Predictors of Adverse Cardiovascular Events After CABG in Patients with Previous Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Examination
2.2. Assessment of Adherence
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Outcomes
3.3. Subgroup Comparison
3.4. Predictors of Outcomes
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, E.; de Souza, D.R.; Böning, A.; Liakopoulos, O.J.; Choi, Y.H.; Pepper, J.; Gibson, C.M.; Perrault, L.P.; Wolf, R.K.; Kim, K.B.; et al. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat. Rev. Cardiol. 2020, 3, 155–169. [Google Scholar] [CrossRef]
- Adelborg, K.; Horváth-Puhó, E.; Schmidt, M.; Munch, T.; Pedersen, L.; Nielsen, P.H.; Bøtker, H.E.; Sørensen, H.T. Thirty-Year Mortality After Coronary Artery Bypass Graft Surgery: A Danish Nationwide Population-Based Cohort Study. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e002708. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Duan, S.; Xu, L.; Xu, Y.; Yin, W.; Yang, Y.; Wu, B.; Liu, J. Multimodal Data-Driven Prognostic Model for Predicting Long-Term Prognosis in Patients With Ischemic Cardiomyopathy and Heart Failure With Preserved Ejection Fraction After Coronary Artery Bypass Grafting: A Multicenter Cohort Study. J. Am. Heart Assoc. 2024, 13, e036970. [Google Scholar] [CrossRef] [PubMed]
- Hassanabad, A.F.; MacQueen, K.T.; Ali, I. Surgical Treatment for Ischemic Heart Failure (STICH) trial: A review of outcomes. J. Card. Surg. 2019, 34, 1075–1082. [Google Scholar] [CrossRef]
- Pakrad, F.; Shiri, R.; Mozayani Monfared, A.; Mohammadi Saleh, R.; Poorolajal, J. Predictors of Premature Mortality Following Coronary Artery Bypass Grafting: An Iranian Single-Centre Study. Healthcare 2023, 12, 36. [Google Scholar] [CrossRef]
- Fallahzadeh, A.; Sheikhy, A.; Ajam, A.; Sadeghian, S.; Pashang, M.; Shirzad, M.; Bagheri, J.; Mansourian, S.; Momtahen, S.; Hosseini, K. Significance of preoperative left ventricular ejection fraction in 5-year outcome after isolated CABG. J. Cardiothorac. Surg. 2021, 16, 353. [Google Scholar] [CrossRef]
- Lees, B.; Podesser, B.; Krzych, L.; Sajja, L.R.; Taggart, D.; Flather, M. ART Investigators. Influence of diabetes and obesity on ten-year outcomes after coronary artery bypass grafting in the arterial revascularisation trial. Clin. Res. Cardiol. 2024, 113, 1515–1522. [Google Scholar] [CrossRef]
- Laimoud, M.; Alanazi, M.N.; Maghirang, M.J.; Al-Mutlaq, S.M.; Althibait, S.; Ghamry, R.; Qureshi, R.; Alanazi, B.; Alomran, M.; Bakheet, Z.; et al. Impact of Chronic Kidney Disease on Clinical Outcomes during Hospitalization and Five-Year Follow-Up after Coronary Artery Bypass Grafting. Crit. Care Res. Pract. 2023, 2023, 9364913. [Google Scholar] [CrossRef]
- Salmasi, M.Y.; Ravishankar, R.; Abdullahi, Y.; Hartley, P.; Kyriazis, P.G.; Athanasiou, T.; Punjabi, P. Predictors of outcome after CABG in the South-Asian community: A propensity matched analysis. Perfusion 2023, 38, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Comanici, M.; Nadarajah, D.; Katumalla, E.; Cyclewala, S.; Raja, S.G. Use of Preoperative Natriuretic Peptide in Predicting Mortality After Coronary Artery Bypass Grafting: A Systematic Review and Meta-analysis. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Polineni, S.; Parker, D.M.; Alam, S.S.; Thiessen-Philbrook, H.; McArthur, E.; DiScipio, A.W.; Malenka, D.J.; Parikh, C.R.; Garg, A.X.; Brown, J.R. Predictive Ability of Novel Cardiac Biomarkers ST2; Galectin-3; and NT-ProBNP Before Cardiac Surgery. J. Am. Heart Assoc. 2018, 7, e008371. [Google Scholar] [CrossRef]
- Parker, D.M.; Owens, S.L.; Ramkumar, N.; Likosky, D.; DiScipio, A.W.; Malenka, D.J.; MacKenzie, T.A.; Brown, J.R. Galectin-3 as a Predictor of Long-term Survival After Isolated Coronary Artery Bypass Grafting Surgery. Ann. Thorac. Surg. 2020, 109, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, B.N.; Zatolokin, V.V.; Mochula, A.V.; Alisherov, Y.; Panfilov, D.S.; Kamenshchikov, N.O.; Kim, E.B. Intraoperative Prediction of Coronary Graft Failure Based on Transit Time Flow Measurement: A Preliminary Study. Diagnostics 2024, 14, 1903. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, K.; Wang, C.; Fan, Z.; Yan, L.; Wang, Y.; Liu, F.; Shi, J.; Guo, Q.; Dong, N. Prediction of postoperative stroke in patients experienced coronary artery bypass grafting surgery: A machine learning approach. Front. Cardiovasc. Med. 2024, 11, 1448740. [Google Scholar] [CrossRef]
- Câmara de Souza, A.B.; Toyoshima, M.T.K.; Cukier, P.; Lottenberg, S.A.; Bolta, P.M.P.; Lima, E.G.; Serrano Júnior, C.V.; Nery, M. Electronic Glycemic Management System Improved Glycemic Control and Reduced Complications in Patients With Diabetes Undergoing Coronary Artery Bypass Surgery: A Randomized Controlled Trial. J. Diabetes Sci. Technol. 2024, 3, 19322968241268352. [Google Scholar] [CrossRef]
- Velazquez, E.J.; Lee, K.L.; Deja, M.A.; Jain, A.; Sopko, G.; Marchenko, A.; Ali, I.S.; Pohost, G.; Gradinac, S.; Abraham, W.T.; et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011, 364, 1607–1616. [Google Scholar] [CrossRef]
- Mohr, F.W.; Morice, M.C.; Kappetein, A.P.; Feldman, T.E.; Ståhle, E.; Colombo, A.; Mack, M.J.; Holmes, D.R., Jr.; Morel, M.A.; Van Dyck, N.; et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised; clinical SYNTAX trial. Lancet 2013, 381, 629–638. [Google Scholar] [CrossRef]
- Ahn, J.M.; Roh, J.H.; Kim, Y.H.; Park, D.W.; Yun, S.C.; Lee, P.H.; Chang, M.; Park, H.W.; Lee, S.W.; Lee, C.W.; et al. Randomized Trial of Stents Versus Bypass Surgery for Left Main Coronary Artery Disease: 5-Year Outcomes of the PRECOMBAT Study. J. Am. Coll. Cardiol. 2015, 65, 2198–2206. [Google Scholar] [CrossRef]
- Holm, N.R.; Mäkikallio, T.; Lindsay, M.M.; Spence, M.S.; Erglis, A.; Menown, I.B.A.; Trovik, T.; Kellerth, T.; Kalinauskas, G.; Mogensen, L.J.H.; et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: Updated 5-year outcomes from the randomised; non-inferiority NOBLE trial. Lancet 2020, 395, 191–199. [Google Scholar] [CrossRef]
- Tung, H.H.; Lien, R.Y.; Wei, J.; Clinciu, D.L.; Lee, J.Y.; Huang, H.C. The role of adherence in the relationship between self-efficacy and self-management in diabetic patients undergoing CABG in Taiwan. Heart Asia 2012, 4, 114–119. [Google Scholar] [CrossRef]
- Satish, T.; Hendren, N.S.; Peltz, M.; Heid, C.A.; Farr, M.; Bavry, A.; Girotra, S.; Kumbhani, D.J.; Drazner, M.H.; Tang, W.H.W.; et al. Phenomapping the Response of Patients With Ischemic Cardiomyopathy With Reduced Ejection Fraction to Surgical Revascularization. Clin. Cardiol. 2025, 48, e70094. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, E.; Stavileci, B.; Ozdemir, B.; Aksoy, F.A.; Kahraman, S.; Colakoglu Gevher, C.Z.; Ziyrek, M.; Dogan, A. The association between growth differentiation factor 15 and presence and severity of coronary atherosclerosis. Adv. Med. Sci. 2024, 69, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.; Anthopolos, R.; Ruggles, K.V.; Cornwell, M.; Reynolds, H.R.; Bangalore, S.; Mavromatis, K.; Held, C.; Wallentin, L.; Kullo, I.J.; et al. Biomarkers and cardiovascular events in patients with stable coronary disease in the ISCHEMIA Trials. Am. Heart J. 2023, 266, 61–73. [Google Scholar] [CrossRef]
- Mourouzis, K.; Siasos, G.; Bozini, N.; Oikonomou, E.; Zaromitidou, M.; Tsigkou, V.; Kokkou, E.; Bletsa, E.; Stampouloglou, P.; Vavuranakis, M.; et al. Association of Growth Differentiation Factor 15 with Arterial Stiffness and Endothelial Function in Subpopulations of Patients with Coronary Artery Disease: A Proof-of-Concept Study. Recent. Adv. Inflamm. Allergy Drug Discov. 2022, 16, 107–115. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Xu, F.; Gao, W.; Chen, M.; Zhu, H.; Xu, J.; Yin, X.; Pang, J.; Zhang, S.; et al. GDF-15 at admission predicts cardiovascular death; heart failure; and bleeding outcomes in patients with CAD. ESC Heart Fail. 2023, 10, 3123–3132. [Google Scholar] [CrossRef]
- Yeh, K.H.; Chang, Y.T.; Juang, J.J.; Chiang, F.T.; Teng, M.S.; Wu, S.; Lin, J.F.; Ko, Y.L. Combined corrected QT interval and growth differentiation factor-15 level has synergistic predictive value for long-term outcome of angiographically confirmed coronary artery disease. Int. J. Clin. Pract. 2021, 75, e14180. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Duan, W.H.; Song, L.; Yu, Y.Q.; Shi, D.Z. A Meta-Analysis of Growth Differentiation Factor-15 and Prognosis in Chronic Heart Failure. Front. Cardiovasc. Med. 2021, 8, 630818. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Packer, M.; Butler, J.; Filippatos, G.; Pocock, S.J.; Januzzi, J.L.; Sattar, N.; Maldonado, S.G.; Panova-Noeva, M.; Sumin, M.; et al. Growth differentiation factor-15 and the effect of empagliflozin in heart failure: Findings from the EMPEROR program. Eur. J. Heart Fail. 2024, 26, 155–164. [Google Scholar] [CrossRef]
- Rochette, L.; Dogon, G.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int. J. Mol. Sci. 2021, 22, 8889. [Google Scholar] [CrossRef] [PubMed]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 coun tries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
Parameters | Group 1 (n = 45) | Group 2 (n = 37) | p Value |
---|---|---|---|
Age; years | 61 (56; 68) | 63 (60; 68) | 0.341 |
Gender: male; n (%) | 40 (88.9) | 33 (89.2) | 0.965 |
Social status: alone; n (%) | 2 (4.4) | 6 (16.2) | 0.074 |
Angina; n (%) | 45 (100) | 37 (100) | 1.000 |
Dyspnea; n (%): 0—none 1—with significant physical activity 2—with normal activity 3—at rest 4—in horizontal position | 0—3 (6.7); 1—11 (24.4); 2—31 (68.9); 3—0 4—0 | 0—4 (10.8) 1—5 (13.5); 2—26 (70.3) 3—1 (2.7) 4—1 (2.7) | 0.394 |
Heart palpitations; n (%) | 11 (24.4) | 14 (37.8) | 0.190 |
Bilateral leg edema; n (%) | 5 (11.1) | 11 (29.7) | 0.034 |
Weakness; n (%) | 21 (46.5) | 17 (45.9) | 0.948 |
Liver enlargement; n (%) | 1 (2.2) | 0 | 1.000 |
Moist rales; n (%) | 0 | 3 (8.1) | 0.088 |
Lungs congestion by X-ray | 7 (15.6) | 11 (29.7) | 0.123 |
Duration of history of coronary artery disease; years | 3 (1; 10) | 4 (1.25; 12) | 0.452 |
History of myocardial infarction; n (%) | 26 (57.8) | 29 (78.4) | 0.048 |
Two and more myocardial infarctions in history | 4 (8.9) | 8 (21.6) | 0.105 |
Angina pectoris functional class | 3 (2; 3) | 3 (2; 3) | 0.664 |
NYHA class | 2 (2; 3) | 3 (2; 3) | 0.007 |
Hypertension; n (%) | 44 (97.8) | 37 (100) | 0.106 |
Duration of history of hypertension; years | 10 (6.5; 20) | 10 (6; 17) | 0.271 |
Stroke; n (%) | 0 | 3 (8.1) | 0.088 |
Diabetes; n (%) | 11 (24.4) | 9 (24.3) | 0.990 |
Impaired glucose tolerance or DM2; n (%) | 13 (28.9) | 9 (24.3) | 0.642 |
Peripheral atherosclerosis ≥ 40%; n (%) | 13 (28.9) | 13 (35.1) | 0.545 |
Atrial fibrillation; n (%) | 9 (20) | 11 (29.7) | 0.307 |
Type of AF: 0—no; 1—paroxysmal; 2—persistent; 3—long-term persistent; 4—permanent | 1—4 (8.9); 2—2 (4.4); 3—1 (2.2); 4—2 (4.4) | 1—4 (10.8); 2—3 (8.1); 3—1 (2.7); 4—3 (8.1) | 0.871 |
Ventricular extrasystole grade III-V by Lown–Wolf; n (%) | 7 (15.6) | 12 (32.4) | 0.060 |
Family history of CVD; n (%) | 35 (77.8) | 22 (59.5) | 0.073 |
Chronic obstructive pulmonary disease; n (%) | 8 (17.8) | 9 (24.3) | 0.467 |
Stomach ulcer; n (%) | 11 (24.4) | 14 (37.8) | 0.190 |
Current smoker; n (%) | 27 (60) | 19 (51.4) | 0.432 |
Weight; kg | 81 (73; 91.5) | 85 (76; 92) | 0.310 |
Body mass index; kg/m2 | 27.8 (22.35; 31.25) | 28.4 (25.35; 32.35) | 0.748 |
Overweight or obesity; n (%) | 36 (80) | 30 (81.1) | 0.902 |
Obesity; n (%) | 16 (35.6) | 13 (35.1) | 0.968 |
Waist circumference; cm | 95 (87; 101) | 94 (81; 101.5) | 0.473 |
Systolic blood pressure; mm Hg | 124 (117.5; 130) | 125 (120; 130) | 0.583 |
Diastolic blood pressure; mm Hg | 80 (70; 80) | 80 (70; 81) | 0.181 |
Heart rate; b.p.m | 67 (64; 72.75) | 72 (64; 80) | 0.069 |
Parameters | Group 1 (n = 45) | Group 2 (n = 37) | p Value |
---|---|---|---|
Hemoglobin, g/dL | 14.9 (13.95; 16.05) | 14.3 (12.95; 15.7) | 0.109 |
Creatinine, mg/dL | 1.1 (0.95; 1.27) | 1.16 (1; 1.27) | 0.428 |
eGFR, mL/min/m3 | 73 (59; 81.5) | 69 (58; 77) | 0.250 |
Fasting plasma glucose, mmol/L | 5.6 (5.2; 6.54) | 5.51 (5.08; 5.91) | 0.292 |
Total cholesterol, mmol/L | 4.25 (3.72; 5.79) | 4.02 (3.19; 5) | 0.044 |
Triglycerides, mmol/L | 1.72 (1.18; 2.23) | 1.21 (0.93; 1.81) | 0.038 |
Low-density lipoprotein, mmol/L | 2.42 (2.09; 3.77) | 2.37 (1.41; 3.04) | 0.096 |
High-density lipoprotein, mmol/L | 1.09 (0.94; 1.2) | 1.07 (0.9; 1.28) | 0.819 |
NGAL, ng/mLmL | 41.3 (33.6; 55.4) | 34 (25.7; 52) | 0.070 |
GDF-15, pg/mL | 1997 (1469.5; 2384) | 2590 (2144.25; 3733) | <0.001 |
NT-proBNP, pg/mL | 167.4 (113.85; 422.25) | 326.7 (139; 590) | 0.066 |
TGF beta1, pg/mLmL | 57,600 (44,490; 69,675) | 57,510 (45,725; 75,135) | 0.776 |
CRP, mg/L | 4.7 (2.2; 8.6) | 4.9 (2.1; 9.2) | 0.453 |
Parameters | Group 1 (n = 45) | Group 2 (n = 37) | p Value |
---|---|---|---|
Stenosis of the anterior descending artery | 40 (88.9) | 32 (86.5) | 0.749 |
Left coronary artery trunk stenosis: 0—no; 1—yes | 7 (15.6) | 8 (21.6) | 0.480 |
Stenosis of the right coronary artery: 0—no; 1—yes | 33 (73.3) | 28 (75.5) | 0.809 |
Circumflex artery stenosis: 0—no; 1—yes | 25 (55.6) | 21 (56.8) | 0.913 |
SYNTAX score | 24 (19; 30) | 22.5 (16.5; 30) | 0.450 |
Number of coronary bypass grafts | 3 (2;3) | 3 (2;3) | 0.330 |
Complications; n (%) | 24 (53.3) | 24 (64.9) | 0.292 |
Infectious complications; n (%) | 10 (22.2) | 6 (16.2) | 0.495 |
Postpericardiotomy syndrome; n (%) | 21 (46.7) | 20 (54.9) | 0.506 |
Complications: cardiac arrhythmias; n (%) | 3 (6.7) | 5 (13.5) | 0.535 |
Fluid in pleural cavities or pericardium at discharge; n (%) | 11 (24.4) | 10 (27) | 0.79 |
Anemia at discharge; n (%) | 21 (46.7) | 25 (67.6) | 0.058 |
Duration of hospitalization; bed days | 22 (20; 27.5) | 22 (19; 26.5) | 0.918 |
Parameters | Group 1 (n = 45) | Group 2 (n = 37) | p Value |
---|---|---|---|
Adherence to treatment (Morisky–Green scores) | 3 (2; 4) | 2 (1; 2.5) | <0.001 |
Drug therapy before hospitalization | |||
Nitrates before hospitalization; n (%) | 12 (26.7) | 7 (18.9) | 0.408 |
Beta-blockers before hospitalization; n (%) | 32 (71.1) | 24 (64.9) | 0.545 |
Acetylsalicylic acid before hospitalization; n (%) | 28 (62.2) | 21 (56.8) | 0.616 |
Clopidogrel before hospitalization; n (%) | 15 (33.3) | 6 (16.2) | 0.077 |
Dual antiplatelet therapy; n (%) | 13 (28.9) | 5 (13.5) | 0.094 |
Warfarin before hospitalization; n (%) | 2 (4.4) | 3 (8.1) | 0.49 |
Direct oral anticoagulants before hospitalization; n (%) | 3 (6.7) | 4 (10.8) | 0.504 |
ACE inhibitor before hospitalization; n (%) | 16 (35.6) | 12 (32.4) | 0.767 |
Angiotensin receptor blockers before hospitalization; n (%) | 13 (28.9) | 9 (24.3) | 0.642 |
Any RAAS blocker before hospitalization; n (%) | 29 (64.4) | 21 (56.8) | 0.478 |
Statins before hospitalization; n (%) | 33 (73.3) | 22 (59.5) | 0.183 |
Mineralocorticoid receptor antagonists before hospitalization; n (%) | 2 (4.4) | 10 (27) | 0.004 |
Loop diuretics before hospitalization; n (%) | 16 (35.6) | 21 (56.8) | 0.055 |
Drug therapy after discharge | |||
Nitrates; n (%) | 2 (4.4) | 3 (8.1) | 0.654 |
Beta-blockers; n (%) | 39 (86.7) | 28 (75.7) | 0.2 |
Acetylsalicylic acid; n (%) | 42 (93.3) | 31 (83.8) | 0.169 |
Clopidogrel; n (%) | 29 (64.4) | 24 (64.9) | 0.968 |
Warfarin; n (%) | 2 (4.4) | 5 (13.5) | 0.235 |
Direct oral anticoagulants; n (%) | 7 (15.6) | 10 (27) | 0.202 |
ACE inhibitor; n (%) | 28 (62.2) | 26 (70.3) | 0.444 |
Angiotensin receptor blockers; n (%) | 8 (17.8) | 5 (13.5) | 0.599 |
Statins; n (%) | 45 (100) | 36 (97.3) | 0.451 |
Mineralocorticoid receptor antagonists; n (%) | 16 (35.6) | 21 (56.8) | 0.055 |
Loop diuretics; n (%) | 34 (75.6) | 30 (81.1) | 0.547 |
Iron supplements; n (%) | 6 (13.3) | 8 (21.6) | 0.321 |
Parameters | B (Regression Coefficient) | Wald Significance Test | P Level |
---|---|---|---|
Bilateral leg edema | −0.911 | 1.192 | 0.275 |
History of MI | 0.174 | 0.058 | 0.810 |
NYHA class | 0.493 | 0.830 | 0.362 |
Adherence to treatment based on Morisky–Green scores | −1.010 | 8.671 | 0.003 |
Total cholesterol, mmol/L | −0.104 | 0.831 | 0.362 |
Triglycerides, mmol/L | 0.014 | 0.077 | 0.782 |
GDF-15, pg/mL | 0.001 | 5.928 | 0.015 |
LVEF, % | −0.019 | 0.533 | 0.465 |
Mineralocorticoid receptor antagonists before hospitalization | −0.195 | 0.080 | 0.777 |
NTproBNP, pg/mL | 0.000 | 1.907 | 0.167 |
Constant | 0.875 | 0.116 | 0.734 |
Parameters | B (Regression Coefficient) | P Level | OR | 95.0% CI for OR | |
---|---|---|---|---|---|
Lower | Upper | ||||
Bilateral leg edema (1—yes; 0—no) | 0.036 | 0.953 | 1.037 | 0.309 | 3.472 |
MI (0—no; 1—yes) | −0.282 | 0.592 | 0.755 | 0.270 | 2.112 |
Grade of HF by NYHA | 0.946 | ||||
Grade of HF by NYHA(1) | −0.170 | 0.989 | 0.983 | 0.096 | 10.107 |
Grade of HF by NYHA(2) | −0.595 | 0.598 | 0.552 | 0.060 | 5.047 |
Grade of HF by NYHA(3) | −0.217 | 0.646 | 0.805 | 0.319 | 2.030 |
Total cholesterol, mmol/L | −0.196 | 0.042 | 0.822 | 0.680 | 0.993 |
LVEF % | 0.003 | 0.872 | 1.003 | 0.967 | 1.041 |
Mineralocorticoid receptor antagonists | 0.601 | 0.188 | 0.548 | 0.224 | 1.340 |
GDF-15 more than 2064 | −1.872 | 0.001 | 0.154 | 0.050 | 0.474 |
Adherence to treatment (Morisky–Green scores) | −0.169 | 0.368 | 0.844 | 0.584 | 1.221 |
Triglycerides, mmol/L | 0.001 | 0.797 | 1.001 | 0.992 | 1.010 |
NTproBNP, pg/mL | 0.000 | 0.749 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garganeeva, A.; Kuzheleva, E.; Tukish, O.; Kondratiev, M.; Vitt, K.; Andreev, S.; Bogdanov, Y.; Ogurkova, O. Predictors of Adverse Cardiovascular Events After CABG in Patients with Previous Heart Failure. Life 2025, 15, 387. https://doi.org/10.3390/life15030387
Garganeeva A, Kuzheleva E, Tukish O, Kondratiev M, Vitt K, Andreev S, Bogdanov Y, Ogurkova O. Predictors of Adverse Cardiovascular Events After CABG in Patients with Previous Heart Failure. Life. 2025; 15(3):387. https://doi.org/10.3390/life15030387
Chicago/Turabian StyleGarganeeva, Alla, Elena Kuzheleva, Olga Tukish, Michail Kondratiev, Karina Vitt, Sergey Andreev, Yury Bogdanov, and Oksana Ogurkova. 2025. "Predictors of Adverse Cardiovascular Events After CABG in Patients with Previous Heart Failure" Life 15, no. 3: 387. https://doi.org/10.3390/life15030387
APA StyleGarganeeva, A., Kuzheleva, E., Tukish, O., Kondratiev, M., Vitt, K., Andreev, S., Bogdanov, Y., & Ogurkova, O. (2025). Predictors of Adverse Cardiovascular Events After CABG in Patients with Previous Heart Failure. Life, 15(3), 387. https://doi.org/10.3390/life15030387