life 14, no. 7: 819. https://doi.org/10.3390/life14070819
APA StyleBoisvert, N. M. J., McElroy, M. R., Hayden, K. A., & Doyle-Baker, P. K. (2024). Familial Resemblance of Bone Health in Maternal Lineage Pairs and Triads: A Scoping Review. Life, 14(7), 819. https://doi.org/10.3390/life14070819