Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Establishment
2.3. Measurement of Tree Diameter and Height
2.4. Taxonomic Identification and Classification into Functional Groups
2.5. Estimation and Classification of Wood Density
2.6. Soil Analysis
2.7. Forest AB Estimation
2.8. General Data Analysis
3. Results
4. Discussion
4.1. Aboveground Biomass of Trees in Primary Forests and Forests Degraded by Mining in Chocó
4.2. Influence of Environmental Factors on Aboveground Biomass in Forests and Areas Degraded by Mining in Chocó
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Chave, J.; Condit, R.; Muller-Landau, H.C.; Thomas, S.C.; Ashton, P.S.; Bunyavejchewin, S.; Co, L.L.; Dattaraja, H.S.; Davies, S.J.; Esufali, S.; et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 2008, 6, e45. [Google Scholar] [CrossRef]
- Asner, G.P.; Hughes, R.F.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rainforest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcón, A.; Álvarez-Sánchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzmán, G.; Boit, A.; et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Oberleitner, F.; Egger, C.; Oberdorfer, S.; Dullinger, S.; Wanek, W.; Hietz, P. Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. For. Ecol. Manag. 2021, 479, 118580. [Google Scholar] [CrossRef]
- Poveda, I.C.; Rojas, C.; Rudas, A.; Rangel, O. El Chocó biogeográfico: Ambiente Físico. In Colombia Diversidad Biótica IV. El Chocó biogeográfico/Costa Pacífica; Rangel, O., Ed.; Instituto de Ciencias Naturales, Universidad Nacional de Colombia sede Bogotá: Santa Fe de Bogotá, Colombia, 2004; pp. 1–21. [Google Scholar]
- Faber-Langendoen, D.; Gentry, A. The structure and diversity of rain forests at Bajo Calima, Chocó Region, Western Colombia. Biotropica 1991, 23, 2–11. [Google Scholar] [CrossRef]
- Quinto-Mosquera, H.; Moreno, F. Net Primary Productivity and Edaphic Fertility in Two Pluvial Tropical Forests in the Chocó Biogeographical Region of Colombia. PLoS ONE 2017, 12, e0168211. [Google Scholar] [CrossRef]
- Instituto de Investigaciones Ambientales del Pacífico IIAP. Plan Integral de Cambio Climático del Departamento del Chocó (PICC-Chocó); Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigaciones Ambientales del Pacífico IIAP: Quibdó, Colombia, 2015; 211p. [Google Scholar]
- Quinto-Mosquera, H.; Cuesta-Nagles, J.; Mosquera-Sánchez, I.; Palacios-Hinestroza, L.; Peñaloza, H. Biomasa vegetal en zonas degradadas por minería en un bosque pluvial tropical del Chocó Biogeográfico. Rev. Biodivers. Neotrop. 2013, 3, 53–64. [Google Scholar] [CrossRef]
- Quinto-Mosquera, H.; Hurtado, D.; Arboleda, J. Influencia de las condiciones edáficas sobre la dominancia y diversidad de árboles en bosques pluviales tropicales del Chocó biogeográfico. Rev. Biol. Trop. 2019, 67, 1278–1291. [Google Scholar] [CrossRef]
- Baker, T.R.; Phillips, O.L.; Malhi, Y.; Almeida, S.; Arroyo, L.; Di Fiore, A.; Erwin, T.; Killeen, T.J.; Laurance, S.G.; Laurance, W.F.; et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 2004, 10, 545–562. [Google Scholar] [CrossRef]
- Álvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree aboveground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Phillips, J.F.; Duque, A.J.; Yepes, A.P.; Cabrera, K.R.; García, M.C.; Navarrete, D.A.; Álvarez, E.; Cárdenas, D. Estimación de las Reservas Actuales (2010) de Carbono Almacenadas en la Biomasa Aérea en Bosques Naturales de Colombia. Estratificación, Alometría y Métodos Analíticos; Instituto de Hidrología, Meteorología, y Estudios Ambientales—IDEAM: Bogotá, Colombia, 2011; 68p.
- Kalamandeen, M.; Gloor, E.; Johnson, I.; Agard, S.; Katow, M.; Vanbrooke, A.; Ashley, D.; Batterman, S.A.; Ziv, G.; Holder-Collins, K.; et al. Limited biomass recovery from gold mining in Amazonian forests. J. Appl. Ecol. 2020, 57, 1730–1740. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Muller-Landau, H.C.; Rahman, K.A.; Bebber, D.P.; Bin, Y.; Bohlman, S.A.; Bourg, N.A.; Brinks, J.; Bunyavejchewin, S.; Butt, N.; et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013, 101, 1214–1224. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Schuur, E.A. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 2003, 84, 1165–1170. [Google Scholar] [CrossRef]
- Austin, A.; Vitousek, P. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 1998, 113, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Aragão, L.E.O.; Malhi, Y.; Metcalfe, D.B.; Silva-Espejo, J.E.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A.C.L.; Salinas, N.; Phillips, O.L.; et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 2009, 6, 2441–2488. [Google Scholar] [CrossRef]
- Paoli, G.D.; Curran, L.M.; Zak, D.R. Phosphorus efficiency of aboveground productivity in Bornean rain forest: Evidence against the unimodal efficiency hypothesis. Ecology 2005, 86, 1548–1561. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R.; Taylor, P.; Alvarez-Clare, S.; Bustamante, M.; Chuyong, G.; Dobrowski, S.Z.; Grierson, P.; Harms, K.E.; Houlton, B.Z.; et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis. Ecol. Lett. 2011, 14, 939–947. [Google Scholar] [CrossRef] [PubMed]
Location | Pacurita | Opogodó | Jigualito | |
---|---|---|---|---|
Ecosystem Type | Primary Forests | Abandoned Mine | ||
Succession Time (Years) | ≈300 | 15 | 30 | |
Average tree diameter in quadrat | 15.99 | 16.86 | 5.57 | 13.89 |
Average tree height in quadrat | 15.44 | 15.83 | 7.46 | 13.44 |
Richness | 22.96 | 19.11 | 5.56 | 8.68 |
Abundance | 37.82 | 30.64 | 11.12 | 17.36 |
Simpson diversity | 0.06 | 0.08 | 0.31 | 0.31 |
Shannon | 2.97 | 2.77 | 1.42 | 1.44 |
Margalef | 6.07 | 5.31 | 1.75 | 1.73 |
Berger–Parker index | 0.13 | 0.15 | 0.44 | 0.43 |
pH | 4.03 | 4.98 | 4.64 | 4.47 |
Organic matter (%) | 4.07 | 11.94 | 5.07 | 10.26 |
Phosphorus (ppm) | 1.37 | 1.33 | 30.73 | 26.16 |
Total nitrogen (%) | 0.20 | 0.61 | 0.23 | 0.40 |
Aluminum (cmol/kg) | 0.94 | 0.13 | 2.84 | 3.29 |
Calcium (cmol/kg) | 0.35 | 0.39 | 1.28 | 2.85 |
Magnesium (cmol/kg) | 0.18 | 0.28 | 1.35 | 1.60 |
Potassium (cmol/kg) | 0.17 | 0.23 | 0.51 | 0.34 |
ECEC (cmol/kg) | 1.65 | 1.03 | 5.71 | 8.40 |
Sand (%) | 53.36 | 85.72 | 66.08 | 73.41 |
Silt (%) | 28.12 | 13.24 | 23.84 | 20.35 |
Clay (%) | 18.52 | 1.04 | 10.08 | 6.06 |
Forest Type | Aboveground Biomass | Mann–Whitney Test |
---|---|---|
Primary forests | 178.32 ± 13.29 a | 9.405 *** |
Successional forests (mines) | 45.73 ± 3.5 b | |
Succession Duration (years) | Aboveground Biomass | Kruskal–Wallis Test |
15 years (abandoned mines) | 35.17 ± 5.6 b | 90.25 *** |
30 years (abandoned mines) | 56.3 ± 3.05 b | |
300 years (forest) | 178.32 ± 13.29 a | |
Location | Aboveground Biomass | Kruskal–Wallis Test |
Pacurita (forest) | 214.82 ± 26.98 a | 94.38 *** |
Opogodó (forest) | 153.98 ± 12.33 b | |
Jigualito (abandoned mines) | 45.73 ± 3.5 c |
Sum of Squares | Gf | Middle Square | F Test | p-Value | |
---|---|---|---|---|---|
Model | 1.40584 × 106 | 9 | 156,205 | 12.94 | 0.0000 |
Residue | 1.9915 × 106 | 165 | 12,069.7 | ||
Total (Corr.) | 3.39735 × 106 | 174 | |||
Sum of Squares | Gf | Middle Square | F Test | p-Value | |
Ecosystem type | 37,957.9 | 1 | 37,957.9 | 3.14 | 0.0780 |
Average diameter | 85,029.3 | 1 | 85,029.3 | 7.04 | 0.0087 |
Average height | 2585.05 | 1 | 2585.05 | 0.21 | 0.6441 |
Richness | 73,722.9 | 1 | 73,722.9 | 6.11 | 0.0145 |
Abundance | 17,289.0 | 1 | 17,289.0 | 14.32 | 0.0002 |
Dominance Simpson | 8010.23 | 1 | 8010.23 | 0.66 | 0.4164 |
Shannon | 47,677.5 | 1 | 47,677.5 | 3.95 | 0.0485 |
Margalef | 18,044.3 | 1 | 18,044.3 | 14.95 | 0.0002 |
Berger–Parker | 427.072 | 1 | 427.072 | 0.04 | 0.8510 |
Residue | 1.9915 × 106 | 165 | 12,069.7 | ||
Total (Corr.) | 3.39735 × 106 | 174 |
Sum of Squares | Gf | Middle Square | F Test | p-Value | |
---|---|---|---|---|---|
Model | 1.22119 × 106 | 4 | 30,529.8 | 24.45 | 0.0000 |
Residue | 1.41114 × 106 | 113 | 12,487.9 | ||
Total (Corr.) | 2.63233 × 106 | 117 | |||
Parameter | Estimate | Standard Error | T Test | p-Value | |
Constant | 3032.31 | 1022.98 | 2.9642 | 0.0037 | |
Average tree height | 59.1381 | 8.07487 | 7.32372 | 0.0000 | |
Richness | 71.6219 | 11.2447 | 6.36938 | 0.0000 | |
Dominance | −7496.03 | 2399.16 | −3.12444 | 0.0023 | |
Shannon’s diversity | −1660.65 | 381.752 | −4.35007 | 0.0000 |
Sum of Squares | Gf | Middle Square | F Test | p-Value | |
---|---|---|---|---|---|
Model | 15,812.3 | 4 | 3953.08 | 10.77 | 0.0000 |
Residue | 10,648.2 | 29 | 367.18 | ||
Total (Corr.) | 26,460.5 | 33 | |||
Parameter | Estimate | Standard Error | T Test | p-Value | |
Constant | −35.3703 | 18.2267 | −1.94058 | 0.0621 | |
Richness | 8.66422 | 2.02823 | 4.27182 | 0.0002 | |
Shannon | 79.2255 | 29.0122 | 2.73077 | 0.0106 | |
Margalef | −57.0007 | 17.2118 | −3.31172 | 0.0025 | |
Silt | 0.422064 | 0.20531 | 2.05574 | 0.0489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abadía, D.P.; Mosquera, H.Q.; Arco, J.M.D. Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó. Life 2025, 15, 98. https://doi.org/10.3390/life15010098
Abadía DP, Mosquera HQ, Arco JMD. Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó. Life. 2025; 15(1):98. https://doi.org/10.3390/life15010098
Chicago/Turabian StyleAbadía, David Pérez, Harley Quinto Mosquera, and José María Del Arco. 2025. "Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó" Life 15, no. 1: 98. https://doi.org/10.3390/life15010098
APA StyleAbadía, D. P., Mosquera, H. Q., & Arco, J. M. D. (2025). Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó. Life, 15(1), 98. https://doi.org/10.3390/life15010098