Special Issue: ‘Advances in Space Biology’
Author Contributions
Acknowledgments
Conflicts of Interest
References
- International Space Exploration Coordination Group. Global Exploration Roadmap Supplement; Technical Report; International Space Exploration Coordination Group: Washington, DC, USA, 2020. [Google Scholar]
- Afshinnekoo, E.; Scott, R.T.; MacKay, M.J.; Pariset, E.; Cekanaviciute, E.; Barker, R.; Gilroy, S.; Hassane, B.; Smith, S.M.; Beheshti, A.; et al. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell 2020, 183, 1162–1184. [Google Scholar] [CrossRef] [PubMed]
- Dobney, W.; Mols, L.; Mistry, D.; Tabury, K.; Baselet, B.; Baatout, S. Evaluation of deep space exploration risks and mitigations against radiation and microgravity. Front. Nucl. Med. 2023, 3, 1225034. [Google Scholar] [CrossRef]
- Ferranti, F.; Del Bianco, M.; Pacelli, C. Advantages and limitations of current microgravity platforms for space biology research. Appl. Sci. 2020, 11, 68. [Google Scholar] [CrossRef]
- Fogtman, A.; Baatout, S.; Baselet, B.; Berger, T.; Hellweg, C.E.; Jiggens, P.; La Tessa, C.; Narici, L.; Nieminen, P.; Sabatier, L.; et al. Towards sustainable human space exploration—Priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.C.; Charles, J.B. (Eds.) Human Health and Performance Risks of Space Exploration Missions: Evidence Reviewed by the NASA Human Research Program; US National Aeronautics & Space Administration: Washington, DC, USA, 2009; Volume 3405.
- Pagel, J.I.; Choukèr, A. Effects of isolation and confinement on humans-implications for manned space explorations. J. Appl. Physiol. 2016, 120, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Sakharkar, A.; Yang, J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts’ Health. Life 2023, 13, 576. [Google Scholar] [CrossRef] [PubMed]
- Anupom, T.; Vanapalli, S.A. A Compact Imaging Platform for Conducting C. elegans Phenotypic Assays on Earth and in Spaceflight. Life 2023, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Juhl, O.J., IV; Buettmann, E.G.; Friedman, M.A.; DeNapoli, R.C.; Hoppock, G.A.; Donahue, H.J. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, D.; Wolovsky, D.; Depompeis, A.; Uher, D.; Lennington, D.; Bodden, R.; Garber, C.E. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: A systematic scoping review. Physiol. Res. 2021, 70, 119–151. [Google Scholar] [CrossRef]
- Cariati, I.; Bonanni, R.; Scimeca, M.; Rinaldi, A.M.; Marini, M.; Tarantino, U.; Tancredi, V. Exposure to Random Positioning Machine Alters the Mineralization Process and PTX3 Expression in the SAOS-2 Cell Line. Life 2022, 12, 610. [Google Scholar] [CrossRef]
- Andreeva, E.; Matveeva, D.; Zhidkova, O.; Zhivodernikov, I.; Kotov, O.; Buravkova, L. Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix. Life 2022, 12, 1343. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Di Nisio, E.; Licursi, V.; Cacci, E.; Lupo, G.; Kokaia, Z.; Galanti, S.; Degan, P.; D’Angelo, S.; Castagnola, P.; et al. Simulated Microgravity Modulates Focal Adhesion Gene Expression in Human Neural Stem Progenitor Cells. Life 2022, 12, 1827. [Google Scholar] [CrossRef] [PubMed]
- Capri, M.; Conte, M.; Ciurca, E.; Pirazzini, C.; Garagnani, P.; Santoro, A.; Longo, F.; Salvioli, S.; Lau, P.; Rittweger, J.; et al. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res. Rev. 2023, 87, 101909. [Google Scholar] [CrossRef] [PubMed]
- Cannavo, A.; Carandina, A.; Corbi, G.; Tobaldini, E.; Montano, N.; Arosio, B. Are Skeletal Muscle Changes during Prolonged Space Flights Similar to Those Experienced by Frail and Sarcopenic Older Adults? Life 2022, 12, 2139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Englund, D.A.; Aversa, Z.; Jachim, S.K.; White, T.A.; LeBrasseur, N.K. Exercise counters the age-related accumulation of senescent cells. Exerc. Sport Sci. Rev. 2022, 50, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, N.; Gatti, M.; Ceccato, I.; Di Crosta, A.; Di Domenico, A.; Palumbo, R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. Life 2022, 12, 1176. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, L.; Kiffer, F.; Puukila, S.; Lowe, M.G.; Goo, B.; Luthens, A.; Schreurs, A.-S.; Torres, S.M.; Steczina, S.; Tahimic, C.G.T.; et al. Mitochondria-Targeted Human Catalase in the Mouse Longevity MCAT Model Mitigates Head-Tilt Bedrest-Induced Neuro-Inflammation in the Hippocampus. Life 2022, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Kokhan, V.S.; Ustyugov, A.A.; Pikalov, V.A. Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life 2022, 12, 1306. [Google Scholar] [CrossRef]
- Scatà, C.; Carandina, A.; Della Torre, A.; Arosio, B.; Bellocchi, C.; Dias Rodrigues, G.; Furlan, L.; Tobaldini, E.; Montano, N. Social Isolation: A Narrative Review on the Dangerous Liaison between the Autonomic Nervous System and Inflammation. Life 2023, 13, 1229. [Google Scholar] [CrossRef]
- Kuehnast, T.; Abbott, C.; Pausan, M.R.; Pearce, D.A.; Moissl-Eichinger, C.; Mahnert, A. The crewed journey to Mars and its implications for the human microbiome. Microbiome 2022, 10, 26. [Google Scholar] [CrossRef]
- Avila-Herrera, A.; Thissen, J.; Urbaniak, C.; Be, N.A.; Smith, D.J.; Karouia, F.; Mehta, S.; Venkateswaran, K.; Jaing, C. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 2020, 15, e0231838. [Google Scholar] [CrossRef]
- Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, B.E.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci. Rep. 2019, 9, 9911. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Akbar, N.; Khan, N.A. Gut microbiome and human health under the space environment. J. Appl. Microbiol. 2021, 130, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Crucian, B.; Babiak-Vazquez, A.; Johnston, S.; Pierson, D.L.; Ott, C.M.; Sams, C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 2016, 9, 383–391. [Google Scholar] [CrossRef]
- Antonsen, E. Risk of Adverse Health Outcomes & Decrements in Performance Due to Inflight Medical Conditions; US National Aeronautics & Space Administration: Washington, DC, USA, 2017. Available online: https://humanresearchroadmap.nasa.gov/Risks/risk.aspx?i=95 (accessed on 24 July 2024).
- Tozzo, P.; Delicati, A.; Caenazzo, L. Skin Microbial Changes during Space Flights: A Systematic Review. Life 2022, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Baqué, M.; Backhaus, T.; Meeßen, J.; Hanke, F.; Böttger, U.; Ramkissoon, N.; Olsson-Francis, K.; Baumgärtner, M.; Billi, D.; Cassaro, A.; et al. Biosignature stability in space enables their use for life detection on Mars. Sci. Adv. 2022, 8, eabn7412. [Google Scholar] [CrossRef] [PubMed]
- Cavalazzi, B.; Westall, F. (Eds.) Biosignatures for Astrobiology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Vladilo, G. On the Role of 40K in the Origin of Terrestrial Life. Life 2022, 12, 1620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rochfort, K.D.; Collins, D.; Grintzalis, K. Development of Sensitive Methods for the Detection of Minimum Concentrations of DNA on Martian Soil Simulants. Life 2023, 13, 1999. [Google Scholar] [CrossRef]
- Li, Y.; Collins, D.A.; Grintzalis, K. A Simple Biochemical Method for the Detection of Proteins as Biomarkers of Life on Martian Soil Simulants and the Impact of UV Radiation. Life 2023, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, C.; Cassaro, A.; Baqué, M.; Selbmann, L.; Zucconi, L.; Maturilli, A.; Botta, L.; Saladino, R.; Böttger, U.; Demets, R.; et al. Fungal biomarkers are detectable in Martian rock-analogues after space exposure: Implications for the search of life on Mars. Int. J. Astrobiol. 2021, 20, 345–358. [Google Scholar] [CrossRef]
- Calabria, D.; Trozzi, I.; Lazzarini, E.; Pace, A.; Zangheri, M.; Iannascoli, L.; Maipan Davis, N.; Gosikere Matadha, S.S.; Baratto De Albuquerque, T.; Pirrotta, S.; et al. AstroBio-CubeSat: A lab-in-space for chemiluminescence-based astrobiology experiments. Biosens. Bioelectron. 2023, 226, 115110. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacelli, C.; Ferranti, F.; Del Bianco, M. Special Issue: ‘Advances in Space Biology’. Life 2024, 14, 931. https://doi.org/10.3390/life14080931
Pacelli C, Ferranti F, Del Bianco M. Special Issue: ‘Advances in Space Biology’. Life. 2024; 14(8):931. https://doi.org/10.3390/life14080931
Chicago/Turabian StylePacelli, Claudia, Francesca Ferranti, and Marta Del Bianco. 2024. "Special Issue: ‘Advances in Space Biology’" Life 14, no. 8: 931. https://doi.org/10.3390/life14080931