Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques
Abstract
:1. Introduction
2. Source of Extremophiles
2.1. Hot Springs and Geothermal Areas
2.2. Deep-Sea Hydrothermal Vents and Sediments
2.3. Polar Regions
2.4. Salt Flats and Hypersaline Environments
2.5. Acidic and Alkaline Environments
2.6. Radiation-Contaminated Sites
3. Advancements in Sampling and Isolation Techniques for Extremophiles
4. Emergent Biotechnological Applications
4.1. Pharmaceuticals
4.2. Bioremediation
4.3. Astrobiology
4.4. Materials Science
Biotech Application | Microorganism | Reference |
---|---|---|
Marine Biotechnology | Halobacterium salinarum | [61] |
Stable enzyme | Sulfolobus acidocaldarius | [62] |
KOD polymerase | Thermococcus kodakarensis | [63] |
Bioremediation | Halomonas smyrnensis | [69] |
Astrobiology and bioremediation | Deinococcus radiodurans | [55] |
Astrobiology | Thermococcus gammatolerans | [69] |
Astrobiology | Pyrococcus furiosus | [78] |
Astrobiology | Bacillus subtilis | [79] |
Astrobiology | Halobacterium salinarum | |
Astrobiology | Cryococcus glacialis | [80] |
PHAs | Pseudomonas sp. 14–3 | [34] |
PHAs | Pseudomonas extremaustralis sp. | [73] |
PHAs | Haloferax mediterranei | [85] |
EPS | Methanococcoides burtonii | [32] |
EPS | Geobacillus tepidamans V264 | [95] |
EPS | Aeribacillus pallidus 418 | [91] |
EPS | Brevibacillus thermoruber 423 | [92] |
EPS | Brevibacillus thermoruber 438 | [93] |
EPS | Chromohalobacter canadensis 28 | [90] |
EPS | Halobacterium salinarum R1 | [88] |
EPS | Acidithiobacillus ferrooxidans ATCC 23270T | [74] |
EPS | Thermus aquaticus YT-1 | [88] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, D.; Adebisi, W.A.; Ahmad, F.; Sethupathy, S.; Danso, B.; Sun, J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front. Bioeng. Biotechnol. 2020, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, R. Extremophiles and the Search for Extraterrestrial Life. Astrobiology 2002, 2, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Rawat, M.; Chauhan, M.; Pandey, A. Extremophiles and Their Expanding Biotechnological Applications. Arch. Microbiol. 2024, 206, 247. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Imbimbo, P.; Aulitto, M. The Undeniable Potential of Thermophiles in Industrial Processes. Int. J. Mol. Sci. 2024, 25, 7685. [Google Scholar] [CrossRef]
- Kohli, I.; Joshi, N.C.; Mohapatra, S.; Varma, A. Extremophile—An Adaptive Strategy for Extreme Conditions and Applications. Curr. Genom. 2020, 21, 96–110. [Google Scholar] [CrossRef]
- Gallo, G.; Puopolo, R.; Limauro, D.; Bartolucci, S.; Fiorentino, G. Metal-Tolerant Thermophiles: From the Analysis of Resistance Mechanisms to Their Biotechnological Exploitation. Open Biochem. J. 2018, 12, 149–160. [Google Scholar] [CrossRef]
- Seo, M.J. Editorial for the Special Issue: Environment Microorganisms and Their Enzymes with Biotechnological Application. Microorganisms 2024, 12, 204. [Google Scholar] [CrossRef]
- Kochhar, N.; Kavya, I.K.; Shrivastava, S.; Ghosh, A.; Rawat, V.S.; Sodhi, K.K.; Kumar, M. Perspectives on the Microorganism of Extreme Environments and Their Applications. Curr. Res. Microb. Sci. 2022, 3, 100134. [Google Scholar] [CrossRef]
- Podar, P.T.; Yang, Z.; Björnsdóttir, S.H.; Podar, M. Comparative Analysis of Microbial Diversity Across Temperature Gradients in Hot Springs From Yellowstone and Iceland. Front. Microbiol. 2020, 11, 1625. [Google Scholar] [CrossRef]
- Des Marais, D.J.; Walter, M.R. Terrestrial Hot Spring Systems: Introduction. Astrobiology 2019, 19, 1419–1432. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 447668. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.; dos Santos, A.; Patel, N.; Rosado, A.S. Life on the Edge: Bioprospecting Extremophiles for Astrobiology. J. Indian Inst. Sci. 2023, 103, 721–737. [Google Scholar] [CrossRef]
- Vavitsas, K.; Glekas, P.D.; Hatzinikolaou, D.G. Synthetic Biology of Thermophiles: Taking Bioengineering to the Extremes? Appl. Microbiol. 2022, 2, 165–174. [Google Scholar] [CrossRef]
- Bombardi, L.; Salini, A.; Aulitto, M.; Zuliani, L.; Andreolli, M.; Bordoli, P.; Coltro, A.; Vitulo, N.; Zaccone, C.; Lampis, S.; et al. Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria. Int. J. Mol. Sci. 2024, 25, 1090. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Tom, L.M.; Ceja-Navarro, J.A.; Simmons, B.A.; Singer, S.W. Whole-Genome Sequence of Brevibacillus Borstelensis SDM, Isolated from a Sorghum-Adapted Microbial Community. Microbiol. Resour. Announc. 2020, 9, e01046-20. [Google Scholar] [CrossRef]
- Tom, L.M.; Aulitto, M.; Wu, Y.-W.; Deng, K.; Gao, Y.; Xiao, N.; Rodriguez, B.G.; Louime, C.; Northen, T.R.; Eudes, A.; et al. Low-Abundance Populations Distinguish Microbiome Performance in Plant Cell Wall Deconstruction. Microbiome 2022, 10, 183. [Google Scholar] [CrossRef]
- Di Donato, P.; Buono, A.; Poli, A.; Finore, I.; Abbamondi, G.R.; Nicolaus, B.; Lama, L. Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses. Sustainability 2019, 11, 149. [Google Scholar] [CrossRef]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Welch, D.M.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial Diversity in the Deep Sea and the Underexplored “Rare Biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef]
- Corinaldesi, C. New Perspectives in Benthic Deep-Sea Microbial Ecology. Front. Mar. Sci. 2015, 2, 17. [Google Scholar] [CrossRef]
- Slesarev, A.I.; Mezhevaya, K.V.; Makarova, K.S.; Polushin, N.N.; Shcherbinina, O.V.; Shakhova, V.V.; Belova, G.I.; Aravind, L.; Natale, D.A.; Rogozin, I.B.; et al. The Complete Genome of Hyperthermophile Methanopyrus Kandleri AV19 and Monophyly of Archaeal Methanogens. Proc. Natl. Acad. Sci. USA 2002, 99, 4644. [Google Scholar] [CrossRef]
- Jolivet, E.; Phane L’haridon, S.; Corre, E.; Forterre, P.; Prieur, D. Thermococcus Gammatolerans Sp. Nov., a Hyperthermophilic Archaeon from a Deep-Sea Hydrothermal Vent That Resists Ionizing Radiation. Int. J. Syst. Evol. Microbiol. 2003, 53, 851–874. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Gai, Y.; Guo, X.; Hou, Y.; Zeng, R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar. Drugs 2019, 17, 656. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Y.; Jing, H.; Liu, H. Spatial Variation and Metabolic Diversity of Microbial Communities in the Surface Sediments of the Mariana Trench. Front. Microbiol. 2022, 13, 1051999. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, H.; Huang, Y.; Xie, Z.; Zhang, M.; Wei, Y.; Li, J.; Ma, Y.; Luo, M.; Ding, W.; et al. Revealing the Full Biosphere Structure and Versatile Metabolic Functions in the Deepest Ocean Sediment of the Challenger Deep. Genome Biol. 2021, 22, 207. [Google Scholar] [CrossRef]
- Gauthier, A.E.; Chandler, C.E.; Poli, V.; Gardner, F.M.; Tekiau, A.; Smith, R.; Bonham, K.S.; Cordes, E.E.; Shank, T.M.; Zanoni, I.; et al. Deep-Sea Microbes as Tools to Refine the Rules of Innate Immune Pattern Recognition. Sci. Immunol. 2021, 6, eabe0531. [Google Scholar] [CrossRef]
- Thatoi, H.; Mohapatra, S.; Das, S.K. Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment; Springer: Singapore, 2021; ISBN 9789813341951. [Google Scholar]
- Dickinson, I.; Goodall-Copestake, W.; Thorne, M.A.S.; Schlitt, T.; Ávila-Jiménez, M.L.; Pearce, D.A. Extremophiles in an Antarctic Marine Ecosystem. Microorganisms 2016, 4, 8. [Google Scholar] [CrossRef]
- Bowman, J.S.; Vick-Majors, T.J.; Morgan-Kiss, R.; Takacs-Vesbach, C.; Ducklow, H.W.; Priscu, J.C. Microbial Community Dynamics in Two Polar Extremes: The Lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem. Bioscience 2016, 66, 829–847. [Google Scholar] [CrossRef]
- Wietz, M.; Bienhold, C.; Metfies, K.; Torres-Valdés, S.; von Appen, W.-J.; Salter, I.; Boetius, A. The Polar Night Shift: Seasonal Dynamics and Drivers of Arctic Ocean Microbiomes Revealed by Autonomous Sampling. ISME Commun. 2021, 1, 76. [Google Scholar] [CrossRef]
- Hoover, R.; Pikuta, E. Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar Environments. In Polar Microbiology; CRC Press: New York, NY, USA, 2009; pp. 115–156. [Google Scholar] [CrossRef]
- Simankova, M.V.; Kotsyurbenko, O.R.; Lueders, T.; Nozhevnikova, A.N.; Wagner, B.; Conrad, R.; Friedrich, M.W. Isolation and Characterization of New Strains of Methanogens from Cold Terrestrial Habitats. Syst. Appl. Microbiol. 2003, 26, 312–318. [Google Scholar] [CrossRef]
- Nichols, D.S.; Miller, M.R.; Davies, N.W.; Goodchild, A.; Raftery, M.; Cavicchioli, R. Cold Adaptation in the Antarctic Archaeon Methanococcoides Burtonii Involves Membrane Lipid Unsaturation. J. Bacteriol. 2004, 186, 8508–8515. [Google Scholar] [CrossRef]
- Najnin, T.; Siddiqui, K.S.; Taha; Elkaid, N.; Kornfeld, G.; Curmi, P.M.G.; Cavicchioli, R. Characterization of a Temperature-Responsive Two Component Regulatory System from the Antarctic Archaeon, Methanococcoides Burtonii. Sci. Rep. 2016, 6, 24278. [Google Scholar] [CrossRef]
- Silva, T.R.; Duarte, A.W.F.; Passarini, M.R.Z.; Ruiz, A.L.T.G.; Franco, C.H.; Moraes, C.B.; de Melo, I.S.; Rodrigues, R.A.; Fantinatti-Garboggini, F.; Oliveira, V.M. Bacteria from Antarctic Environments: Diversity and Detection of Antimicrobial, Antiproliferative, and Antiparasitic Activities. Polar Biol. 2018, 41, 1505–1519. [Google Scholar] [CrossRef]
- Oren, A. Halophilic Microbial Communities and Their Environments. Curr. Opin. Biotechnol. 2015, 33, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Andrei, A.Ş.; Banciu, H.L.; Oren, A. Living with Salt: Metabolic and Phylogenetic Diversity of Archaea Inhabiting Saline Ecosystems. FEMS Microbiol. Lett. 2012, 330, 1–9. [Google Scholar] [CrossRef]
- Martínez, G.M.; Pire, C.; Martínez-Espinosa, R.M. Hypersaline Environments as Natural Sources of Microbes with Potential Applications in Biotechnology: The Case of Solar Evaporation Systems to Produce Salt in Alicante County (Spain). Curr. Res. Microb. Sci. 2022, 3, 100136. [Google Scholar] [CrossRef]
- Lee, N.M.; Meisinger, D.B.; Schmid, M.; Rothballer, M.; Löffler, F.E. Fluorescence In Situ Hybridization (FISH). In Encyclopedia of Geobiology; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 373–393. [Google Scholar] [CrossRef]
- Antón, J.; Pẽa, A.; Santos, F.; Martínez-García, M.; Schmitt-Kopplin, P.; Rosselló-Mora, R. Distribution, Abundance and Diversity of the Extremely Halophilic Bacterium Salinibacter Ruber. Saline Syst. 2008, 4, 15. [Google Scholar] [CrossRef]
- Oren, A. Salinibacter: An Extremely Halophilic Bacterium with Archaeal Properties. FEMS Microbiol. Lett. 2013, 342, 1–9. [Google Scholar] [CrossRef]
- Antón, J.; Oren, A.; Benlloch, S.; Rodríguez-Valera, F.; Amann, R.; Rosselló-Mora, R. Salinibacter Ruber Gen. Nov., Sp. Nov., a Novel, Extremely Halophilic Member of the Bacteria from Saltern Crystallizer Ponds. Int. J. Syst. Evol. Microbiol. 2002, 52, 485–491. [Google Scholar] [CrossRef]
- Luk, A.W.S.; Williams, T.J.; Erdmann, S.; Thane Papke, R.; Cavicchioli, R. Viruses of Haloarchaea. Life 2014, 4, 681. [Google Scholar] [CrossRef]
- Atanasova, N.; Stoitsova, S.; Paunova-krasteva, T.; Kambourova, M.K.; Skleničková, S.; Abbrent, M.; Halecký, V.; Kočí, H.; Beneš, H. Biodegradability and Ecotoxicity of Polyurethane Foams: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 52, 157–202. [Google Scholar] [CrossRef]
- Senčilo, A.; Roine, E. A Glimpse of the Genomic Diversity of Haloarchaeal Tailed Viruses. Front. Microbiol. 2014, 5, 84. [Google Scholar] [CrossRef]
- Schröder, C.; Burkhardt, C.; Antranikian, G. What We Learn from Extremophiles. ChemTexts 2020, 6, 8. [Google Scholar] [CrossRef]
- Jin, Q.; Kirk, M.F. PH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Front. Environ. Sci. 2018, 6, 340428. [Google Scholar] [CrossRef]
- Kudo, T. In Memoriam: Koki Horikoshi (1932-2016). Extremophiles 2016, 20, 383–384. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Choubey, A.; Das, N.; Ohri, A.; Gaur, S. Detecting the Carotenoid Pigmentation Due to Haloarchaea Microbes in the Lonar Lake, Maharashtra, India Using Sentinel-2 Images. J. Indian Soc. Remote Sens. 2021, 49, 305–316. [Google Scholar] [CrossRef]
- Chinnathambi, A. Industrial Important Enzymes from Alkaliphiles-an Overview. Biosci. Biotechnol. Res. Asia 2015, 12, 2007–2016. [Google Scholar] [CrossRef]
- Butterworth, S.J.; Barton, F.; Lloyd, J.R. Extremophilic Microbial Metabolism and Radioactive Waste Disposal. Extremophiles 2023, 27, 27. [Google Scholar] [CrossRef]
- Rani, A.; Saini, K.C.; Bast, F.; Mehariya, S.; Bhatia, S.K.; Lavecchia, R.; Zuorro, A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021, 26, 1142. [Google Scholar] [CrossRef]
- Bruckbauer, S.T.; Cox, M.M. Experimental Evolution of Extremophile Resistance to Ionizing Radiation. Trends Genet. 2021, 37, 830. [Google Scholar] [CrossRef]
- Altair, T.; De Avellar, M.G.B.; Rodrigues, F.; Galante, D. Microbial Habitability of Europa Sustained by Radioactive Sources. Sci. Rep. 2018, 8, 260. [Google Scholar] [CrossRef]
- Atri, D. On the Possibility of Galactic Cosmic Ray-Induced Radiolysis-Powered Life in Subsurface Environments in the Universe. J. R. Soc. Interface 2016, 13, 20160459. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, N.; Zhang, Y. The Radioresistant and Survival Mechanisms of Deinococcus Radiodurans. Radiat. Med. Prot. 2023, 4, 70–79. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.-C.; Zhang, S.; Cai, Y.; Yang, Z.; Ni, T.; Yang, H.-Y. Role of Deep-Sea Equipment in Promoting the Forefront of Studies on Life in Extreme Environments. iScience 2021, 24, 103299. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Aulitto, M.; Contursi, P.; Limauro, D.; Bartolucci, S.; Fiorentino, G. Bioprospecting of Extremophilic Microorganisms to Address Environmental Pollution. J. Vis. Exp. 2021, 2021, e63453. [Google Scholar] [CrossRef]
- Schultz, J.; Modolon, F.; Peixoto, R.S.; Rosado, A.S. Shedding Light on the Composition of Extreme Microbial Dark Matter: Alternative Approaches for Culturing Extremophiles. Front. Microbiol. 2023, 14, 1167718. [Google Scholar] [CrossRef]
- Zhao, J.; Shakir, Y.; Deng, Y.; Zhang, Y. Use of Modified Ichip for the Cultivation of Thermo-Tolerant Microorganisms from the Hot Spring. BMC Microbiol. 2023, 23, 56. [Google Scholar] [CrossRef]
- Baria, D.M.; Patel, N.Y.; Yagnik, S.M.; Panchal, R.R.; Rajput, K.N.; Raval, V.H. Exopolysaccharides from Marine Microbes with Prowess for Environment Cleanup. Environ. Sci. Pollut. Res. 2022, 29, 76611–76625. [Google Scholar] [CrossRef]
- Eichler, J. Halobacterium Salinarum: Life with More than a Grain of Salt. Microbiology 2023, 169, 001327. [Google Scholar] [CrossRef]
- Rastädter, K.; Wurm, D.J.; Spadiut, O.; Quehenberger, J. Physiological Characterization of Sulfolobus Acidocaldarius in a Controlled Bioreactor Environment. Int. J. Environ. Res. Public Health 2021, 18, 5532. [Google Scholar] [CrossRef]
- Scott, K.A.; Williams, S.A.; Santangelo, T.J. Thermococcus Kodakarensis Provides a Versatile Hyperthermophilic Archaeal Platform for Protein Expression. Methods Enzymol. 2021, 659, 243–273. [Google Scholar] [CrossRef]
- Cripps, R.E.; Eley, K.; Leak, D.J.; Rudd, B.; Taylor, M.; Todd, M.; Boakes, S.; Martin, S.; Atkinson, T. Metabolic Engineering of Geobacillus Thermoglucosidasius for High Yield Ethanol Production. Metab. Eng. 2009, 11, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Van Doan, T.; Nguyen, B.T. Polyhydroxyalkanoates Production by a Bacterium Isolated from Mangrove Soil Samples Collected from Quang Ninh Province. J. Vietnam. Environ. 2012, 3, 76–79. [Google Scholar] [CrossRef]
- Chia, X.K.; Hadibarata, T.; Jusoh, M.N.H.; Sutiknowati, L.I.; Tan, I.S.; Foo, H.C.Y. Role of Extremophiles in Biodegradation of Emerging Pollutants. Top. Catal. 2024. [Google Scholar] [CrossRef]
- Gallo, G.; Mougiakos, I.; Bianco, M.; Carbonaro, M.; Carpentieri, A.; Illiano, A.; Pucci, P.; Bartolucci, S.; van der Oost, J.; Fiorentino, G. A Hyperthermoactive-Cas9 Editing Tool Reveals the Role of a Unique Arsenite Methyltransferase in the Arsenic Resistance System of Thermus Thermophilus HB27. MBio 2021, 12, e0281321. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Antonucci, I.; Pirone, L.; Amoresano, A.; Contursi, P.; Limauro, D.; Pedone, E.; Bartolucci, S.; Fiorentino, G. A Physicochemical Investigation on the Metal Binding Properties of TtSmtB, a Thermophilic Member of the ArsR/SmtB Transcription Factor Family. Int. J. Biol. Macromol. 2019, 138, 1056–1063. [Google Scholar] [CrossRef]
- Biswas, J.; Bose, P.; Mandal, S.; Paul, A.K. Reduction of Hexavalent Chromium by a Moderately Halophilic Bacterium, Halomonas Smyrnensis KS802 under Saline Environment. Environ. Sustain. 2018, 1, 411–423. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; LE, Y.; Al-Tohamy, R.; Ali, S.S. Potential Applications of Extremophilic Bacteria in the Bioremediation of Extreme Environments Contaminated with Heavy Metals. J. Environ. Manag. 2024, 352, 120081. [Google Scholar] [CrossRef]
- Kaushik, S.; Alatawi, A.; Djiwanti, S.R.; Pande, A.; Skotti, E.; Soni, V. Potential of Extremophiles for Bioremediation. Microorg. Sustain. 2021, 25, 293–328. [Google Scholar] [CrossRef]
- Xiao, Y.; Kong, H.; Zhang, Z.; Li, C.; Ban, X.; Gu, Z.; Li, Z. A Recombinant Amylomaltase from Thermus Thermophilus STB20 Can Tailor the Macromolecular Characteristics of Tapioca Starch through Its Transglycosylation Activity. Food Biosci. 2024, 59, 104137. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, M.S.; Khan, S.S.; Ahmad, W.; Zheng, L.; Shah, S.U.A.; Ullah, M.; Iqbal, A. Identification and Characterization of Thermophilic Amylase Producing Bacterial Isolates from the Brick Kiln Soil. Saudi J. Biol. Sci. 2021, 28, 970–979. [Google Scholar] [CrossRef]
- Mishra, D.; Rhee, Y.H. Microbial Leaching of Metals from Solid Industrial Wastes. J. Microbiol. 2014, 52, 1–7. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, A.; Martínez-Prado, M.A.; Núñez-Ramírez, D.M.; Medina-Torres, L.; Rojas-Contreras, J.A.; Anguiano-Vega, G.A.; Soto-Cruz, N.O. Acidophilic Bacteria for Metal Extraction: Biotechnological Characteristics and Applications. Braz. J. Chem. Eng. 2024. [Google Scholar] [CrossRef]
- Des Marais, D.J.; Walter, M.R. Astrobiology: Exploring the Origins, Evolution, and Distribution of Life in the Universe. Annu. Rev. Ecol. Syst. 1999, 30, 397–420. [Google Scholar] [CrossRef] [PubMed]
- De Vera, J.P.; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Möhlmann, D.; Spohn, T. Adaptation of an Antarctic Lichen to Martian Niche Conditions Can Occur within 34 Days. Planet. Space Sci. 2014, 98, 182–190. [Google Scholar] [CrossRef]
- Fiala, G.; Stetter, K.O. Pyrococcus Furiosus Sp. Nov. Represents a Novel Genus of Marine Heterotrophic Archaebacteria Growing Optimally at 100 °C. Arch. Microbiol. 1986, 145, 56–61. [Google Scholar] [CrossRef]
- Cortesão, M.; Fuchs, F.M.; Commichau, F.M.; Eichenberger, P.; Schuerger, A.C.; Nicholson, W.L.; Setlow, P.; Moeller, R. Bacillus Subtilis Spore Resistance to Simulated Mars Surface Conditions. Front. Microbiol. 2019, 10, 333. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Potential of Halotolerant and Halophilic Microorganisms for Biotechnology. Extremophiles 2001, 5, 73–83. [Google Scholar] [CrossRef]
- Rodrigues, D.F.; Tiedje, J.M. Coping with Our Cold Planet. Appl. Environ. Microbiol. 2008, 74, 1677–1686. [Google Scholar] [CrossRef]
- Najar, I.N.; Sharma, P.; Das, R.; Tamang, S.; Mondal, K.; Thakur, N.; Gandhi, S.G.; Kumar, V. From Waste Management to Circular Economy: Leveraging Thermophiles for Sustainable Growth and Global Resource Optimization. J. Environ. Manag. 2024, 360, 121136. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Obulisamy, P.K.; Mehariya, S. Polyhydroxyalkanoates from Extremophiles: A Review. Bioresour. Technol. 2021, 325, 124653. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, R. Production of Polyhydroxyalkanoates (PHA) by Haloferax Mediterranei from Food Waste Derived Nutrients for Biodegradable Plastic Applications. J. Microbiol. Biotechnol. 2021, 31, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Yaşar Yıldız, S.; Radchenkova, N. Exploring Extremophiles from Bulgaria: Biodiversity, Biopolymer Synthesis, Functional Properties, Applications. Polymers 2024, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Yang, Y.L.; Chen, Y.P.; Hua, K.F.; Lu, C.P.; Sheu, F.; Lin, G.H.; Tsay, S.S.; Liang, S.M.; Wu, S.H. A Novel Exopolysaccharide from the Biofilm of Thermus Aquaticus YT-1 Induces the Immune Response through Toll-like Receptor 2. J. Biol. Chem. 2011, 286, 17736–17745. [Google Scholar] [CrossRef]
- Simões, M.; Zhao, Q.; Pfeifer, F.; Völkel, S.; Fröls, S. Heavy Metal Ion Stress on Halobacterium Salinarum R1 Planktonic Cells and Biofilms. Front. Microbiol. 2018, 9, 3157. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Zhu, J.; Zhou, S.; Gan, M.; Jiang, H.; Sand, W.; Dunbar, S. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus Ferrooxidans. Minerals 2016, 6, 100. [Google Scholar] [CrossRef]
- Radchenkova, N.; Boyadzhieva, I.; Atanasova, N.; Poli, A.; Finore, I.; Di Donato, P.; Nicolaus, B.; Panchev, I.; Kuncheva, M.; Kambourova, M. Extracellular Polymer Substance Synthesized by a Halophilic Bacterium Chromohalobacter Canadensis 28. Appl. Microbiol. Biotechnol. 2018, 102, 4937–4949. [Google Scholar] [CrossRef]
- Radchenkova, N.; Vassilev, S.; Panchev, I.; Anzelmo, G.; Tomova, I.; Nicolaus, B.; Kuncheva, M.; Petrov, K.; Kambourova, M.; Kambourova, M.; et al. Production and Properties of Two Novel Exopolysaccharides Synthesized by a Thermophilic Bacterium Aeribacillus Pallidus 418. Appl. Biochem. Biotechnol. 2013, 171, 31–43. [Google Scholar] [CrossRef]
- Yasar Yildiz, S.; Anzelmo, G.; Ozer, T.; Radchenkova, N.; Genc, S.; Di Donato, P.; Nicolaus, B.; Toksoy Oner, E.; Kambourova, M. Brevibacillus Themoruber: A Promising Microbial Cell Factory for Exopolysaccharide Production. J. Appl. Microbiol. 2014, 116, 314–324. [Google Scholar] [CrossRef]
- Radchenkova, N.; Tomova, A.; Kambourova, M. Biosynthesis of an Exopolysaccharide Produced by Brevibacillus Thermoruber 438. Biotechnol. Biotechnol. Equip. 2011, 25, 77–79. [Google Scholar] [CrossRef]
- Sethi, S.; Bhatti, G.S.; Sethi, S.; Bhatti, G.S.B. Biotechnology of Extremophiles: Advances and Challenges. In Trends in Biotechnology of Polyextremophiles; Springer: Cham, Switzerland, 2024; pp. 417–440. [Google Scholar] [CrossRef]
- Kambourova, M.; Mandeva, R.; Poli, A.; Nicolaus, B.; Dimova, D.; Tommonaro, G. Production and Characterization of a Microbial Glucan, Synthesized by Geobacillus Tepidamans V264 Isolated from Bulgarian Hot Spring. Carbohydr. Polym. 2009, 77, 338–343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, G.; Aulitto, M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life 2024, 14, 1205. https://doi.org/10.3390/life14091205
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life. 2024; 14(9):1205. https://doi.org/10.3390/life14091205
Chicago/Turabian StyleGallo, Giovanni, and Martina Aulitto. 2024. "Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques" Life 14, no. 9: 1205. https://doi.org/10.3390/life14091205
APA StyleGallo, G., & Aulitto, M. (2024). Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life, 14(9), 1205. https://doi.org/10.3390/life14091205