Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants
Abstract
:1. Introduction
1.1. Photocarcinogenesis
1.2. Photoaging and Hyperpigmentation
1.3. Active Photoprotection
2. DNA Repair Enzymes
2.1. Photolyases
2.1.1. Evolutionary Origin and Mechanism of Action
2.1.2. Scientific Evidence: General Overview
2.1.3. In Vivo Pilot Experimental Trials
2.1.4. Actinic Keratoses
2.1.5. Polymorphic Light Eruption
2.2. T4 Endonuclease V
2.2.1. Biological Origin
2.2.2. Mechanism of Action
2.3. 8-Oxoguanine Glycosylase
3. Antioxidants
3.1. Vitamins C and E
3.2. Polypodium Leucotomos
3.2.1. Biological Origin and Mechanism of Action
- Direct absorption of UV photons, preventing the formation of photoproducts;
- Scavenging of reactive oxygen (ROS) and nitrogen species, mitigating photo-oxidative stress;
- Prevention of lipid and glutathione peroxidation;
- Reduction of cellular proliferation;
- Prevention of Langerhans cell (LC) abrogation;
- Preservation of skin immune surveillance.
3.2.2. Experimental and Clinical Evidence
3.3. Green Tea Polyphenols
3.4. Punica granatum
3.5. Resveratrol
3.6. Forskolin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-MOP | 5-methoxypsoralen |
8-MOP | 8-methoxypsoralen |
8-oxoG | 8-oxo-7,8-dihydroguanine |
A | adenine |
AK | actinic keratosis |
AKSS | actinic keratosis severity score |
ATT | active telethermography |
au | arbitrary units |
BCC | basal cell carcinoma |
BSI | baseline severity index |
C | cytosine |
CD | common deletion |
CP | complete protection |
CPD | cyclobutane pyrimidine dimer |
Cu/ZnSOD | copper/zinc superoxide dismutase |
FF | Fitzpatrick’s phototype |
FPS | forearm photoaging scale |
GO | guanine oxidation |
GT | green tea |
HH | hyperthermic halo |
IGII | investigator global improvement index |
LC | Langerhans cells |
MED | minimal erythema dose |
MTH1 | MutT human homolog 1 |
MUTYH | adenine glycosylase MutY homolog |
NER | nucleotide excision repair |
NMSC | nonmelanoma skin cancer |
NUDT1 | Nudix hydrolase |
nPh | non-photosensitized |
OGG1 | 8-oxoguanine glycosylase |
PDT | photodynamic therapy |
P | placebo |
Ph | photosensitized |
PoLE | polymorphic light eruption |
RCM | reflectance confocal microscopy |
RCT | randomized clinical trial |
ROS | reactive oxygen species |
SC | sunscreen |
SCC | squamous cell carcinoma |
SPA | systemic photoprotective agent |
SPF | sun protection factor |
sUVR | solar ultraviolet radiation |
ssUVR | solar-simulated ultraviolet radiation |
T | topical PLE |
T4N5 | T4 endonuclease V |
TCS | total clinical score |
TO | topical and oral PLE |
TPH | topical photolyases |
TRT | thermal recovery time |
UV | ultraviolet |
UVR | ultraviolet radiation |
V | vehicle |
VL | visible light |
T0 | baseline visit |
T1 | first follow-up visit |
WT | white tea |
XP | xeroderma pigmentosum |
References
- Geisler, A.N.; Austin, E.; Nguyen, J.; Hamzavi, I.; Jagdeo, J.; Lim, H.W. Visible Light. Part II: Photoprotection against Visible and Ultraviolet Light. J. Am. Acad. Dermatol. 2021, 84, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.R. Ultraviolet Radiation and Skin Cancer: Molecular Mechanisms. J. Cutan. Pathol. 2005, 32, 191–205. [Google Scholar] [CrossRef]
- Loureiro, J.B.; Abrantes, M.; Oliveira, P.A.; Saraiva, L. P53 in Skin Cancer: From a Master Player to a Privileged Target for Prevention and Therapy. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188438. [Google Scholar] [CrossRef] [PubMed]
- Asare, O.; Ayala, Y.; Hafeez, B.B.; Ramirez-Correa, G.A.; Cho, Y.-Y.; Kim, D.J. Ultraviolet Radiation Exposure and Its Impacts on Cutaneous Phosphorylation Signaling in Carcinogenesis: Focusing on Protein Tyrosine Phosphatases. Photochem. Photobiol. 2023, 99, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Pedić, L.; Pondeljak, N.; Šitum, M. Recent Information on Photoaging Mechanisms and the Preventive Role of Topical Sunscreen Products. Acta Dermatovenerol. Alp. Pannonica Adriat. 2020, 29, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Austin, E.; Geisler, A.N.; Nguyen, J.; Kohli, I.; Hamzavi, I.; Lim, H.W.; Jagdeo, J. Visible Light. Part I: Properties and Cutaneous Effects of Visible Light. J. Am. Acad. Dermatol. 2021, 84, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.; Das, K.; Babaei, M.; Rokni, G.R.; Goldust, M. The Impact of Blue Light and Digital Screens on the Skin. J. Cosmet. Dermatol. 2023, 22, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Suitthimeathegorn, O.; Yang, C.; Ma, Y.; Liu, W. Direct and Indirect Effects of Blue Light Exposure on Skin: A Review of Published Literature. Skin Pharmacol. Physiol. 2022, 35, 305–318. [Google Scholar] [CrossRef]
- Uzunbajakava, N.E.; Tobin, D.J.; Botchkareva, N.V.; Dierickx, C.; Bjerring, P.; Town, G. Highlighting Nuances of Blue Light Phototherapy: Mechanisms and Safety Considerations. J. Biophotonics 2023, 16, e202200257. [Google Scholar] [CrossRef]
- Lyons, A.B.; Trullas, C.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Photoprotection beyond Ultraviolet Radiation: A Review of Tinted Sunscreens. J. Am. Acad. Dermatol. 2021, 84, 1393–1397. [Google Scholar] [CrossRef]
- Schalka, S.; Steiner, D.; Ravelli, F.N.; Steiner, T.; Terena, A.C.; Marçon, C.R.; Ayres, E.L.; Addor, F.A.S.; Miot, H.A.; Ponzio, H.; et al. Brazilian Consensus on Photoprotection. An. Bras. Dermatol. 2014, 89, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Megna, M.; Lembo, S.; Balato, N.; Monfrecola, G. “Active” Photoprotection: Sunscreens with DNA Repair Enzymes. G. Ital. Dermatol. Venereol. Organo Uff. Soc. Ital. Dermatol. Sifilogr. 2017, 152, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-Based Active Photoprotectants for Sunscreens. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Parrado, C.; Philips, N.; Gilaberte, Y.; Juarranz, A.; González, S. Oral Photoprotection: Effective Agents and Potential Candidates. Front. Med. 2018, 5, 188. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.L.; Cleaver, J.E.; Epstein, J.H. Repair of Pyrimidine(6-4)Pyrimidone Photoproducts in Mouse Skin. J. Investig. Dermatol. 1990, 95, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Pathak, J.; Rajneesh; Singh, P.R.; Häder, D.P.; Sinha, R.P. UV-Induced DNA Damage and Repair: A Cyanobacterial Perspective. Plant Gene 2019, 19, 100194. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Perez, A.; Mukhtar, H. Green Tea Polyphenol Treatment to Human Skin Prevents Formation of Ultraviolet Light B-Induced Pyrimidine Dimers in DNA. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 3864–3869. [Google Scholar]
- Schul, W.; Jans, J.; Rijksen, Y.M.A.; Klemann, K.H.M.; Eker, A.P.M.; de Wit, J.; Nikaido, O.; Nakajima, S.; Yasui, A.; Hoeijmakers, J.H.J.; et al. Enhanced Repair of Cyclobutane Pyrimidine Dimers and Improved UV Resistance in Photolyase Transgenic Mice. EMBO J. 2002, 21, 4719–4729. [Google Scholar] [CrossRef]
- Ramírez-Gamboa, D.; Díaz-Zamorano, A.L.; Meléndez-Sánchez, E.R.; Reyes-Pardo, H.; Villaseñor-Zepeda, K.R.; López-Arellanes, M.E.; Sosa-Hernández, J.E.; Coronado-Apodaca, K.G.; Gámez-Méndez, A.; Afewerki, S.; et al. Photolyase Production and Current Applications: A Review. Molecules 2022, 27, 5998. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. Genome Maintenance Mechanisms for Preventing Cancer. Nature 2001, 411, 366–374. [Google Scholar] [CrossRef]
- Bohr, V.A.; Smith, C.A.; Okumoto, D.S.; Hanawalt, P.C. DNA Repair in an Active Gene: Removal of Pyrimidine Dimers from the DHFR Gene of CHO Cells Is Much More Efficient than in the Genome Overall. Cell 1985, 40, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Menck, C.F.M. Shining a Light on Photolyases. Nat. Genet. 2002, 32, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Kelner, A. Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-Violet Irradiation Injury. Proc. Natl. Acad. Sci. USA 1949, 35, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Kelner, A. Photoreactivation of Ultraviolet-Irradiated Escherichia Coli with Special Reference to the Dose-Reduction Principle and to Ultraviolet-Induced Mutation. J. Bacteriol. 1949, 58, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Lledó, J.I.; Lynch, M. Evolution of Mutation Rates: Phylogenomic Analysis of the Photolyase/Cryptochrome Family. Mol. Biol. Evol. 2009, 26, 1143–1153. [Google Scholar] [CrossRef]
- Sancar, A. Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chem. Rev. 2003, 103, 2203–2237. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Liu, Z.; Li, J.; Guo, X.; Wang, L.; Sancar, A.; Zhong, D. The Molecular Origin of High DNA-Repair Efficiency by Photolyase. Nat. Commun. 2015, 6, 7302. [Google Scholar] [CrossRef] [PubMed]
- Yasui, A.; Eker, A.P.; Yasuhira, S.; Yajima, H.; Kobayashi, T.; Takao, M.; Oikawa, A. A New Class of DNA Photolyases Present in Various Organisms Including Aplacental Mammals. EMBO J. 1994, 13, 6143–6151. [Google Scholar] [CrossRef] [PubMed]
- Selby, C.P.; Sancar, A. A Cryptochrome/Photolyase Class of Enzymes with Single-Stranded DNA-Specific Photolyase Activity. Proc. Natl. Acad. Sci. USA 2006, 103, 17696–17700. [Google Scholar] [CrossRef]
- Menaker, M.; Moreira, L.F.; Tosini, G. Evolution of Circadian Organization in Vertebrates. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas Biol. 1997, 30, 305–313. [Google Scholar] [CrossRef]
- Walls, G.L. The Vertebrate Eye and its Adaptive Radiation. J. Nerv. Ment. Dis. 1944, 100, 332. [Google Scholar] [CrossRef]
- Gerkema, M.P.; Davies, W.I.L.; Foster, R.G.; Menaker, M.; Hut, R.A. The Nocturnal Bottleneck and the Evolution of Activity Patterns in Mammals. Proc. Biol. Sci. 2013, 280, 20130508. [Google Scholar] [CrossRef] [PubMed]
- Stege, H.; Roza, L.; Vink, A.A.; Grewe, M.; Ruzicka, T.; Grether-Beck, S.; Krutmann, J. Enzyme plus Light Therapy to Repair DNA Damage in Ultraviolet-B-Irradiated Human Skin. Proc. Natl. Acad. Sci. USA 2000, 97, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Bertona, M.; Altabas, K.; Altabas, V.; Emanuele, E. Reduced Ultraviolet-Induced DNA Damage and Apoptosis in Human Skin with Topical Application of a Photolyase-Containing DNA Repair Enzyme Cream: Clues to Skin Cancer Prevention. Mol. Med. Rep. 2012, 5, 570–574. [Google Scholar] [PubMed]
- Hofer, A.; Legat, F.J.; Gruber-Wackernagel, A.; Quehenberger, F.; Wolf, P. Topical Liposomal DNA-Repair Enzymes in Polymorphic Light Eruption. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2011, 10, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Puviani, M.; Barcella, A.; Milani, M. Efficacy of a Photolyase-Based Device in the Treatment of Cancerization Field in Patients with Actinic Keratosis and Non-Melanoma Skin Cancer. G. Ital. Dermatol. Venereol. Organo Uff. Soc. Ital. Dermatol. Sifilogr. 2013, 148, 693–698. [Google Scholar]
- Milani, M.; Puviani, M. A Pilot, Prospective, Open-Label Study on the Effects of a Topical Photorepair and Photoprotection Film-Forming Medical Device in Patients with Actinic Keratoses Evaluated by Means of Skin Analysis Camera Antera 3D. J. Clin. Exp. Dermatol. Res. 2015, 6, 2. [Google Scholar]
- Puig-Butillé, J.A.; Malvehy, J.; Potrony, M.; Trullas, C.; Garcia-García, F.; Dopazo, J.; Puig, S. Role of CPI-17 in Restoring Skin Homoeostasis in Cutaneous Field of Cancerization: Effects of Topical Application of a Film-Forming Medical Device Containing Photolyase and UV Filters. Exp. Dermatol. 2013, 22, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Puig, S.; Puig-Butillé, J.A.; Díaz, M.A.; Trullas, C.; Malvehy, J. Field Cancerisation Improvement with Topical Application of a Film-Forming Medical Device Containing Photolyase and UV Filters in Patients with Actinic Keratosis, a Pilot Study. J. Clin. Exp. Dermatol. Res. 2014, 5, 220. [Google Scholar]
- Giustini, S.; Miraglia, E.; Berardesca, E.; Milani, M.; Calvieri, S. Preventive Long-Term Effects of a Topical Film-Forming Medical Device with Ultra-High UV Protection Filters and DNA Repair Enzyme in Xeroderma Pigmentosum: A Retrospective Study of Eight Cases. Case Rep. Dermatol. 2014, 6, 222–226. [Google Scholar] [CrossRef]
- Rstom, S.A.; Abdalla, B.; Rezze, G.; Paschoal, F. Evaluation of the Effects of a Cream Containing Liposomeencapsulated Photolyase and SPF 100 Sunscreen on Facial Actinic Keratosis: Clinical, Dermoscopic, and Confocal Microscopy Based Analysis. Surg. Cosmet. Dermatol. 2014, 6, 226–231. [Google Scholar]
- Carducci, M.; Pavone, P.S.; De Marco, G.; Lovati, S.; Altabas, V.; Altabas, K.; Emanuele, E. Comparative Effects of Sunscreens Alone vs Sunscreens Plus DNA Repair Enzymes in Patients With Actinic Keratosis: Clinical and Molecular Findings from a 6-Month, Randomized, Clinical Study. J. Drugs Dermatol. JDD 2015, 14, 986–990. [Google Scholar]
- Laino, L.; Elia, F.; Desiderio, F.; Scarabello, A.; Sperduti, I.; Cota, C.; DiCarlo, A. The Efficacy of a Photolyase-Based Device on the Cancerization Field: A Clinical and Thermographic Study. J. Exp. Clin. Cancer Res. CR 2015, 34, 84. [Google Scholar] [CrossRef] [PubMed]
- Eibenschutz, L.; Silipo, V.; De Simone, P.; Buccini, P.L.; Ferrari, A.; Carbone, A.; Catricalà, C. A 9-Month, Randomized, Assessor-Blinded, Parallel-Group Study to Evaluate Clinical Effects of Film-Forming Medical Devices Containing Photolyase and Sun Filters in the Treatment of Field Cancerization Compared with Sunscreen in Patients after Successful Photodynamic Therapy for Actinic Keratosis. Br. J. Dermatol. 2016, 175, 1391–1393. [Google Scholar] [PubMed]
- Moscarella, E.; Argenziano, G.; Longo, C.; Aladren, S. Management of Cancerization Field with a Medical Device Containing Photolyase: A Randomized, Double-Blind, Parallel-Group Pilot Study. J. Eur. Acad. Dermatol. Venereol. JEADV 2017, 31, e401–e403. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Dechent, C.; Molgó, M. The Use of a Sunscreen Containing DNA-Photolyase in the Treatment of Patients with Field Cancerization and Multiple Actinic Keratoses: A Case-Series. Dermatol. Online J. 2017, 23, 13030/qt5zc6085s. [Google Scholar] [CrossRef]
- Alvares, B.A.; Miola, A.C.; Schimitt, J.V.; Miot, H.A.; Abbade, L.P.F. Efficacy of Sunscreen with Photolyase or Regular Sunscreen Associated with Topical Antioxidants in Treating Advanced Photodamage and Cutaneous Field Cancerization: A Randomized Clinical Trial. An. Bras. Dermatol. 2022, 97, 157–165. [Google Scholar] [CrossRef]
- Vañó Galván, S.; Jiménez Gómez, N.; Grillo, E.; Ballester Martínez, M.A. Estudio observacional sobre la efectividad y tolerabilidad de un producto tópico con fotoliasa y filtros solares en pacientes con queratosis actínicas tratados con crioterapia en condiciones de uso habitual. Piel Form. Contin. Dermatol. 2016, 31, 532–536. [Google Scholar] [CrossRef]
- Jorizzo, J.; Dinehart, S.; Matheson, R.; Moore, J.K.; Ling, M.; Fox, T.L.; McRae, S.; Fielder, S.; Lee, J.H. Vehicle-Controlled, Double-Blind, Randomized Study of Imiquimod 5% Cream Applied 3 Days per Week in One or Two Courses of Treatment for Actinic Keratoses on the Head. J. Am. Acad. Dermatol. 2007, 57, 265–268. [Google Scholar] [CrossRef]
- Eisen, D.B.; Asgari, M.M.; Bennett, D.D.; Connolly, S.M.; Dellavalle, R.P.; Freeman, E.E.; Goldenberg, G.; Leffell, D.J.; Peschin, S.; Sligh, J.E.; et al. Guidelines of Care for the Management of Actinic Keratosis. J. Am. Acad. Dermatol. 2021, 85, e209–e233. [Google Scholar] [CrossRef]
- Schmitz, L.; Gambichler, T.; Gupta, G.; Stücker, M.; Dirschka, T. Actinic Keratosis Area and Severity Index (AKASI) Is Associated with the Incidence of Squamous Cell Carcinoma. J. Eur. Acad. Dermatol. Venereol. JEADV 2018, 32, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Gupta, G.; Stücker, M.; Doerler, M.; Gambichler, T.; Welzel, J.; Szeimies, R.M.; Bierhoff, E.; Stockfleth, E.; Dirschka, T. Evaluation of Two Histological Classifications for Actinic Keratoses—PRO Classification Scored Highest Inter-Rater Reliability. J. Eur. Acad. Dermatol. Venereol. JEADV 2019, 33, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Kahl, P.; Majores, M.; Bierhoff, E.; Stockfleth, E.; Dirschka, T. Actinic Keratosis: Correlation between Clinical and Histological Classification Systems. J. Eur. Acad. Dermatol. Venereol. JEADV 2016, 30, 1303–1307. [Google Scholar] [CrossRef]
- Sinclair, R.; Baker, C.; Spelman, L.; Supranowicz, M.; MacMahon, B. A Review of Actinic Keratosis, Skin Field Cancerisation and the Efficacy of Topical Therapies. Australas. J. Dermatol. 2021, 62, 119–123. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.H.; Han, K.D.; Park, Y.M.; Lee, J.Y.; Park, Y.G.; Lee, Y.B. Incidence of Actinic Keratosis and Risk of Skin Cancer in Subjects with Actinic Keratosis: A Population-Based Cohort Study. Acta Derm. Venereol. 2018, 98, 382–383. [Google Scholar] [CrossRef]
- Norgauer, J.; Idzko, M.; Panther, E.; Hellstern, O.; Herouy, Y. Xeroderma Pigmentosum. Eur. J. Dermatol. EJD 2003, 13, 4–9. [Google Scholar] [PubMed]
- Tanaka, N.; Ohata, C.; Ishii, N.; Imamura, K.; Ueda, A.; Furumura, M.; Yasumoto, S.; Kawakami, T.; Tsuruta, D.; Hashimoto, T. Comparative Study for the Effect of Photodynamic Therapy, Imiquimod Immunotherapy and Combination of Both Therapies on 40 Lesions of Actinic Keratosis in Japanese Patients. J. Dermatol. 2013, 40, 962–967. [Google Scholar] [CrossRef]
- Tanaka, K.; Sekiguchi, M.; Okada, Y. Restoration of Ultraviolet-Induced Unscheduled DNA Synthesis of Xeroderma Pigmentosum Cells by the Concomitant Treatment with Bacteriophage T4 Endonuclease V and HVJ (Sendai Virus). Proc. Natl. Acad. Sci. USA 1975, 72, 4071–4075. [Google Scholar] [CrossRef]
- Cafardi, J.A.; Elmets, C.A. T4 Endonuclease V: Review and Application to Dermatology. Expert Opin. Biol. Ther. 2008, 8, 829–838. [Google Scholar] [CrossRef]
- Yasuda, S.; Sekiguchi, M. T4 Endonuclease Involved in Repair of DNA. Proc. Natl. Acad. Sci. USA 1970, 67, 1839–1845. [Google Scholar] [CrossRef]
- Yarosh, D.B. Enhanced DNA Repair of Cyclobutane Pyrimidine Dimers Changes the Biological Response to UV-B Radiation. Mutat. Res. 2002, 509, 221–226. [Google Scholar] [CrossRef]
- Yarosh, D.; Bucana, C.; Cox, P.; Alas, L.; Kibitel, J.; Kripke, M. Localization of Liposomes Containing a DNA Repair Enzyme in Murine Skin. J. Investig. Dermatol. 1994, 103, 461–468. [Google Scholar] [CrossRef]
- Luze, H.; Nischwitz, S.P.; Zalaudek, I.; Müllegger, R.; Kamolz, L.P. DNA Repair Enzymes in Sunscreens and Their Impact on Photoageing-A Systematic Review. Photodermatol. Photoimmunol. Photomed. 2020, 36, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Iwai, S.; Ohtsuka, E. Structure and Function of T4 Endonuclease V. In Nucleic Acids and Molecular Biology; Eckstein, F., Lilley, D.M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 217–226. [Google Scholar]
- Latham, K.A.; Taylor, J.S.; Lloyd, R.S. T4 Endonuclease V Protects the DNA Strand Opposite a Thymine Dimer from Cleavage by the Footprinting Reagents DNase I and 1,10-Phenanthroline-Copper. J. Biol. Chem. 1995, 270, 3765–3771. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.K.; Damaghi, N.; Picart, S.D.; Markova, N.G.; Obayashi, K.; Okano, Y.; Masaki, H.; Grether-Beck, S.; Krutmann, J.; Smiles, K.A.; et al. UV-Induced DNA Damage Initiates Release of MMP-1 in Human Skin. Exp. Dermatol. 2008, 17, 1037–1044. [Google Scholar] [CrossRef]
- Wolf, P.; Maier, H.; Müllegger, R.R.; Chadwick, C.A.; Hofmann-Wellenhof, R.; Soyer, H.P.; Hofer, A.; Smolle, J.; Horn, M.; Cerroni, L.; et al. Topical Treatment with Liposomes Containing T4 Endonuclease V Protects Human Skin in Vivo from Ultraviolet-Induced Upregulation of Interleukin-10 and Tumor Necrosis Factor-Alpha. J. Investig. Dermatol. 2000, 114, 149–156. [Google Scholar] [CrossRef]
- Yarosh, D.; Klein, J.; O’Connor, A.; Hawk, J.; Rafal, E.; Wolf, P. Effect of Topically Applied T4 Endonuclease V in Liposomes on Skin Cancer in Xeroderma Pigmentosum: A Randomised Study. Lancet 2001, 357, 926–929. [Google Scholar] [CrossRef]
- Wolf, P.; Cox, P.; Yarosh, D.B.; Kripke, M.L. Sunscreens and T4N5 Liposomes Differ in Their Ability to Protect against Ultraviolet-Induced Sunburn Cell Formation, Alterations of Dendritic Epidermal Cells, and Local Suppression of Contact Hypersensitivity. J. Investig. Dermatol. 1995, 104, 287–292. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.; Johnson, S.A.; Opresko, P.L. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front. Cell Dev. Biol. 2021, 9, 758402. [Google Scholar] [CrossRef]
- Kino, K.; Hirao-Suzuki, M.; Morikawa, M.; Sakaga, A.; Miyazawa, H. Generation, Repair and Replication of Guanine Oxidation Products. Genes Environ. Off. J. Jpn. Environ. Mutagen Soc. 2017, 39, 21. [Google Scholar] [CrossRef]
- Tubbs, A.; Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 2017, 168, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Beard, W.A.; Horton, J.K.; Prasad, R.; Wilson, S.H. Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism. Annu. Rev. Biochem. 2019, 88, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Caldecott, K.W. Mammalian DNA Base Excision Repair: Dancing in the Moonlight. DNA Repair 2020, 93, 102921. [Google Scholar] [CrossRef] [PubMed]
- Michaels, M.L.; Cruz, C.; Grollman, A.P.; Miller, J.H. Evidence That MutY and MutM Combine to Prevent Mutations by an Oxidatively Damaged Form of Guanine in DNA. Proc. Natl. Acad. Sci. USA 1992, 89, 7022–7025. [Google Scholar] [CrossRef] [PubMed]
- Banda, D.M.; Nuñez, N.N.; Burnside, M.A.; Bradshaw, K.M.; David, S.S. Repair of 8-oxoG:A Mismatches by the MUTYH Glycosylase: Mechanism, Metals and Medicine. Free Radic. Biol. Med. 2017, 107, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Kabir, Y.; Seidel, R.; Mcknight, B.; Moy, R. DNA Repair Enzymes: An Important Role in Skin Cancer Prevention and Reversal of Photodamage--a Review of the Literature. J. Drugs Dermatol. JDD 2015, 14, 297–303. [Google Scholar] [PubMed]
- Huang, X.X.; Scolyer, R.A.; Abubakar, A.; Halliday, G.M. Human 8-Oxoguanine-DNA Glycosylase-1 Is Downregulated in Human Basal Cell Carcinoma. Mol. Genet. Metab. 2012, 106, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Wulff, B.C.; Schick, J.S.; Thomas-Ahner, J.M.; Kusewitt, D.F.; Yarosh, D.B.; Oberyszyn, T.M. Topical Treatment with OGG1 Enzyme Affects UVB-Induced Skin Carcinogenesis. Photochem. Photobiol. 2008, 84, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, E.; Spencer, J.M.; Braun, M. An Experimental Double-Blind Irradiation Study of a Novel Topical Product (TPF 50) Compared to Other Topical Products with DNA Repair Enzymes, Antioxidants, and Growth Factors with Sunscreens: Implications for Preventing Skin Aging and Cancer. J. Drugs Dermatol. JDD 2014, 13, 309–314. [Google Scholar]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Baek, J.; Lee, M.-G. Oxidative Stress and Antioxidant Strategies in Dermatology. Redox Rep. Commun. Free Radic. Res. 2016, 21, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Berton, T.R.; Conti, C.J.; Mitchell, D.L.; Aldaz, C.M.; Lubet, R.A.; Fischer, S.M. The Effect of Vitamin E Acetate on Ultraviolet-Induced Mouse Skin Carcinogenesis. Mol. Carcinog. 1998, 23, 175–184. [Google Scholar] [CrossRef]
- McVean, M.; Liebler, D.C. Prevention of DNA Photodamage by Vitamin E Compounds and Sunscreens: Roles of Ultraviolet Absorbance and Cellular Uptake. Mol. Carcinog. 1999, 24, 169–176. [Google Scholar] [CrossRef]
- Maalouf, S.; El-Sabban, M.; Darwiche, N.; Gali-Muhtasib, H. Protective Effect of Vitamin E on Ultraviolet B Light-Induced Damage in Keratinocytes. Mol. Carcinog. 2002, 34, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Bhatia, K.; Khan, A.Q.; Kaur, M.; Ahmad, F.; Rashid, H.; Athar, M.; Islam, F.; Raisuddin, S. Topically Applied Vitamin E Prevents Massive Cutaneous Inflammatory and Oxidative Stress Responses Induced by Double Application of 12-O-Tetradecanoylphorbol-13-Acetate (TPA) in Mice. Chem. Biol. Interact. 2008, 172, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.M.; Yuen, K.S.; Bestak, R.; Barnetson, R.S. Sunscreens and Vitamin E Provide Some Protection to the Skin Immune System from Solar-Simulated UV Radiation. Australas. J. Dermatol. 1998, 39, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Trevithick, J.R.; Xiong, H.; Lee, S.; Shum, D.T.; Sanford, S.E.; Karlik, S.J.; Norley, C.; Dilworth, G.R. Topical Tocopherol Acetate Reduces Post-UVB, Sunburn-Associated Erythema, Edema, and Skin Sensitivity in Hairless Mice. Arch. Biochem. Biophys. 1992, 296, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Bissett, D.L.; Chatterjee, R.; Hannon, D.P. Photoprotective Effect of Superoxide-Scavenging Antioxidants against Ultraviolet Radiation-Induced Chronic Skin Damage in the Hairless Mouse. Photodermatol. Photoimmunol. Photomed. 1990, 7, 56–62. [Google Scholar] [PubMed]
- Fukuzawa, K.; Gebicki, J.M. Oxidation of Alpha-Tocopherol in Micelles and Liposomes by the Hydroxyl, Perhydroxyl, and Superoxide Free Radicals. Arch. Biochem. Biophys. 1983, 226, 242–251. [Google Scholar] [CrossRef]
- Clement-Lacroix, P.; Michel, L.; Moysan, A.; Morliere, P.; Dubertret, L. UVA-Induced Immune Suppression in Human Skin: Protective Effect of Vitamin E in Human Epidermal Cells in Vitro. Br. J. Dermatol. 1996, 134, 77–84. [Google Scholar] [CrossRef]
- Gensler, H.L.; Magdaleno, M. Topical Vitamin E Inhibition of Immunosuppression and Tumorigenesis Induced by Ultraviolet Irradiation. Nutr. Cancer 1991, 15, 97–106. [Google Scholar] [CrossRef]
- Chan, A.C. Partners in Defense, Vitamin E and Vitamin C. Can. J. Physiol. Pharmacol. 1993, 71, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Fazary, A.E.; Ju, Y.-H. Feruloyl Esterases as Biotechnological Tools: Current and Future Perspectives. Acta Biochim. Biophys. Sin. 2007, 39, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.M.; Tober, K.L.; Riggenbach, J.A.; Kusewitt, D.F.; Young, G.S.; Oberyszyn, T.M. Differential Effects of Topical Vitamin E and C E Ferulic® Treatments on Ultraviolet Light B-Induced Cutaneous Tumor Development in Skh-1 Mice. PLoS ONE 2013, 8, e63809. [Google Scholar] [CrossRef]
- Gensler, H.L.; Aickin, M.; Peng, Y.M.; Xu, M. Importance of the Form of Topical Vitamin E for Prevention of Photocarcinogenesis. Nutr. Cancer 1996, 26, 183–191. [Google Scholar] [CrossRef]
- Husein-ElAhmed, H.; Aneiros-Fernandez, J.; Gutierrez-Salmeron, M.T.; Aneiros-Cachaza, J.; Naranjo-Sintes, R. Relationship between Food Intake and Cutaneous Solar Elastosis Adjacent to Basal Cell Carcinoma. J. Eur. Acad. Dermatol. Venereol. JEADV 2013, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gerrish, K.E.; Gensler, H.L. Prevention of Photocarcinogenesis by Dietary Vitamin E. Nutr. Cancer 1993, 19, 125–133. [Google Scholar] [CrossRef]
- Aguilera, J.; de Gálvez, M.V.; Sánchez, C.; Herrera-Ceballos, E. Changes in Photoinduced Cutaneous Erythema with Topical Application of a Combination of Vitamins C and E before and after UV Exposure. J. Dermatol. Sci. 2012, 66, 216–220. [Google Scholar] [CrossRef]
- Murray, J.C.; Burch, J.A.; Streilein, R.D.; Iannacchione, M.A.; Hall, R.P.; Pinnell, S.R. A Topical Antioxidant Solution Containing Vitamins C and E Stabilized by Ferulic Acid Provides Protection for Human Skin against Damage Caused by Ultraviolet Irradiation. J. Am. Acad. Dermatol. 2008, 59, 418–425. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, X.; Xu, X.-G.; Li, Y.-H.; Wang, B.; Gao, X.-H.; Chen, H.-D.; Yatskayer, M.; Oresajo, C. Protective Effects of a Topical Antioxidant Complex Containing Vitamins C and E and Ferulic Acid against Ultraviolet Irradiation-Induced Photodamage in Chinese Women. J. Drugs Dermatol. JDD 2013, 12, 464–468. [Google Scholar]
- Berman, B.; Sullivan, T.; De Araujo, T.; Nadji, M. Expression of Fas-Receptor on Basal Cell Carcinomas after Treatment with Imiquimod 5% Cream or Vehicle. Br. J. Dermatol. 2003, 149 (Suppl. S66), 59–61. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.; Pivel, J.P.; Guerrero, A.; Brieva, A.; Martinez-Alcazar, M.P.; Caamano-Somoza, M.; Gonzalez, S. Phenolic Components and Antioxidant Activity of Fernblock, an Aqueous Extract of the Aerial Parts of the Fern Polypodium Leucotomos. Methods Find. Exp. Clin. Pharmacol. 2006, 28, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp-Hup, M.A.; Pathak, M.A.; Parrado, C.; Goukassian, D.; Rius-Díaz, F.; Mihm, M.C.; Fitzpatrick, T.B.; González, S. Oral Polypodium Leucotomos Extract Decreases Ultraviolet-Induced Damage of Human Skin. J. Am. Acad. Dermatol. 2004, 51, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Gombau, L.; García, F.; Lahoz, A.; Fabre, M.; Roda-Navarro, P.; Majano, P.; Alonso-Lebrero, J.L.; Pivel, J.P.; Castell, J.V.; Gómez-Lechon, M.J.; et al. Polypodium leucotomos extract: Antioxidant activity and disposition. Toxicol. In Vitro 2006, 20, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Romeu, M.; Mulero, M.; Giralt, M.; Folch, J.; Nogués, M.R.; Torres, A.; Fortuño, A.; Sureda, F.X.; Cabré, M.; Paternáin, J.L.; et al. Parameters Related to Oxygen Free Radicals in Erythrocytes, Plasma and Epidermis of the Hairless Rat. Life Sci. 2002, 71, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Saija, A.; Tomaino, A.; Trombetta, D.; De Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. In Vitro and in Vivo Evaluation of Caffeic and Ferulic Acids as Topical Photoprotective Agents. Int. J. Pharm. 2000, 199, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mulero, M.; Rodríguez-Yanes, E.; Nogués, M.R.; Giralt, M.; Romeu, M.; González, S.; Mallol, J. Polypodium Leucotomos Extract Inhibits Glutathione Oxidation and Prevents Langerhans Cell Depletion Induced by UVB/UVA Radiation in a Hairless Rat Model. Exp. Dermatol. 2008, 17, 653–658. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Pathak, M.A.; Cuevas, J.; Villarrubia, V.G.; Fitzpatrick, T.B. Topical or Oral Administration with an Extract of Polypodium Leucotomos Prevents Acute Sunburn and Psoralen-Induced Phototoxic Reactions as Well as Depletion of Langerhans Cells in Human Skin. Photodermatol. Photoimmunol. Photomed. 1997, 13, 50–60. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Pathak, M.A. Inhibition of Ultraviolet-Induced Formation of Reactive Oxygen Species, Lipid Peroxidation, Erythema and Skin Photosensitization by Polypodium Leucotomos. Photodermatol. Photoimmunol. Photomed. 1996, 12, 45–56. [Google Scholar] [CrossRef]
- Palomino, O.M. Current Knowledge in Polypodium Leucotomos Effect on Skin Protection. Arch. Dermatol. Res. 2015, 307, 199–209. [Google Scholar] [CrossRef]
- Diffey, B. Sunscreen Isn’t Enough. J. Photochem. Photobiol. B 2001, 64, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Alvarado, F.; Szöcs, J.; de Alvardo, Z.N.; Padilla, G. Metabolic Effects of Calagualine, an Antitumoral Saponine of Polypodium Leucotomos. Nature 1967, 214, 1256–1258. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Bosca, A.; Zapater, P.; Betlloch, I.; Albero, F.; Martínez, A.; Díaz-Alperi, J.; Horga, J.F.; Grupo de Anapsos en Dermatitis Atópica y centros de realización del estudio. Polypodium Leucotomos Extract in Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Actas Dermosifiliogr. 2012, 103, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Padilla, H.C.; Laínez, H.; Pacheco, J.A. A New Agent (Hydrophilic Fraction of Polypodium Leucotomos) for Management of Psoriasis. Int. J. Dermatol. 1974, 13, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp-Hup, M.A.; Bos, J.D.; Rius-Diaz, F.; Gonzalez, S.; Westerhof, W. Treatment of Vitiligo Vulgaris with Narrow-Band UVB and Oral Polypodium Leucotomos Extract: A Randomized Double-Blind Placebo-Controlled Study. J. Eur. Acad. Dermatol. Venereol. JEADV 2007, 21, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, A.; Damiani, G.; Iacovelli, P.; Conic, R.R.Z.; Young Dermatologists Italian Network (YDIN); Gonzalez, S.; Morrone, A. NB-UVB plus Oral Polypodium Leucotomos Extract Display Higher Efficacy than NB-UVB Alone in Patients with Vitiligo. Dermatol. Ther. 2021, 34, e14776. [Google Scholar] [CrossRef] [PubMed]
- Reyes, E.; Jaén, P.; de las Heras, E.; Carrión, F.; Alvarez-Mon, M.; de Eusebio, E.; Alvare, M.; Cuevas, J.; González, S.; Villarrubia, V.G. Systemic Immunomodulatory Effects of Polypodium Leucotomos as an Adjuvant to PUVA Therapy in Generalized Vitiligo: A Pilot Study. J. Dermatol. Sci. 2006, 41, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Viera, M.H.; Amini, S.; Huo, R.; Perez, O.; Ruiz, P.; Amador, A.; Elgart, G.; Berman, B. Decrease of Ultraviolet A Light-Induced “Common Deletion” in Healthy Volunteers after Oral Polypodium Leucotomos Extract Supplement in a Randomized Clinical Trial. J. Am. Acad. Dermatol. 2010, 62, 511–513. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Lopez, I.; Perese, F.; Vasquez, R.; Hynan, L.S.; Chong, B.; Pandya, A.G. A Randomized, Double-Blinded, Placebo-Controlled Trial of Oral Polypodium Leucotomos Extract as an Adjunct to Sunscreen in the Treatment of Melasma. JAMA Dermatol. 2013, 149, 981. [Google Scholar] [CrossRef]
- Auriemma, M.; Di Nicola, M.; Gonzalez, S.; Piaserico, S.; Capo, A.; Amerio, P. Polypodium Leucotomos Supplementation in the Treatment of Scalp Actinic Keratosis: Could It Improve the Efficacy of Photodynamic Therapy? Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. Al 2015, 41, 898–902. [Google Scholar] [CrossRef]
- Pellacani, G.; Peris, K.; Ciardo, S.; Pezzini, C.; Tambone, S.; Farnetani, F.; Longo, C.; Chello, C.; González, S. The Combination of Oral and Topical Photoprotection with a Standardized Polypodium Leucotomos Extract Is Beneficial against Actinic Keratosis. Photodermatol. Photoimmunol. Photomed. 2023, 39, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Avallone, G.; Merli, M.; Dell’Aquila, C.; Quaglino, P.; Ribero, S.; Zalaudek, I.; Conforti, C. Imiquimod-Side Effects in the Treatment of Periocular Skin Cancers: A Review of the Literature. Dermatol. Ther. 2022, 35, e15326. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, S.K.; Bergamo, B.M.; Vyalil, P.K.; Elmets, C.A. Green Tea Polyphenols: DNA Photodamage and Photoimmunology. J. Photochem. Photobiol. B 2001, 65, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, N.; Irby, C.; Katiyar, S.K.; Elmets, C.A. Photoprotective Effects of Green Tea Polyphenols. Photodermatol. Photoimmunol. Photomed. 2007, 23, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, H.; Katiyar, S.K.; Agarwal, R. Green Tea and Skin—Anticarcinogenic Effects. J. Investig. Dermatol. 1994, 102, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.T.; McLaughlin, J.K.; Blot, W.J.; Ji, B.T.; Dai, Q.; Fraumeni, J.F. Reduced Risk of Esophageal Cancer Associated with Green Tea Consumption. J. Natl. Cancer Inst. 1994, 86, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Agarwal, R.; Bickers, D.R.; Mukhtar, H. Protection against Ultraviolet B Radiation-Induced Photocarcinogenesis in Hairless Mice by Green Tea Polyphenols. Carcinogenesis 1991, 12, 1527–1530. [Google Scholar] [CrossRef] [PubMed]
- Elmets, C.A.; Singh, D.; Tubesing, K.; Matsui, M.; Katiyar, S.; Mukhtar, H. Cutaneous Photoprotection from Ultraviolet Injury by Green Tea Polyphenols. J. Am. Acad. Dermatol. 2001, 44, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Camouse, M.M.; Domingo, D.S.; Swain, F.R.; Conrad, E.P.; Matsui, M.S.; Maes, D.; Declercq, L.; Cooper, K.D.; Stevens, S.R.; Baron, E.D. Topical Application of Green and White Tea Extracts Provides Protection from Solar-Simulated Ultraviolet Light in Human Skin. Exp. Dermatol. 2009, 18, 522–526. [Google Scholar] [CrossRef]
- Kaur, C.D.; Saraf, S. Photoprotective Herbal Extract Loaded Nanovesicular Creams Inhibiting Ultraviolet Radiations Induced Photoaging. Int. J. Drug Deliv. 2011, 3, 699–711. [Google Scholar]
- Jadoon, S.; Karim, S.; Asad, M.H.H.B.; Akram, M.R.; Kalsoom Khan, A.; Malik, A.; Chen, C.; Murtaza, G. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity. Oxid. Med. Cell. Longev. 2015, 2015, 709628. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.H.; Reagan-Shaw, S.; Wu, J.; Longley, B.J.; Ahmad, N. Chemoprevention of Skin Cancer by Grape Constituent Resveratrol: Relevance to Human Disease? FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005, 19, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Reagan-Shaw, S.; Mukhtar, H.; Ahmad, N. Resveratrol Imparts Photoprotection of Normal Cells and Enhances the Efficacy of Radiation Therapy in Cancer Cells. Photochem. Photobiol. 2008, 84, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al. Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.H.; Ghotra, A.S.; Shukla, Y.; Ahmad, N. Ultraviolet-B Radiation Causes an Upregulation of Survivin in Human Keratinocytes and Mouse Skin. Photochem. Photobiol. 2004, 80, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Ortiz, A.; Yan, B.; D’Orazio, J.A. Ultraviolet Radiation, Aging and the Skin: Prevention of Damage by Topical cAMP Manipulation. Molecules 2014, 19, 6202–6219. [Google Scholar] [CrossRef]
- Pullar, C.E.; Isseroff, R.R. Cyclic AMP Mediates Keratinocyte Directional Migration in an Electric Field. J. Cell Sci. 2005, 118, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Spindler, V.; Vielmuth, F.; Schmidt, E.; Rubenstein, D.S.; Waschke, J. Protective Endogenous Cyclic Adenosine 5′-Monophosphate Signaling Triggered by Pemphigus Autoantibodies. J. Immunol. Baltim. Md 1950 2010, 185, 6831–6838. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.Y.; Korish, A.A.; Al-Tuwaijri, A.S. The Effect of Vitamin E, L-Arginine, N-Nitro L-Arginine Methyl Ester and Forskolin on Endocrine and Metabolic Changes of Rats Exposed to Acute Cold Stress. Saudi Med. J. 2006, 27, 17–22. [Google Scholar]
- Mishima, K.; Baba, A.; Matsuo, M.; Itoh, Y.; Oishi, R. Protective Effect of Cyclic AMP against Cisplatin-Induced Nephrotoxicity. Free Radic. Biol. Med. 2006, 40, 1564–1577. [Google Scholar] [CrossRef]
Stege et al. [33] | Berardesca et al. [34] | |
---|---|---|
STUDY DESIGN | ||
Year of publication | 2000 | 2011 |
Type of study | Experimental trial | Pilot interventional clinical study |
n | 19 | 10 |
UVR | UVB: 1–2 MEDs | Solar-simulated UVR (ssUVR) (λ = 290–400 nm): 3 MEDs daily for 4 consecutive days. |
PHOTOLYASES | Anacystis nidulans 1% (liposomes): Photosome Daytime Formula® (hidrogel) | Anacystis nidulans 1% (liposomes) |
RESULTS | TPHs reduced the formation of CPD in a time-dependent manner and partially reversed UVB–induced immunosuppression | TPH + SC significantly decreased the levels of CPD (−93%) and cellular apoptosis (−82%) and were superior to SC alone (p < 0.001) |
Giustini et al. [40] | Eibenschutz et al. [44] | Alvares et al. [47] | |
---|---|---|---|
STUDY DESIGN | |||
Year of publication | 2014 | 2016 | 2022 |
Type of study | Retrospective case study | Randomized assessor-blinded parallel comparative trial | Double-blinded RCT |
n | 8 | 30 (1:1) | 40 (1:1) |
Control group | None | SC (SPF50+) | SC (SPF99) |
Follow-up | 1 year | 9 months | 2 months |
PHOTOLYASE | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) |
CLINICAL INDICATION | XP | AK | AK |
Anatomical location | Unspecified | Face and/or scalp | Forearms |
Previous field-cancerization targeted treatments | Unspecified | MAL-PDT (λ = 630 nm, 37 J/cm2) 2 weeks before | None in the previous 6 months |
Baseline AK count | 14 | 2 ± 2 vs. 0.6 ± 0.5, p > 0.05 | 7 (6–9) |
RESULTS | TPH reduced the incidence of new AK (−64.29%), BCC (−56%), and SCC (−100%) after 1 year of treatment | Eryfotona®-treated patients showed a lower final AK count (1 ± 1.1 vs. 3.6 ± 3.8, p < 0.01) and less need of field-targeted therapies (0% vs. 67%, p < 0.01). | TPH + SC failed to prove superiority to SC alone |
Puig et al. [39] | Rstom et al. [41] | Carducci et al. [42] | Laino et al. [43] | Puviani et al. [37] | Moscarella et al. [45] | |
---|---|---|---|---|---|---|
STUDY DESIGN | ||||||
Year of publication | 2014 | 2014 | 2015 | 2015 | 2015 | 2017 |
Type of study | Pilot prospective controlled interventional clinical study | Longitudinal observational clinical trial | RCT | Prospective cohort | Pilot prospective open-label study | Double-blinded controlled randomized pilot study |
n | 13 (3:1) | 14 | 28 (1:1) | 30 | 11 | 50 (24:26) |
Control group | SC | None | SC SPF50 | None | None | SC SPF50+ |
Follow-up | 1 month | 3 months | 6 months | 9 months | 3 months | 6 months |
PHOTOLYASE | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | 1% photolyase (Anacystis nidulans) + 1% endonuclease (Micrococcus luteus) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) |
AK | ||||||
Anatomical location | Sun-exposed areas, tested sites’ size > 12.96 cm2 | Face | Face and scalp | Scalp | Unspecified: “usually the face and scalp” | Face and scalp |
IMAGING TECHNIQUE | Dermoscopy and RCM | Dermoscopy and RCM | Fluorescence | Active telethermography (ATT) | Colorimetry | Dermoscopy and RCM |
RESULTS | Improvement only noted in patients treated with Eryfotona®, with less erythema (p = 0.03), scaling (p = 0.028), coherence of corneocytes (p = 0.018), atypical honeycomb pattern (p = 0.0005), and round nucleated cells at the stratum granulosum (p = 0.019) | Improvement only noted in grade I lesions: less erythema, scaling, and atypical honeycomb pattern | The combination of photolyases and endonucleases was superior to SC alone in reducing the cancerization field fluorescence (p < 0.001) | Decreased HH size (−82.37%) and increased TRT | Less hemoglobin (−34%, p = 0.0124) detected in the targeted lesion after treatment | Improved dermoscopic parameters (erythema, pigmentation, follicular plugs) compared to SC alone. No differences between groups were found with RCM. |
Puviani et al. [36] | Vañó Galván et al. [48] | Navarrete-Dechent et al. [46] | |
---|---|---|---|
STUDY DESIGN | |||
Year of publication | 2013 | 2016 | 2017 |
n | 6 | 41 | 9 |
Follow-up | 1.5–2 months | 6 months | 3 months |
PHOTOLYASE | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) | Eryfotona AK-NMSC fluid® (ISDIN, Barcelona, Spain) |
CLINICAL INDICATION | AK | AK (treatable with cryotherapy) | AK |
Anatomical location | Face and scalp | Scalp (33, 80%), face (8, 20%) | Face, scalp, hands, and forearms |
Baseline AK count | 11.67 (1–25) | 9.56 | Unspecified: “multiple” |
PATIENTS’ BASELINE CHARACTERISTICS AND ELEGIBILITY CRITERIA | |||
Age (years) | 67.5 (65–74) | 75.3 (58–85) | 70.6 |
Male | 6 (100%) | 37 (90.24%) | 5 (55.56%) |
Immunosuppressed | 0 | Unspecified | 2 (22.22%) |
Xeroderma pigmentosum | 0 | Unspecified | Unspecified |
Personal history of NMSC | 1 (16.67%) | Unspecified | Unspecified |
CLINICAL RESULTS | |||
RESULTS | All patients (100%) achieved a clearance rate greater than 50% | Dramatic reduction in AK count (−84.21%). All patients (100%) achieved a clearance rate greater than 50% | Lower final AK count (−76.6%, p < 0.0001). All patients (100%) achieved a clearance rate greater than 50% |
Flavonoids | Phenolic Acids | Other |
---|---|---|
Quercetin | p-coumaric acid | Vitamins C and E |
Rutin | Ferulic acid | |
Kaempferol | Polypodium leucotomos extract | |
Isorhamnetin | Punica granaticum | |
Apigenin | Resveratrol | |
Luteonin | Forskolin | |
Hespertin | Tannins: green tea polyphenols | |
Cyanidine | Carotenes | |
Peonidin | Licopenes | |
Stilbenes | ||
Lutein |
Gonzalez et al. [109] | Middelkamp-Hup et al. [104] | Villa et al. [119] | Ahmed et al. [120] | Auriemma et al. [121] | Pellacani et al. [122] | |
---|---|---|---|---|---|---|
STUDY DESIGN | ||||||
Year of publication | 1997 | 2004 | 2010 | 2013 | 2014 | 2023 |
Type of study | RCT | Open-label prospective trial | Randomized investigator-blinded trial | RCT | RCT | Open-label assessor-blinded RCT |
n | 21 (8:13) | 9 | 10 (5:5) | 40 (20:20) | 40 (20:20) | 131 (43 SC: 44 topical PLE (T): 44 topical and oral PLE (TO)) |
Follow-up | 2 days | 12 months | 1 week | 4 months | 6 months | 12 months |
UV RADIATION | Midday solar ultraviolet radiation (sUVR) in Malaga (Andalucia, Spain, 36°45′ N, 4°25′ O) in August, between 11:00 a.m. and 2:00 p.m. Patients were exposed for up to 120 min. | 5 sites (MED), 2 sites (2–3 MEDs) | 2–3 MED-A | Regular sun exposure | Regular sun exposure | Regular sun exposure |
POLYPODIUM LEUCOTOMOS EXTRACT | ||||||
Composition | Polypodium leucotomos (DIFUR®, Industrial Farmaceutica Cantabria, SA, Madrid, Spain). | Polypodium leucotomos (Fernblock®, Industrial Farmaceutica Cantabria, SA, Madrid, Spain). | Unspecified | Unspecified | Polypodium leucotomos (Fernblock®, Industrial Farmaceutica Cantabria, SA, Madrid, Spain). | Polypodium leucotomos (Fernblock®, Industrial Farmaceutica Cantabria, SA, Madrid, Spain). |
Route of administration | Topical or oral (groups B or D | Oral | Oral | Oral | Oral | Topical and topical + oral |
Posology | Topical: 15–30 min before sUVR. Oral:
|
| 240 mg 8 and 2 h before UVR | 240 mg/8 h, 12 weeks |
|
|
ADDITIONAL SUNSCREEN (SPF) | 15 | None | None | 55 | 50+ | 100+ |
CLINICAL INDICATION | Healthy individuals | Healthy individuals | Healthy individuals | Facial melasma (moderate-to-severe) | AK | AK |
CLINICAL RESULTS | Increased time to elicit erythema and phototoxic reactions | Less erythema was observed in patients treated with oral PLE up to 120 min post-UVR (p < 0.01) | Unassessed | Improvement of MASI, without statistical significance compared to SC alone (p = 0.62) | Higher clearance rate compared to the placebo (−81% vs. −71%, p = 0.04) | Lower incidence of new AK lesions (p = 0.008) and need of field-cancerization therapies (p = 0.027) after 6 months of treatment |
HISTOLOGICAL AND RCM RESULTS | Oral PLE prevented the depletion of LCs | Reduced density of sunburn cells (p = 0.03) and papillary dermal mast cells (p ≤ 0.05). Lower CPD levels (p < 0.001) and cellular proliferation (p < 0.001) | PLE was not superior in reducing UV-induced mitochondrial DNA mutations | Unassessed | Unassessed | PLE was superior in reducing the honeycomb pattern (p = 0.04) after 1 year of treatment |
Katiyar et al. [17] | Elmets et al. [129] | Camouse et al. [130] | |
---|---|---|---|
STUDY DESIGN | |||
Year of publication | 2000 | 2001 | 2009 |
Type of study | Experimental trial | Experimental trial | Double-blinded experimental trial |
n | 6 | 6 | 90 |
UV RADIATION | UVB: 0.5, 1, 2 and 4 MEDs |
| ssUVR (0.75 and 2 MEDs) |
GREEN TEA POLYPHENOLS | |||
Composition | Epicatechin (6%), epigallocatechin (5%), epigallocatechin-3-gallate (65%), epicatechin-3-gallate (24%). Different amounts: 3 mg/2.5 cm2 (remaining), 1–4 mg (4 MEDs) | A 1–10% GTP solution (200 mL, ethanol/water vehicle): >95% (epicatechin, epigallocatechin-3-gallate, epigallocatechin-3-gallate). Mitsui Norin®, Shizuoka, Japan | Unspecified |
CLINICAL INDICATION | Healthy individuals | Healthy individuals | Healthy individuals |
CLINICAL RESULTS | Pretreatment with GTP protected from UVB-induced erythema appearance (−84%) | The GTP solution reduced erythema in a dose-dependent manner. The 10% GTP solution achieved almost complete protection 48 and 72 h after ssUVR (p < 0.01) | Unassessed |
HISTOLOGICAL RESULTS | GTP partially protected cells from the deleterious effects of UVB radiation, reducing the levels of CPD (−60%, p < 0.0005) in a dose-dependent manner. | Reduced density of sunburn cells and DNA damage in GTP-exposed participants (−68%, p < 0.01). GTPs partially reversed UV-induced depletion of LC (p < 0.01) | WT and GT similarly prevented the depletion of LCs after UVR (−22% vs. −35%, p = 0.09) and reduced the formation of 8-OHdG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Mouronte, E.; Pérez-González, L.A.; Naharro-Rodriguez, J.; Fernández Guarino, M. Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life 2024, 14, 822. https://doi.org/10.3390/life14070822
Garcia-Mouronte E, Pérez-González LA, Naharro-Rodriguez J, Fernández Guarino M. Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life. 2024; 14(7):822. https://doi.org/10.3390/life14070822
Chicago/Turabian StyleGarcia-Mouronte, Emilio, Luis Alfonso Pérez-González, Jorge Naharro-Rodriguez, and Montserrat Fernández Guarino. 2024. "Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants" Life 14, no. 7: 822. https://doi.org/10.3390/life14070822
APA StyleGarcia-Mouronte, E., Pérez-González, L. A., Naharro-Rodriguez, J., & Fernández Guarino, M. (2024). Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life, 14(7), 822. https://doi.org/10.3390/life14070822