Low DLCO Can Provide Insights into Treatment Response in PAH Patients Irrespective of the Reason for Its Decrease
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Stacher, E.; Graham, B.B.; Hunt, J.M.; Gandjeva, A.; Groshong, S.D.; McLaughlin, V.V.; Jessup, M.; Grizzle, W.E.; Aldred, M.A.; Cool, C.D.; et al. Modern age pathology of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 261–272. [Google Scholar] [CrossRef]
- Tuder, R.M.; Archer, S.L.; Dorfmüller, P.; Erzurum, S.C.; Guignabert, C.; Michelakis, E.; Rabinovitch, M.; Schermuly, R.; Stenmark, K.R.; Morrell, N.W.; et al. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D4–D12. [Google Scholar] [CrossRef]
- Coghlan, J.G.; Galiè, N.; Barberà, J.A.; Frost, A.E.; Ghofrani, H.A.; Hoeper, M.M.; Kuwana, M.; McLaughlin, V.V.; Peacock, A.J.; Simonneau, G.; et al. Initial combination therapy with ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH): Subgroup analysis from the AMBITION trial. Eur. Respir. J. 2017, 50, 1700348. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Blair, C.; Takahashi, T.; Langley, J.; Coghlan, J.G. Efficacy and safety of selexipag for the treatment of connective tissue disease-associated pulmonary arterial hypertension: Results from the randomized controlled GRIPHON study. Eur. Respir. J. 2017, 50, 1602493. [Google Scholar]
- Cenci, M.; Manetti, M.; Romano, E.; Radicchi, C.; D’Alessandro, R.; Guiducci, S.; Agostini, C.; Matucci-Cerinic, M.; Smith, V.; Nihtyanova, S.I.; et al. Treatment of pulmonary arterial hypertension in patients with connective tissue diseases: A systematic review and meta-analysis. Intern. Emerg. Med. 2024, 19, 1537–1551. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.-L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.J.; Davie, A.; Souza, R.; et al. Pulmonary arterial hypertension associated with connective tissue disease. Eur. Respir. J. 2009, 34, 1219–1266. [Google Scholar] [CrossRef]
- Yang, X.; Mardekian, J.; Sanders, K.N.; Mychaskiw, M.A.; Thomas, J., III. Prevalence of pulmonary arterial hypertension in patients with connective tissue diseases: A systematic review of the literature. Arthritis Rheum. 2013, 65, 845–854. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; MacIntyre, N.; Wanger, J.; Zapletal, A.; Barjaktarevic, I.Z.; et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef]
- Sun, X.G.; Hansen, J.E.; Oudiz, R.J.; Wasserman, K.; Stringer, W.; Casaburi, R.; Beck, K.C.; Cooper, D.M.; Hansen, G.; Whipp, B.J.; et al. Pulmonary function in primary pulmonary hypertension. J. Am. Coll. Cardiol. 2003, 41, 1028–1035. [Google Scholar] [CrossRef]
- Raina, A.; Humbert, M. Risk assessment in pulmonary arterial hypertension. Eur. Respir. Rev. 2016, 25, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.M.B.; Pride, N.B. In defence of the carbon monoxide transfer coefficient KCO (TL/VA). Eur. Respir. J. 2001, 17, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.S.; Smith, K.A. The pulmonary hypertension consult: Clinical and coding considerations. Chest 2016, 150, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Coghlan, J.G.; Denton, C.P.; Grünig, E.; Bonderman, D.; Distler, O.; Khanna, D.; Müller-Ladner, U.; Pope, J.E.; Vonk, M.C.; Doelberg, M.; et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: The DETECT study. Ann. Rheum. Dis. 2014, 73, 1340–1349. [Google Scholar] [CrossRef]
- Allanore, Y.; Borderie, D.; Avouac, J.; Zerkak, D.; Meune, C.; Hachulla, E.; Mouthon, L.; Guillevin, L.; Meyer, O.; Ekindjian, O.G.; et al. High N-terminal pro-brain natriuretic peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis Rheum. 2008, 58, 284–291. [Google Scholar] [CrossRef]
- Khanna, D.; Gladue, H.; Channick, R.; Chung, L.; Distler, O.; Furst, D.E.; Hachulla, E.; Humbert, M.; Langleben, D.; Mathai, S.C.; et al. Recommendations for Screening and Detection of Connective-Tissue Disease Associated Pulmonary Arterial Hypertension. Arthritis Rheum. 2013, 65, 3194–3201. [Google Scholar] [CrossRef]
- Suda, R.; Tanabe, N.; Ishida, K.; Kato, F.; Urushibara, T.; Sekine, A.; Nishimura, R.; Jujo, T.; Sugiura, T.; Shigeta, A.; et al. Prognostic and pathophysiological marker for patients with chronic thromboembolic pulmonary hypertension: Usefulness of diffusing capacity for carbon monoxide at diagnosis. Respirology 2017, 22, 179–186. [Google Scholar] [CrossRef]
- Benza, R.L.; Miller, D.P.; Gomberg-Maitland, M.; Frantz, R.P.; Foreman, A.J.; Coffey, C.S.; Frost, A.; Barst, R.J.; Badesch, D.B.; Elliott, C.G.; et al. Predicting survival in pulmonary arterial hypertension: Insights from the registry to evaluate early and longterm pulmonary arterial hypertension disease management (REVEAL). Circulation 2010, 122, 164–172. [Google Scholar] [CrossRef]
- Chandra, S.; Shah, S.J.; Thenappan, T.; Archer, S.L.; Rich, S.; Gomberg-Maitland, M. Carbon monoxide diffusing capacity and mortality in pulmonary arterial hypertension. J. Heart Lung Transpl. 2010, 29, 181–187. [Google Scholar] [CrossRef]
- Diamanti, E.; Karava, V.; Yerly, P.; Aubert, J.D. Carbon monoxide diffusion capacity as a severity marker in pulmonary hypertension. J. Clin. Med. 2022, 11, 132. [Google Scholar] [CrossRef]
- Lefèvre, G.; Dauchet, L.; Hachulla, E.; Montani, D.; Sobanski, V.; Lambert, M.; Hatron, P.Y.; Launay, D.; Humbert, M. Survival and prognostic factors in systemic sclerosis-associated pulmonary hypertension: A systematic review and meta-analysis. Arthritis Rheum. 2013, 65, 2412–2423. [Google Scholar] [CrossRef]
- Stadler, S.; Mergenthaler, N.; Lange, T.J. The prognostic value of DLCO and pulmonary blood flow in patients with pulmonary hypertension. Pulm. Circ. 2019, 9, 2045894019894531. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Dwivedi, K.; Pausch, C.; Lewis, R.A.; Olsson, K.M.; Huscher, D.; Pittrow, D.; Grünig, E.; Staehler, G.; Vizza, C.D.; et al. Phenotyping of idiopathic pulmonary arterial hypertension: A registry analysis. Lancet Respir. Med. 2022, 10, 937–948. [Google Scholar] [CrossRef] [PubMed]
- van der Bruggen, C.E.; Spruijt, O.A.; Nossent, E.J.; Trip, P.; Marcus, J.T.; de Man, F.S.; Bogaard, H.J.; Vonk Noordegraaf, A. Treatment response in patients with idiopathic pulmonary arterial hypertension and a severely reduced diffusion capacity. Pulm. Circ. 2017, 7, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A. Revised Definition of Pulmonary Hypertension and Approach to Management: A Clinical Primer. J. Am. Heart Assoc. 2023, 12, e029024. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Trip, P.; Nossent, E.J.; De Man, F.S.; van den Berk, I.A.H.; Boonstra, A.; Groepenhoff, H.; Leter, E.; Westerhof, N.; Bogaard, H.J.; Vonk-Noordegraaf, A. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: Patient characteristics and treatment responses. Eur. Respir. J. 2013, 42, 1575–1585. [Google Scholar] [CrossRef]
- Schuster, D.P.; Crouch, E.C.; Parks, W.C.; Johnson, K.J. Angiotensin converting enzyme expression in primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1996, 154, 1087–1091. [Google Scholar] [CrossRef]
- Orte, C.; Polak, J.M.; Haworth, S.G.; Yacoub, M.H.; Morrell, N.W. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J. Pathol. 2000, 192, 379–384. [Google Scholar] [CrossRef]
- Qing, F.; McCarthy, T.J.; Markham, J.; Schuster, D.P. Pulmonary angiotensin-converting enzye (ACE) binding and inhibition in humans. Am. J. Respir. Crit. Care Med. 2000, 161, 2019–2025. [Google Scholar] [CrossRef]
- Pietra, G.G.; Capron, F.; Stewart, S.; Leone, O.; Humbert, M.; Robbins, I.M.; Reid, L.M.; Tuder, R.M. Pathologic assessment of vasculopathies in pulmonary hypertension. J. Am. Coll. Cardiol. 2004, 43, 25–32S. [Google Scholar] [CrossRef] [PubMed]
- Langleben, D.; Orfanos, S.E.; Giovinazzo, M.; Hirsch, A.; Baron, M.; Correa, R.; Côté, H.; Diaz, J.; Galiè, N. Severity in Pulmonary Arterial Hypertension Related to Connective Tissue Disease Versus Idiopathic Pulmonary Arterial Hypertension. Arthritis Rheum. 2008, 58, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Pausch, C.; Grünig, E.; Huscher, D.; Pittrow, D.; Olsson, K.M.; Vizza, C.D.; Gall, H.; Distler, O.; Opitz, C. Idiopathic pulmonay arterial hypertension phenotypes determined by cluster analysis from the COMPERA registry. J. Heart Lung Transplant. 2020, 39, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Seimetz, M.; Parajuli, N.; Pichl, A.; Veit, F.; Kwapiszewska, G.; Weisel, F.C.; Milger, K.; Egemnazarov, B.; Turowska, A.; Fysikopoulos, A.; et al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 2011, 147, 293–305. [Google Scholar] [CrossRef]
- DesJardin, J.T.; Kime, N.; Kolaitis, N.A.; Shah, S.J.; Ventetuolo, C.E.; Maron, B.A.; Minhas, J.; Mathai, S.C.; Ryan, J.J.; Maron, M.S.; et al. Investigating the “sex paradox” in pulmonary arterial hypertension: Results from the Pulmonary Hypertension Association Registry (PHAR). J. Heart Lung Transplant. 2024, 43, 901–910. [Google Scholar] [CrossRef]
- Ventetuolo, C.E.; Moutchia, J.; Baird, G.L.; Minhas, J.; Kawut, S.M.; Ryan, J.J.; Mathai, S.C.; Zamanian, R.T.; Rosenzweig, E.B.; Lahm, T.; et al. Baseline Sex Differences in Pulmonary Arterial Hypertension Randomized Clinical Trials. Ann. Am. Thorac. Soc. 2023, 20, 58–66. [Google Scholar] [CrossRef]
- Tello, K.; Richter, M.J.; Yogeswaran, A.; Ghofrani, H.A.; Naeije, R.; Vanderpool, R.; Grünig, E.; Seeger, W.; Gall, H.; Sommer, N.; et al. Sex Differences in Right Ventricular- Pulmonary Arterial Coupling in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2020, 202, 1042–1046. [Google Scholar] [CrossRef]
- Rubenfire, M.; Huffman, M.D.; Krishnan, S.; Seibold, J.R.; Schiopu, E.; McLaughlin, V.V.; White, B.; Bolster, M.; Steen, V.; Hsu, V.M.; et al. Survival in systemic sclerosis with pulmonary arterial hypertension has not improved in the modern era. Chest 2013, 144, 1282–1290. [Google Scholar] [CrossRef]
- Chung, L.; Liu, J.; Parsons, L.; Hassoun, P.M.; McGoon, M.; Badesch, D.B.; Miller, D.P.; Nicolls, M.R.; Zamanian, R.T. Characterization of connective tissue diseaseas sociated pulmonary arterial hypertension from REVEAL: Identifying systemic sclerosis as a unique phenotype. Chest 2010, 138, 1383–1394. [Google Scholar] [CrossRef]
- Rhee, R.L.; Gabler, N.P.; Sanganie, S.; Praestgaard, A.; Merkel, P.A.; Kawut, S.M. Comparison of Treatment Response in Idiopathic and Connective Tissue Disease–associated Pulmonary ArterialHypertension. Am. J. Respir. Crit. Care Med. 2015, 192, 1111–1117. [Google Scholar] [CrossRef]
- Avouac, J.; Wipff, J.; Kahan, A.; Allanore, Y. Effects of oral treatments on exercise capacity in systemic sclerosis related pulmonary arterial hypertension: A meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 2008, 67, 808–814. [Google Scholar] [CrossRef]
- Chauvelot, L.; Gamondes, D.; Berthiller, J.; Launay, D.; Hatron, P.Y.; Sobanski, V.; Hachulla, E.; Montani, D.; Sitbon, O.; Weatherald, J.; et al. Hemodynamic Response to Treatment and Outcomes in Pulmonary Hypertension Associated With Interstitial Lung Disease Versus Pulmonary Arterial Hypertension in Systemic Sclerosis: Data From a Study Identifying Prognostic Factors in Pulmonary Hypertension Associated With Interstitial Lung Disease. Arthritis Rheumatol. 2021, 73, 295–304. [Google Scholar]
- Lewis, R.A.; Thompson, A.A.R.; Billings, C.G.; Charalampopoulos, A.; Elliot, C.A.; Gin-Sing, W.; Good, R.; Harries, C.; Hurdman, J.; Jacobs, M.; et al. Mild parenchymal lung disease and/or low diffusion capacity impacts survival and treatment response in patients diagnosed with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2020, 55, 2000041. [Google Scholar] [CrossRef]
Group 1 (n = 33) | Group 2 (n = 36) | p | |
---|---|---|---|
IPAH%/PAH-CTD% | 32/63 | 39/61 | 0.560 |
Age years | 59.27 ± 11.90 | 66.83 ± 11.61 | 0.035 |
Male % | 12 | 47 | 0.008 |
BMI kg/m2 | 28.32 (26.14–34.01) | 25.81 (23.55–30.68) | 0.128 |
WHO-FC | 0.016 | ||
WHO-FCII % | 68 | 30 | |
WHO-FCIII % | 32 | 61 | |
WHO-FCIV % | 0 | 9 | |
Ever smokers % | 22 | 59 | 0.049 |
Comorbidities % | 32 | 43.5 | 0.632 |
PFTs | |||
FEV1 %pred | 90 (74.2–105.8) | 81.6 (59.3–92.0) | 0.073 |
FVC %pred | 99 (79.3–103.6) | 92 (60.6–100.0) | 0.189 |
FEV1/FVC % | 79.8 (75–84) | 74 (65–82.6) | 0.044 |
TLC %pred | 83.9 (76.8–91.4) | 68.8 (56.0–78.0) | 0.002 |
6MWD m | 417.88 ± 77.61 | 285.45 ± 125.54 | 0.001 |
NT-proBNP pg/mL | 939.00 ± 1565.54 | 1126.22 ± 1491.42 | 0.452 |
Treatment | 0.208 | ||
Monotherapy (PDE5i or ERA) | 21% | 8% | |
Double oral combination (PDE5i/sGC stimulator + ERA) | 63% | 52% | |
Triple combination therapy (PDE5i/sGC stimulator + ERA + prostanoid) | 16% | 40% |
Group 1 | Group 2 | p | |
---|---|---|---|
RHC | |||
RAP mmHg | 7.05 ± 0.75 | 6.18 ± 0.74 | 0.405 |
Mean PAP mmHg | 32 (22.00–38.00) | 35 (28.50–48.50) | 0.063 |
PAWP mmHg | 11.00 ± 0.98 | 9.90 ± 2.67 | 0.317 |
PVR WU | 3.61 (2.95–5.22) | 6.49 (4.10–9.52) | 0.006 |
CI L/min/m2 | 2.58 ± 0.79 | 2.30 ± 0.58 | 0.077 |
SVI mL/m2 | 40.28 ± 13.24 | 30.88 ± 7.33 | 0.028 |
Echocardiography | |||
TAPSE mm | 22 (20.5–24) | 18 (16.5–20) | 0.003 |
RVSP mmHg | 50.26 ± 20.96 | 62.55 ± 18.10 | 0.059 |
TAPSE/RVSP mm/mmHg | 0.48 ± 0.17 | 0.32 ± 0.14 | 0.004 |
TRVmax m/s | 3.23 ± 0.64 | 3.64 ± 0.55 | 0.039 |
RA cm2 | 19.18 ±6.81 | 19.35 ± 5.27 | 0.939 |
Pad mm | 24.76 ± 5.37 | 28.22 ± 3.37 | 0.032 |
WHO-FC | Before Treatment | After Treatment | p |
---|---|---|---|
group 1 | 0.023 | ||
WHO-FCII | 68% | 76% | |
WHO-FCIII | 32% | 24% | |
WHO-FCIV | 0% | 0% | |
group 2 | 0.19 | ||
WHO-FCII | 30% | 30% | |
WHO-FCIII | 61% | 62% | |
WHO-FCIV | 9% | 8% |
6MWD m | Before Treatment | After Treatment | p |
---|---|---|---|
group 1 | 417.88 ± 77.61 | 457.77 ± 56.17 | 0.023 |
group 2 | 285.45 ± 125.54 | 294.63 ± 132.18 | 0.834 |
group 2 IPAH | 215.75 ± 167.24 | 198.75 ± 123.31 | 0.899 |
group 2 PAH-CTD | 325.28 ± 84.6 | 346.57 ± 70.10 | 0.201 |
NT-proBNP pg/mL | Before Treatment | After Treatment | p |
---|---|---|---|
group 1 | 558.70. ± 647.73 | 358.48 ± 204.83 | 0.045 |
group 2 | 1126.22 ± 1491.42 | 1476.13 ± 2117.22 | 0.210 |
group 2 IPAH | 1232 ± 1077.96 | 1465 ± 949.51 | 0.155 |
group 2 PAH-CTD | 1051.79 ± 1778.97 | 993.83 ± 1770.33 | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, E.; Orfanos, S.E.; Grigoropoulos, V.; Fasfali, D.; Mpatsouli, A.; Zimpounoumi-Keratsa, N.P.; Niarchou, P.; Megarisiotou, A.; Prappa, E.; Xydonas, S.; et al. Low DLCO Can Provide Insights into Treatment Response in PAH Patients Irrespective of the Reason for Its Decrease. Life 2025, 15, 1551. https://doi.org/10.3390/life15101551
Dima E, Orfanos SE, Grigoropoulos V, Fasfali D, Mpatsouli A, Zimpounoumi-Keratsa NP, Niarchou P, Megarisiotou A, Prappa E, Xydonas S, et al. Low DLCO Can Provide Insights into Treatment Response in PAH Patients Irrespective of the Reason for Its Decrease. Life. 2025; 15(10):1551. https://doi.org/10.3390/life15101551
Chicago/Turabian StyleDima, Effrosyni, Stylianos E. Orfanos, Vasileios Grigoropoulos, Dimitra Fasfali, Athina Mpatsouli, Natalia P. Zimpounoumi-Keratsa, Panagioula Niarchou, Athanasia Megarisiotou, Efstathia Prappa, Sotirios Xydonas, and et al. 2025. "Low DLCO Can Provide Insights into Treatment Response in PAH Patients Irrespective of the Reason for Its Decrease" Life 15, no. 10: 1551. https://doi.org/10.3390/life15101551
APA StyleDima, E., Orfanos, S. E., Grigoropoulos, V., Fasfali, D., Mpatsouli, A., Zimpounoumi-Keratsa, N. P., Niarchou, P., Megarisiotou, A., Prappa, E., Xydonas, S., Kotanidou, A., Dimopoulou, I., & Anthi, A. (2025). Low DLCO Can Provide Insights into Treatment Response in PAH Patients Irrespective of the Reason for Its Decrease. Life, 15(10), 1551. https://doi.org/10.3390/life15101551