Effect of Aerobic Exercise on Blood Glucose Among Those with Prediabetes: A Systematic Review and Meta-Analysis
Abstract
:1. Background
2. Methods
2.1. Protocol Registration and Study Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection and Characteristics of Eligible Studies
3.2. Effects of Aerobic Exercise on FBG
3.3. Effects of Aerobic Exercise on 2hPG
3.4. Effects of Aerobic Exercise on HbA1c
3.5. Sensitivity Analysis
3.6. Quality Assessment
3.7. Heterogeneity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 15 December 2024).
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and Management of Prediabetes: A Review. JAMA 2023, 329, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation Atlas. Available online: https://diabetesatlas.org/data/en/ (accessed on 15 October 2024).
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Senates, E.; Yesil, A.; Ergelen, R.; Colak, Y. Not only type 2 diabetes but also prediabetes is associated with portal inflammation and fibrosis in patients with non-alcoholic fatty liver disease. J. Diabetes Its Complicat. 2014, 28, 328–331. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. 1), S19–S40. [Google Scholar] [CrossRef]
- Laiteerapong, N.; Cifu, A.S. Screening for Prediabetes and Type 2 Diabetes Mellitus. JAMA 2016, 315, 697–698. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report. 2024. Available online: https://www.cdc.gov/diabetes/php/data-research/index.html (accessed on 15 December 2024).
- Galaviz, K.I.; Weber, M.B.; Suvada, K.B.; Gujral, U.P.; Wei, J.; Merchant, R.; Dharanendra, S.; Haw, J.S.; Narayan, K.M.V.; Ali, M.K. Interventions for Reversing Prediabetes: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2022, 62, 614–625. [Google Scholar] [CrossRef]
- Carris, N.W.; Magness, R.R.; Labovitz, A.J. Prevention of Diabetes Mellitus in Patients with Prediabetes. Am. J. Cardiol. 2019, 123, 507–512. [Google Scholar] [CrossRef]
- Quist, J.S.; Pedersen, H.E.; Jensen, M.M.; Clemmensen, K.K.B.; Bjerre, N.; Ekblond, T.S.; Uldal, S.; Størling, J.; Wewer Albrechtsen, N.J.; Holst, J.J.; et al. Effects of 3 months of 10-h per-day time-restricted eating and 3 months of follow-up on bodyweight and cardiometabolic health in Danish individuals at high risk of type 2 diabetes: The RESET single-centre, parallel, superiority, open-label, randomised controlled trial. Lancet Healthy Longev. 2024, 5, e314–e325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, Q.; Feuerbacher, J.F.; Yu, B.; Brinkmann, C.; Cheng, S.; Bloch, W.; Schumann, M. Effects of exercise, metformin and their combination on glucose metabolism in individuals with abnormal glycaemic control: A systematic review and network meta-analysis. Br. J. Sports Med. 2024, 58, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- American Diabetes Association. Weekly Exercise Targets. Available online: https://diabetes.org/health-wellness/fitness/weekly-exercise-targets (accessed on 15 December 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Hrubeniuk, T.J.; Bouchard, D.R.; Goulet, E.D.B.; Gurd, B.; Senechal, M. The ability of exercise to meaningfully improve glucose tolerance in people living with prediabetes: A meta-analysis. Scand. J. Med. Sci. Sports 2020, 30, 209–216. [Google Scholar] [CrossRef]
- Akl, E.; Altman, D.; Aluko, P.; Askie, L.; Beaton, D.; Berlin, J.; Bhaumik, B.; Bingham, C.; Boers, M.; Booth, A.; et al. Cochrane Handbook for Systematic Reviews of Interventions; Wiley-Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef]
- Calorie Expenditure for Various Exercises. Available online: https://begoodtool.com/exercise-heat/en (accessed on 15 December 2024).
- Zhou, J. Life style interventions study on the effects of impaired glucose regulations in Shanghai urban communities. Wei Sheng Yan Jiu = J. Hyg. Res. 2011, 40, 331–333. [Google Scholar]
- Yuan, X.D.; Dai, X.; Liu, L.; Hsue, C.Y.; Miller, J.D.; Fang, Z.H.; Li, J.N.; Feng, J.T.; Huang, Y.; Liu, C.; et al. Comparing the effects of 6 months aerobic exercise and resistance training on metabolic control and beta-cell function in Chinese patients with prediabetes: A multicenter randomized controlled trial. J. Diabetes 2020, 12, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Dai, X.; Feng, J.; Yuan, X.; Li, J.; Yang, L.; Zuo, P.; Fang, Z.; Liu, C.; Hsue, C.; et al. Effect of 12-Month Resistance Training on Changes in Abdominal Adipose Tissue and Metabolic Variables in Patients with Prediabetes: A Randomized Controlled Trial. J. Diabetes Res. 2019, 2019, 8469739. [Google Scholar] [CrossRef] [PubMed]
- Slentz, C.A.; Bateman, L.A.; Willis, L.H.; Granville, E.O.; Piner, L.W.; Samsa, G.P.; Setji, T.L.; Muehlbauer, M.J.; Huffman, K.M.; Bales, C.W.; et al. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: A randomised controlled trial. Diabetologia 2016, 59, 2088–2098. [Google Scholar] [CrossRef]
- Ma, X.; Li, M.; Liu, L.; Lei, F.; Wang, L.; Xiao, W.; Tan, Y.; He, B.; Ruan, S. A randomized controlled trial of Baduanjin exercise to reduce the risk of atherosclerotic cardiovascular disease in patients with prediabetes. Sci. Rep. 2022, 12, 19338. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.J.; Wang, Z.Z.; Li, B.W.; Zhang, X.B.; Li, X. Effect of resistance vs. aerobic exercise in pre-diabetes: An RCT. Trials 2023, 24, 110. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ma, X.J.; Xu, H.W.; Ruan, S.J.; Yuan, X.D. Comparing the effects of 12 months aerobic exercise and resistance training on glucose metabolism among prediabetes phenotype: A explorative randomized controlled trial. Prim. Care Diabetes 2021, 15, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.C.; Zhong, S.G.; Li, P.; Chen, W.B.; Cheng, C.; Wang, Y.G.; Wu, P.S.; Xiao, C. Effects and mechanism of moderate aerobic exercise on impaired fasting glucose improvement. Lipids Health Dis. 2015, 14, 157. [Google Scholar] [CrossRef]
- Kargarfard, M.; Nobari, H.; Kamyar, K.; Zadeh, A.K.; Oliveira, R. Effects of 12-week moderate aerobic exercise on ROCK2 activity, hs-CRP and glycemic index in obese patients with impaired glucose tolerance. Physiol. Behav. 2022, 257, 113976. [Google Scholar] [CrossRef]
- He, Y.L.; Feng, Y.H.; Shi, J.L.; Tang, H.; Chen, L.H.; Lou, Q.Q. beta-Cell function and body mass index are predictors of exercise response in elderly patients with prediabetes. J. Diabetes Investig. 2022, 13, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, S.Q.; Hsue, C.; Dai, X.; Liu, L.; Miller, J.D.; Fang, Z.H.; Feng, J.T.; Huang, Y.; Wang, X.D.; et al. Effects of aerobic training and resistance training in reducing cardiovascular disease risk for patients with prediabetes: A multi-center randomized controlled trial. Prim. Care Diabetes 2021, 15, 1063–1070. [Google Scholar] [CrossRef]
- Badaam, K.M.; Zingade, U.S. The Effect of Traditional Aerobic Exercise and Sprint Interval Training on Insulin Resistance in Men With Prediabetes: A Randomised Controlled Trial. Cureus 2021, 13, e20789. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Mishra, P.; Singh, K.; Singh, K.; Harris, T.; Hamer, M.; Greenfield, S.M.; Manjunath, N.K.; Nair, R.; Mukherjee, S.; et al. Yoga Programme for Type 2 Diabetes Prevention (YOGA-DP) Among High-Risk People in India: A Multicenter Feasibility Randomized Controlled Trial. Diabetes Ther. 2023, 14, 1137–1154. [Google Scholar] [CrossRef]
- Savoye, M.; Caprio, S.; Dziura, J.; Camp, A.; Germain, G.; Summers, C.; Li, F.Y.; Shaw, M.; Nowicka, P.; Kursawe, R.; et al. Reversal of Early Abnormalities in Glucose Metabolism in Obese Youth: Results of an Intensive Lifestyle Randomized Controlled Trial. Diabetes Care 2014, 37, 317–324. [Google Scholar] [CrossRef]
- Gidlund, E.K.; von Walden, F.; Venojärvi, M.; Risérus, U.; Heinonen, O.J.; Norrbom, J.; Sundberg, C.J. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol. Rep. 2016, 4, e13063. [Google Scholar] [CrossRef] [PubMed]
- Sawangwong, P.; Tungsukruthai, S.; Nootim, P.; Sriyakul, K.; Phetkate, P.; Pawa, K.K.; Tungsukruthai, P. The Effects of 12-Week Traditional Thai Exercise (Ruesi Dadton) on Glycemic Control and Inflammatory Markers in Prediabetes: A Randomized Controlled Trial. Life 2023, 13, 2166. [Google Scholar] [CrossRef]
- Shah, S.Z.A.; Karam, J.A.; Zeb, A.; Ullah, R.; Shah, A.; Haq, I.U.; Ali, I.; Darain, H.; Chen, H. Movement is Improvement: The Therapeutic Effects of Exercise and General Physical Activity on Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Ther. 2021, 12, 707–732. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Xia, X.H.; Wang, H.; Zhang, Z.H. Meta-analysis on influence of different exercise intervention modes to blood glucose related indexes of pre-diabetes. Zhongguo Ying Yong Sheng Li Xue Za Zhi Chin. J. Appl. Physiol. 2017, 33, 189–192. [Google Scholar] [CrossRef]
- Zheng, L.; Lan, Q.; Li, J.; Liu, Z.; Fan, H. Comparison of control fasting plasma glucose of exercise-only versus exercise-diet among a pre-diabetic population: A meta-analysis. J. Am. Coll. Cardiol. 2017, 70, C77–C78. [Google Scholar] [CrossRef]
- Meuret, J.R.; Sirithienthad, P.; Moffatt, R.J.; Panton, L.B. A Comparison Of The Effects Of Continuous Aerobic, Intermittent Aerobic, And Resistance Exercise On Resting Metabolic Rate At 12 And 21 Hours Post-Exercise: 2153. Med. Sci. Sports Exerc. 2007, 39, S384–S385. [Google Scholar] [CrossRef]
- Pellegrin, M.; Bouzourène, K.; Aubert, J.-F.; Bielmann, C.; Gruetter, R.; Rosenblatt-Velin, N.; Poitry-Yamate, C.; Mazzolai, L. Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease. Sci. Rep. 2020, 10, 14048. [Google Scholar] [CrossRef] [PubMed]
- Perreault, L.; Bergman, B.C.; Playdon, M.C.; Dalla Man, C.; Cobelli, C.; Eckel, R.H. Impaired fasting glucose with or without impaired glucose tolerance: Progressive or parallel states of prediabetes? Am. J. Physiol. Endocrinol. Metab. 2008, 295, E428–E435. [Google Scholar] [CrossRef] [PubMed]
- Perreault, L.; Færch, K. Approaching pre-diabetes. J. Diabetes Its Complicat. 2014, 28, 226–233. [Google Scholar] [CrossRef]
- Lorenzo, C.; Wagenknecht, L.E.; Hanley, A.J.; Rewers, M.J.; Karter, A.J.; Haffner, S.M. A1C Between 5.7 and 6.4% as a Marker for Identifying Pre-Diabetes, Insulin Sensitivity and Secretion, and Cardiovascular Risk Factors. Diabetes Care 2010, 33, 2104–2109. [Google Scholar] [CrossRef] [PubMed]
- Færch, K.; Johansen, N.B.; Witte, D.R.; Lauritzen, T.; Jørgensen, M.E.; Vistisen, D. Relationship between insulin resistance and β-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J. Clin. Endocrinol. Metab. 2015, 100, 707–716. [Google Scholar] [CrossRef]
- Joseph, J.S.; Anand, K.; Malindisa, S.T.; Oladipo, A.O.; Fagbohun, O.F. Exercise, CaMKII, and type 2 diabetes. EXCLI J. 2021, 20, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; Heintz, E.C.; Rebello, C.J.; Axelrod, C.L. Exercise in the Prevention and Treatment of Type 2 Diabetes. Compr. Physiol. 2023, 13, 4559–4585. [Google Scholar] [CrossRef]
- Wang, Y.; Simar, D.; Fiatarone Singh, M.A. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: A systematic review. Diabetes Metab. Res. Rev. 2009, 25, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Holloszy, J.O. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol. 2005, 99, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S. Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: A meta-analysis of randomized-controlled trials. Public Health 2007, 121, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Pruchnic, R.; Katsiaras, A.; He, J.; Kelley, D.E.; Winters, C.; Goodpaster, B.H. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E857–E862. [Google Scholar] [CrossRef]
- Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med. Sci. Sports Exerc. 2022, 54, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Morrato, E.H.; Hill, J.O.; Wyatt, H.R.; Ghushchyan, V.; Sullivan, P.W. Are Health Care Professionals Advising Patients With Diabetes or At Risk for Developing Diabetes to Exercise More? Diabetes Care 2006, 29, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Mendes de Lima, S.K.; Lima, F.L.; Maia, L.Y.; Mauricio Lopes, M.L.; Maia, A.N.; Lima Matos, T. Prática da hidroginástica como ferramenta de promoção da saúde cardiovascular. Cad. ESP 2023, 17, e1742. [Google Scholar] [CrossRef]
- Nugent, B.M.; Madabushi, R.; Buch, B.; Peiris, V.; Crentsil, V.; Miller, V.M.; Bull, J.R.; Jenkins, M. Heterogeneity in treatment effects across diverse populations. Pharm. Stat. 2021, 20, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Siopis, G.; Jung, J.; Eweka, E.; Willems, R.; Kwasnicka, D.; Asare, B.Y.; Kodithuwakku, V.; Verhaeghe, N.; Vedanthan, R.; et al. Effectiveness, reach, uptake, and feasibility of digital health interventions for adults with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Lancet Digit. Health 2023, 5, e125–e143. [Google Scholar] [CrossRef]
- Sheng, Z.; Cao, J.Y.; Pang, Y.C.; Xu, H.C.; Chen, J.W.; Yuan, J.H.; Wang, R.; Zhang, C.S.; Wang, L.X.; Dong, J. Effects of Lifestyle Modification and Anti-diabetic Medicine on Prediabetes Progress: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2019, 10, 455. [Google Scholar] [CrossRef]
- Von Walden, F.; Gidlund, E.K.; Venojarvi, M.; Heinonen, O.; Norrbom, J.; Sundberg, C.J. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. FASEB J. 2017, 31, 1020.4. [Google Scholar] [CrossRef]
- O’Gorman, D.J.; Krook, A. Exercise and the treatment of diabetes and obesity. Med. Clin. N. Am. 2011, 95, 953–969. [Google Scholar] [CrossRef]
First Author, Year | Sample Size | Age (Years, Mean ± SD) | Gender (F/M) | Exercise Type | Exercise Frequency | Exercise Duration (min/Day) | Weekly Exercise Duration (min/Week) | Weekly Exercise Volume (MET.min/Week) | Intervention Duration | Exercise Intensity | Classification of Exercise Type |
---|---|---|---|---|---|---|---|---|---|---|---|
Zhou et al., 2011 [21] | 58 | 65.6 ± 11.9 | 36/22 | Aerobic exercise methods such as walking, jogging, boxing, dancing, etc. | ≥5 times/week | ≥40 min/day | ≥200 | / | 24 weeks | Low strength | Acyclic |
Yuan et al., 2020 [22] | 83 | 60.93 ± 5.71 | 59/24 | Jogging | 3 times/week | 60 min/day | 180 | 1080 | 24 weeks | HRmax 60–70% | Cyclic |
Yan et al., 2019 [23] | 35 | 64.23 ± 5.75 | 25/10 | Aerobic exercises (aerobic dancing) | 3 times/week | 60 min/day | 180 | 1314 | 48 weeks | HRmax 60–70% | Acyclic |
Slentz et al., 2016 [24] | 61 | \ | \ | Treadmills, cycle, and rowing | 6 h/week | / | 360 | 42 | 24 weeks | 50%VO2; 75%VO2 | Cyclic |
Ma et al., 2022 [25] | 44 | \ | \ | Moderate-intensity aerobic exercise, mainly rhythmic exercises and square dances | Once/2 day | 60 min/day | 210 | 1323 | 48 weeks | HRmax 40–60% | Acyclic |
Luo et al., 2023 [26] | 27 | \ | \ | Walking or running, combined with aerobic gymnastics and swimming | 3 times/week | 50 min/day | 150 | / | 12 weeks | 40–49% VO2 (1–4); 50–59% VO2 (5–12) | Cyclic |
Liu et al., 2021 [27] | 43 | 60.35 ± 4.29 | 40/3 | Aerobic dancing | 3 times/week | 60 min/day | 180 | 1314 | 48 weeks | HRmax 60–70% | Acyclic |
Liao et al., 2015 [28] | 60 | 42.4 ± 5.8 | 27/33 | Moderate aerobic exercise (jogging or brisk walking) | ≥5 times/week | ≥30 min/day | ≥150 | ≥975 | 12 weeks | moderate intensity | Cyclic |
Kargarfard et al., 2022 [29] | 25 | \ | \ | Walking and jogging on treadmill | 3 times/week | 60 min/day | 180 | 1080 | 12 weeks | HRmax 50–60% | Cyclic |
He et al., 2022 [30] | 83 | 60.93 ± 5.71 | 59/24 | Aerobic exercises (dancing with music) | 3 times/week | 60 min/day | 180 | 1314 | 96 weeks | HRmax 60–70% | Acyclic |
Chen et al., 2021 [31] | 83 | 60.93 ± 5.71 | 59/24 | Aerobic dancing | 3 times/week | 60 min/day | 180 | 1314 | 96 weeks | HRmax 60–70% | Acyclic |
Badaam et al., 2021 [32] | 80 | 30.7 ± 3.3 | \ | Moderate intensity (brisk walking) | 5 times/week | 30 min/day | 150 | 975 | 12 weeks | Moderate intensity | Cyclic |
Chattopadhyay et al., 2023 [33] | 25 | 41.3 ± 7.4 | \ | Yoga | 2 times/week | 45 min/day (1–4 week) 75 min (5 week+) | / | / | 24 weeks | Low intensity | other |
Savoye et al., 2014 [34] | 31 | 12.7 ± 1.9 | 21/10 | A warm-up, high-intensity, and cool-down period. High-intensity exercises consisted of typical children’s games | 2 times/week | 50 min/day | 100 | / | 24 weeks | High intensity | other |
Gidlund et al., 2016 [35] | 17 | 56 ± 5.6 | 0/17 | Nordic Walking | 3 times/week | 60 min/day | 180 | / | 12 weeks | 1–4 week at 55%, 5–8 week at 65%, and 9–12 week at 75% | Cyclic |
Sawangwong et al., 2023 [36] | 31 | 49.31 ± 13.01 | 8/23 | Traditional Thai Exercise (Ruesi Dadton) | 3 times/week | 60 min/day | 180 | / | 12 weeks | Low intensity | other |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Ye, Z.; Lu, Q.; Cheng, P.; Gao, Q. Effect of Aerobic Exercise on Blood Glucose Among Those with Prediabetes: A Systematic Review and Meta-Analysis. Life 2025, 15, 32. https://doi.org/10.3390/life15010032
Jiang T, Ye Z, Lu Q, Cheng P, Gao Q. Effect of Aerobic Exercise on Blood Glucose Among Those with Prediabetes: A Systematic Review and Meta-Analysis. Life. 2025; 15(1):32. https://doi.org/10.3390/life15010032
Chicago/Turabian StyleJiang, Tianyi, Zichen Ye, Qu Lu, Peixia Cheng, and Qi Gao. 2025. "Effect of Aerobic Exercise on Blood Glucose Among Those with Prediabetes: A Systematic Review and Meta-Analysis" Life 15, no. 1: 32. https://doi.org/10.3390/life15010032
APA StyleJiang, T., Ye, Z., Lu, Q., Cheng, P., & Gao, Q. (2025). Effect of Aerobic Exercise on Blood Glucose Among Those with Prediabetes: A Systematic Review and Meta-Analysis. Life, 15(1), 32. https://doi.org/10.3390/life15010032