A Review of the Impact of Gestational Diabetes on Fetal Brain Development: An Update on Neurosonographic Markers During the Last Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
PICO Framework
- P (Population/Problem): Pregnant individuals diagnosed with gestational diabetes mellitus (GDM). Fetal population: developing fetuses, with particular emphasis on the brain.
- I (Intervention/Exposure): Gestational diabetes mellitus and its potential effects on fetal brain development.
- C (Comparison): Pregnant individuals without gestational diabetes mellitus (healthy pregnancies).
- O (Outcome):
- Primary outcome: Fetal brain development as assessed by ultrasonographic markers.
- Secondary outcome: Identification of potential biomarkers for GDM-related fetal brain changes.
2.2. Literature Search
2.3. Study Selection and Eligibility
2.4. Literature Screening and Data Extraction
3. Results
3.1. Quality Assessment of Included Studies
3.2. Corpus Callosum (CC)
3.3. Cavum Septum Pellucidi (CSP)
3.4. Transcerebellar Diameter (TCD) and Cerebellar Vermis (CV)
3.5. Lateral Ventricles (LVs)
3.6. Cisterna Magna (CM)
3.7. Cerebral Fissures
3.8. Cerebral Parenchyma
Authors | Year | Study Design | Sample (n) | Weeks of Gestation | Fetal Brain Structures | Outcome |
---|---|---|---|---|---|---|
Marra et al. [27] | 2024 | Observational study | 200 | 29–34 |
| Fetuses of GDM mothers undergoing insulin therapy exhibited a smaller CC measurement compared to both the control and the GDM groups managed with diet. Similarly, after adjusting for HC, the depth of the CV was reduced in fetuses with GDM managed by insulin therapy and diet compared to the control group. Post-hoc analysis indicated that fetuses of GDM mothers requiring insulin had significantly lower values for SF, POF, and CF. |
Guleroglu et al. [28] | 2023 | Prospective cross-sectional study | 134 | 20–32 |
| The length of the CC and the depths of the insular fissure and POF exhibited significant increases in the GDM group but not in the PGDM group. |
Ekin et al. [31] | 2023 | Observational Study | 330 | 29 |
| Maternal hyperglycemia was significantly associated with increased widths of the posterior LV, CSP, and CM as well as decreased TCD. |
Gründahl et al. [32] | 2018 | Retrospective study | 231 | 20–41 |
| The mean widths of the CSP and LV were significantly larger in fetuses of diabetic mothers compared to the controls. |
Sahin et al. [33] | 2024 | Prospective case–control study | 96 | 28–38 |
| A statistically significant correlation was observed between FAPD/OFD and GDM. |
Study | Selection | Comparability e | Outcome | |||||
---|---|---|---|---|---|---|---|---|
Representativeness of the Exposure (Intervention) Cohort a | Selection of the Non-Exposed Cohort b | Ascertainment of Exposure c | Incident Disease d | Assessment of Outcome f | Length of Follow-Up g | Adequacy of Follow-Up h | ||
Marra et al. [27] | A | A | A | B | B | B | A | A |
Guleroglu et al. [28] | A | A | A | B | B | B | A | A |
Ekin et al. [31] | A | A | A | B | A | B | A | B |
Grundahl et al. [32] | A | A | A | B | A | A | A | A |
Sahin et al. [33] | A | A | A | B | A | B | A | A |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Lovic, D.; Piperidou, A.; Zografou, I.; Grassos, H.; Pittaras, A.; Manolis, A. The Growing Epidemic of Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S254–S266. [Google Scholar] [CrossRef]
- Sanjay, K.M.; Andal, K.S.; Nedunchezian, P.; Sulekha, C. Neonatal Outcome in Pregnancies Complicated by Gestational Diabetes Mellitus: A Hospital Based Study. Int. J. Contemp. Pediatrics 2018, 5, 737–742. [Google Scholar] [CrossRef]
- Harreiter, J.; Roden, M. Diabetes Mellitus: Definition, Classification, Diagnosis, Screening and Prevention (Update 2023). Wien. Klin. Wochenschr. 2023, 135, 7–17. [Google Scholar] [CrossRef]
- Wicklow, B.; Retnakaran, R. Gestational Diabetes Mellitus and Its Implications across the Life Span. Diabetes Metab. J. 2023, 47, 333–344. [Google Scholar] [CrossRef]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar] [CrossRef]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef]
- Rajith, M.L.; Punyashree, R. A Study of Effect of Gestational Diabetes on the Newborn. Pediatr. Rev. Int. J. Pediatr. Res. 2017, 4, 303–309. [Google Scholar] [CrossRef]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational Diabetes Mellitus and Long-Term Consequences for Mother and Offspring: A View from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef] [PubMed]
- Kelstrup, L.; Bytoft, B.; Hjort, L.; Houshmand-Oeregaard, A.; Mathiesen, E.R.; Damm, P.; Clausen, T.D. Diabetes in Pregnancy: Long-Term Complications of Offsprings. Front. Diabetes 2019, 28, 201–222. [Google Scholar] [CrossRef]
- Samra, N.A.; Jelinek, H.F.; Alsafar, H.; Asghar, F.; Seoud, M.; Hussein, S.M.; Mubarak, H.M.; Anwar, S.; Memon, M.; Afify, N.; et al. Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int. J. Mol. Sci. 2022, 23, 3514. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kobayashi, S.; Ito, S.; Miyashita, C.; Umazume, T.; Cho, K.; Watari, H.; Ito, Y.; Saijo, Y.; Kishi, R.; et al. Neurodevelopmental Delay up to the Age of 4 Years in Infants Born to Women with Gestational Diabetes Mellitus: The Japan Environment and Children’s Study. J. Diabetes Investig. 2022, 13, 2054–2062. [Google Scholar] [CrossRef]
- Huerta-Cervantes, M.; Peña-Montes, D.J.; Montoya-Pérez, R.; Trujillo, X.; Huerta, M.; López-Vázquez, M.Á.; Olvera-Cortés, M.E.; Saavedra-Molina, A. Gestational Diabetes Triggers Oxidative Stress in Hippocampus and Cerebral Cortex and Cognitive Behavior Modifications in Rat Offspring: Age- and Sex-Dependent Effects. Nutrients 2020, 12, 376. [Google Scholar] [CrossRef]
- Vuong, B.; Odero, G.; Rozbacher, S.; Stevenson, M.; Kereliuk, S.M.; Pereira, T.J.; Dolinsky, V.W.; Kauppinen, T.M. Exposure to Gestational Diabetes Mellitus Induces Neuroinflammation, Derangement of Hippocampal Neurons, and Cognitive Changes in Rat Offspring. J. Neuroinflamm. 2017, 14, 80. [Google Scholar] [CrossRef]
- Ji, S.; Zhou, W.; Li, X.; Liu, S.; Wang, F.; Li, X.; Zhao, T.; Ji, G.; Du, J.; Hao, A. Maternal Hyperglycemia Disturbs Neocortical Neurogenesis via Epigenetic Regulation in C57BL/6J Mice. Cell Death Dis. 2019, 10, 211. [Google Scholar] [CrossRef]
- Márquez-Valadez, B.; Valle-Bautista, R.; García-López, G.; Díaz, N.F.; Molina-Hernández, A. Maternal Diabetes and Fetal Programming Toward Neurological Diseases: Beyond Neural Tube Defects. Front. Endocrinol. 2018, 9, 411277. [Google Scholar] [CrossRef]
- Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2019, 48, 479–493. [Google Scholar] [CrossRef]
- Ray, A. Introductory Chapter: Gestational Diabetes Mellitus. In Gestational Diabetes Mellitus—An Overview with Some Recent Advances; IntechOpen Limited: London, UK, 2020. [Google Scholar] [CrossRef]
- Monteagudo, A.; Timor-Tritsch, I.E. Fetal CNS Scanning-Less of a Headache than You Think. Clin. Obstet. Gynecol. 2012, 55, 249–265. [Google Scholar] [CrossRef]
- Cardenas, A.M.; Whitehead, M.T.; Bulas, D.I. Fetal Neuroimaging Update. Semin. Pediatr. Neurol. 2020, 33, 100801. [Google Scholar] [CrossRef] [PubMed]
- Crnogorac, S.; Jurióiƒ, A.; Grdiniƒ, A. Ultrasound vs Magnetic Resonance in the Assessment of CNS Anomalies. Donald School J. Ultrasound Obstet. Gynecol. 2013, 7, 496–499. [Google Scholar] [CrossRef]
- Poon, L.C.; Sahota, D.S.; Chaemsaithong, P.; Nakamura, T.; Machida, M.; Naruse, K.; Wah, Y.M.; Leung, T.Y.; Pooh, R.K. Transvaginal Three-Dimensional Ultrasound Assessment of Sylvian Fissures at 18–30 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2019, 54, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Tercanli, S.; Prüfer, F. Fetal Neurosonogaphy: Ultrasound and Magnetic Resonance Imaging in Competition. Ultraschall Med. 2016, 37, 555–557. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Marra, M.C.; Mappa, I.; Pietrolucci, M.E.; Lu, J.L.A.; D’Antonio, F.; Rizzo, G. Fetal Brain Development in Pregnancies Complicated by Gestational Diabetes Mellitus. J. Perinat. Med. 2024, 52, 310–316. [Google Scholar] [CrossRef]
- Guleroglu, F.Y.; Ocal, A.; Bakirci, I.T.; Cetin, A. Does Diabetes Mellitus Affect the Development of Fetal Brain Structures and Spaces Including Corpus Callosum, Subarachnoid Space, Insula, and Parieto-Occipital Fissure? J. Clin. Ultrasound 2023, 51, 1483–1491. [Google Scholar] [CrossRef]
- Needelman, H.; Schroeder, B.; Sweney, M.; Schmidt, J.; Bodensteiner, J.B.; Schaefer, B. Ontogeny and Physiology of the Cavum Septum Pellucidum in Premature Infants. J. Child Neurol. 2006, 21, 298–300. [Google Scholar] [CrossRef]
- Righini, A.; Frassoni, C.; Inverardi, F.; Parazzini, C.; Mei, D.; Doneda, C.; Re, T.J.; Zucca, I.; Guerrini, R.; Spreafico, R.; et al. Bilateral Cavitations of Ganglionic Eminence: A Fetal MR Imaging Sign of Halted Brain Development. Am. J. Neuroradiol. 2013, 34, 1841–1845. [Google Scholar] [CrossRef]
- Ekin, A.; Sever, B. Changes in Fetal Intracranial Anatomy during Maternal Pregestational and Gestational Diabetes. J. Obstet. Gynaecol. Res. 2023, 49, 587–596. [Google Scholar] [CrossRef]
- Gründahl, F.R.; Hammer, K.; Braun, J.; Oelmeier De Murcia, K.; Köster, H.A.; Möllers, M.; Steinhard, J.; Klockenbusch, W.; Schmitz, R. Fetal Brain Development in Diabetic Pregnancies and Normal Controls. J. Perinat. Med. 2018, 46, 797–803. [Google Scholar] [CrossRef]
- Sahin, R.; Tanacan, A.; Serbetci, H.; Agaoglu, Z.; Haksever, M.; Ozkavak, O.O.; Karagoz, B.; Kara, O.; Sahin, D. The Impact of Gestational Diabetes on the Development of Fetal Frontal Lobe: A Case-Control Study from a Tertiary Center. J. Clin. Ultrasound 2024, 52, 32–36. [Google Scholar] [CrossRef]
- Linder, K.; Schleger, F.; Kiefer-Schmidt, I.; Fritsche, L.; Kümmel, S.; Böcker, M.; Heni, M.; Weiss, M.; Häring, H.U.; Preissl, H.; et al. Gestational Diabetes Impairs Human Fetal Postprandial Brain Activity. J. Clin. Endocrinol. Metab. 2015, 100, 4029–4036, Erratum in J. Clin. Endocrinol. Metab. 2017, 102, 336. [Google Scholar] [CrossRef] [PubMed]
- Léveillé, P.; Hamel, M.; Ardilouze, J.L.; Pasquier, J.C.; Deacon, C.; Whittingstall, K.; Plourde, M. Pilot Study of EEG in Neonates Born to Mothers with Gestational Diabetes Mellitus. Int. J. Dev. Neurosci. 2018, 66, 37–44. [Google Scholar] [CrossRef]
- Rodolaki, K.; Pergialiotis, V.; Iakovidou, N.; Boutsikou, T.; Iliodromiti, Z.; Kanaka-Gantenbein, C. The Impact of Maternal Diabetes on the Future Health and Neurodevelopment of the Offspring: A Review of the Evidence. Front. Endocrinol. 2023, 14, 1125628. [Google Scholar] [CrossRef]
- Schwartz, E.; Diogo, M.C.; Glatter, S.; Seidl, R.; Brugger, P.C.; Gruber, G.M.; Kiss, H.; Nenning, K.H.; Langs, G.; Prayer, D.; et al. The Prenatal Morphomechanic Impact of Agenesis of the Corpus Callosum on Human Brain Structure and Asymmetry. Cereb. Cortex 2021, 31, 4024–4037. [Google Scholar] [CrossRef]
- Moosavi, A.; Kanekar, S. Congenital Malformations of Cerebellum. Clin. Perinatol. 2022, 49, 603–621. [Google Scholar] [CrossRef]
- Hami, J.; Vafaei-nezhad, S.; Ghaemi, K.; Sadeghi, A.; Ivar, G.; Shojae, F.; Hosseini, M. Stereological Study of the Effects of Maternal Diabetes on Cerebellar Cortex Development in Rat. Metab. Brain Dis. 2016, 31, 643–652. [Google Scholar] [CrossRef]
- Razi, E.M.; Ghafari, S.; Golalipour, M.J. Effect of Gestational Diabetes on Purkinje and Granule Cells Distribution of the Rat Cerebellum in 21 and 28 Days of Postnatal Life. Basic. Clin. Neurosci. 2015, 6, 6. [Google Scholar]
- Minowa, H.; Arai, I.; Yasuhara, H.; Ebisu, R.; Ohgitani, A. The Prenatal Causes of Slight Lateral Ventricular Enlargement in Healthy Infants. J. Matern.-Fetal Neonatal Med. 2019, 34, 1099–1103. [Google Scholar] [CrossRef]
- Wei, D.; Loeken, M.R. Increased DNA Methyltransferase 3b (Dnmt3b)-Mediated CpG Island Methylation Stimulated by Oxidative Stress Inhibits Expression of a Gene Required for Neural Tube and Neural Crest Development in Diabetic Pregnancy. Diabetes 2014, 63, 3512–3522. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Flores-Sarnat, L. Synaptogenesis and Myelination in the Nucleus/Tractus Solitarius. J. Child Neurol. 2015, 31, 722–732. [Google Scholar] [CrossRef]
- Basso, A.; Youssef, L.; Nakaki, A.; Paules, C.; Miranda, J.; Casu, G.; Salazar, L.; Gratacos, E.; Eixarch, E.; Crispi, F.; et al. Fetal Neurosonography at 31–35 Weeks Reveals Altered Cortical Development in Pre-Eclampsia with and without Small-for-Gestational-Age Fetus. Ultrasound Obstet. Gynecol. 2022, 59, 737–746. [Google Scholar] [CrossRef]
- Paules, C.; Miranda, J.; Policiano, C.; Crovetto, F.; Youssef, L.; Hahner, N.; Nakaki, A.; Crispi, F.; Gratacós, E.; Eixarch, E. Fetal Neurosonography Detects Differences in Cortical Development and Corpus Callosum in Late-Onset Small Fetuses. Ultrasound Obstet. Gynecol. 2021, 58, 42–47. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Borsani, E.; Della Vedova, A.M.; Rezzani, R.; Rodella, L.F.; Cristini, C. Correlation between Human Nervous System Development and Acquisition of Fetal Skills: An Overview. Brain Dev. 2019, 41, 225–233. [Google Scholar] [CrossRef]
- Van Dam, J.M.; Garrett, A.J.; Schneider, L.A.; Hodyl, N.A.; Goldsworthy, M.R.; Coat, S.; Rowan, J.A.; Hague, W.M.; Pitcher, J.B. Reduced Cortical Excitability, Neuroplasticity, and Salivary Cortisol in 11–13-Year-Old Children Born to Women with Gestational Diabetes Mellitus. eBioMedicine 2018, 31, 143–149. [Google Scholar] [CrossRef]
- Paladini, D.; Finarelli, A.; Donarini, G.; Parodi, S.; Lombardo, V.; Tuo, G.; Birnbaum, R. Frontal Lobe Growth Is Impaired in Fetuses with Congenital Heart Disease. Ultrasound Obstet. Gynecol. 2021, 57, 776–782. [Google Scholar] [CrossRef]
- Peng, R.; Zheng, Q.; Wu, L.H.; Yin, X.; Zheng, J.; Xie, H.N. Frontal Lobe Development in Fetuses with Growth Restriction by Using Ultrasound: A Case—Control Study. BMC Pregnancy Childbirth 2022, 22, 861. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental Programming of Fetal Growth and Development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef]
- Gilmore, J.H.; Smith, L.C.; Wolfe, H.M.; Hertzberg, B.S.; Smith, J.K.; Chescheir, N.C.; Evans, D.D.; Kang, C.; Hamer, R.M.; Lin, W.; et al. Prenatal mild ventriculomegaly predicts abnormal development of the neonatal brain. Biol. Psychiatry 2008, 64, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, A.S.; Deicken, R.F.; Vinogradov, S.; Kremen, W.S.; Poole, J.H.; Penner, J.D.; Kochetkova, A.; Kern, D.; Schaefer, C.A. Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr. Res. 2009, 108, 285–287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurjak, A.; Spalldi Barišić, L.; Stanojević, M.; Antsaklis, P.; Panchal, S.; Honemeyer, U.; Moreira Neto, R.; Tinjić, S.; Vladareanu, R.; Esin, S.; et al. Multi-center results on the clinical use of KANET. J. Perinat. Med. 2019, 47, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Antsaklis, P.; Daskalakis, G.; Kurjak, A. Chapter 14—Four-dimensional features of fetal brain: Applications to diabetes. In Diagnosis, Management and Modeling of Neurodevelopmental Disorders; Martin, C.R., Preedy, V.R., Rajendram, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 165–171. ISBN 9780128179888. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oikonomou, E.; Chatzakis, C.; Stavros, S.; Potiris, A.; Nikolettos, K.; Sotiriou, S.; Domali, E.; Nikolettos, N.; Sotiriadis, A.; Gerede, A. A Review of the Impact of Gestational Diabetes on Fetal Brain Development: An Update on Neurosonographic Markers During the Last Decade. Life 2025, 15, 210. https://doi.org/10.3390/life15020210
Oikonomou E, Chatzakis C, Stavros S, Potiris A, Nikolettos K, Sotiriou S, Domali E, Nikolettos N, Sotiriadis A, Gerede A. A Review of the Impact of Gestational Diabetes on Fetal Brain Development: An Update on Neurosonographic Markers During the Last Decade. Life. 2025; 15(2):210. https://doi.org/10.3390/life15020210
Chicago/Turabian StyleOikonomou, Efthymios, Christos Chatzakis, Sofoklis Stavros, Anastasios Potiris, Konstantinos Nikolettos, Sotirios Sotiriou, Ekaterini Domali, Nikolaos Nikolettos, Alexandros Sotiriadis, and Angeliki Gerede. 2025. "A Review of the Impact of Gestational Diabetes on Fetal Brain Development: An Update on Neurosonographic Markers During the Last Decade" Life 15, no. 2: 210. https://doi.org/10.3390/life15020210
APA StyleOikonomou, E., Chatzakis, C., Stavros, S., Potiris, A., Nikolettos, K., Sotiriou, S., Domali, E., Nikolettos, N., Sotiriadis, A., & Gerede, A. (2025). A Review of the Impact of Gestational Diabetes on Fetal Brain Development: An Update on Neurosonographic Markers During the Last Decade. Life, 15(2), 210. https://doi.org/10.3390/life15020210