Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Prevalence and Impact
3.2. Pathophysiology
3.2.1. Immune System-Related Mechanisms
3.2.2. Vascular System-Related Mechanisms
3.2.3. Hormone- and Mitochondria-Mediated Mechanisms
4. Risk Factors for Neuropsychiatric Manifestations of L-C19
4.1. Hospital Stay-Induced Risks
4.2. Hormone-Related Risks
4.3. Aging and Chronic Diseases as Risk Factors
4.4. Genetics- and Lifestyle-Related Risks
5. Neuropsychiatric Manifestations of L-C19
5.1. Neurological Manifestations of L-C19
5.2. Psychiatric Manifestations of L-C19
6. Diagnosing Neuropsychiatric Manifestations of L-C19
7. Treatment of Neuropsychiatric Manifestations of L-C19
8. Impact on Quality of Life
9. Impact on the Quality of Life of Children
10. Future Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting enzyme 2 |
ANS | Autonomic nervous system |
ARDS | Acute respiratory distress syndrome |
BBB | Blood–brain barrier |
BDI | Beck Depression Inventory |
C-19 | COVID-19 |
CBC | Complete blood count |
CBT | Cognitive behavioral therapy |
CBT-I | Cognitive behavioral therapy for insomnia |
CFS | Chronic fatigue syndrome |
CFQ | Cognitive Failures Questionnaire |
CIRCI | Critical illness-related corticosteroid insufficiency |
CNS | Central nervous system |
CoQ10 | Coenzyme Q10 |
DHA | Docosahexaenoic acid |
EAS | Extended autonomic system |
EEG | Electroencephalogram |
EMDR | Eye movement desensitization and reprocessing |
EPA | Eicosapentaenoic acid |
FIASMA | Inhibition of acid sphingomyelinase |
GAD | Generalized anxiety disorder |
GAD-7 | Generalized Anxiety Disorder-7 |
HADS | Hospital Anxiety and Depression Scale |
HPA | Hypothalamic–pituitary–adrenal |
HRQoL | Health-related quality of life |
QoL | quality of life |
ICU | Intensive care unit |
IL | Interleukins |
L-C19 | Long COVID-19 |
MBCT | Mindfulness-based cognitive therapy |
MBSR | Mindfulness-based stress reduction |
MCI | Mild cognitive impairment |
MDD | Major depressive disorder |
MMSE | Mini-Mental State Examination |
MoCA | Montreal Cognitive Assessment |
MRI | Magnetic resonance imaging |
NAC | N-acetylcysteine |
OCD | Obsessive–compulsive disorder |
PASC | Post-acute sequelae of SARS-CoV-2 infection |
PCL-5 | PTSD Checklist for DSM-5 |
PEM | Post-exertional malaise |
PHQ-9 | Patient Health Questionnaire |
POTS | Postural orthostatic tachycardia syndrome |
PTSD | Post-traumatic stress disorder |
PSQI | Pittsburgh Sleep Quality Index |
SSRI | Selective serotonin reuptake inhibitor |
TSH | Thyroid-Stimulating Hormone |
T4 | Thyroxine |
References
- Kabir, M.T.; Uddin, M.S.; Hossain, M.F.; Abdulhakim, J.A.; Alam, M.A.; Ashraf, G.M.; Bungau, S.G.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Aleya, L. nCOVID-19 Pandemic: From Molecular Pathogenesis to Potential Investigational Therapeutics. Front. Cell Dev. Biol. 2020, 8, 616. [Google Scholar] [CrossRef] [PubMed]
- Cocuz, M.-E.; Cocuz, I.G.; Rodina, L.; Tataranu, E.; Caliman-Sturdza, O.A.; Filip, F. Treatment with Remdesivir of Children with SARS-CoV-2 Infection: Experience from a Clinical Hospital in Romania. Life 2024, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Home Page. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus, 6 October 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 15 February 2025).
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2021, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Ely, E.W.; Brown, L.M.; Fineberg, H.V. Long Covid Defined. N. Engl. J. Med. 2024, 391, 1746–1753. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022, 74, 1191–1198. [Google Scholar] [CrossRef]
- Chen, X.; Laurent, S.; Onur, O.A.; Kleineberg, N.N.; Fink, G.R.; Schweitzer, F.; Warnke, C. A systematic review of neurological symptoms and complications of COVID-19. J. Neurol. 2021, 268, 392–402. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Li, X.-L.; Yan, Z.-R.; Sun, X.-P.; Han, J.; Zhang, B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420917830. [Google Scholar] [CrossRef]
- Carod-Artal, F.; García-Moncó, J. Epidemiology, pathophysiology, and classification of the neurological symptoms of post-COVID-19 syndrome. Neurol. Perspect. 2021, 1, S5–S15. [Google Scholar] [CrossRef]
- Bungenberg, J.; Humkamp, K.; Hohenfeld, C.; Rust, M.I.; Ermis, U.; Dreher, M.; Hartmann, N.K.; Marx, G.; Binkofski, F.; Finke, C.; et al. Long COVID-19: Objectifying most self-reported neurological symptoms. Ann. Clin. Transl. Neurol. 2022, 9, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Navis, A. A Review of Neurological Symptoms in Long COVID and Clinical Management. Semin. Neurol. 2023, 43, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Orsucci, D.; Ienco, E.C.; Nocita, G.; Napolitano, A.; Vista, M. Neurological features of COVID-19 and their treatment: A review. Drugs Context 2020, 9, 1–12. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Boesl, F.; Audebert, H.; Endres, M.; Prüss, H.; Franke, C. A Neurological Outpatient Clinic for Patients with Post-COVID-19 Syndrome—A Report on the Clinical Presentations of the First 100 Patients. Front. Neurol. 2021, 12, 738405. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Frontera, J.A.; Yang, D.; Lewis, A.; Patel, P.; Medicherla, C.; Arena, V.; Fang, T.; Andino, A.; Snyder, T.; Madhavan, M.; et al. A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications. J. Neurol. Sci. 2021, 426, 117486. [Google Scholar] [CrossRef]
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1,284,437 patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef]
- Pandharipande, P.; Roberson, S.W.; Harrison, F.E.; Wilson, J.E.; Bastarache, J.A.; Ely, E.W. Mitigating neurological, cognitive, and psychiatric sequelae of COVID-19-related critical illness. Lancet Respir. Med. 2023, 11, 726–738. [Google Scholar] [CrossRef]
- Greene, T.; El-Leithy, S.; Billings, J.; Albert, I.; Birch, J.; Campbell, M.; Ehntholt, K.; Fortune, L.; Gilbert, N.; Grey, N.; et al. Anticipating PTSD in severe COVID survivors: The case for screen-and-treat. Eur. J. Psychotraumatology 2022, 13, 1959707. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.M.D.; Musavi, N.B.; Saboor, S.; Javed, S.; Khan, S.; Naveed, S. Psychosis during the COVID-19 pandemic: A systematic review of case reports and case series. J. Psychiatr. Res. 2022, 153, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Poole-Wright, K.; Guennouni, I.; Sterry, O.; Evans, R.A.; Gaughran, F.; Chalder, T. Fatigue outcomes following COVID-19: A systematic review and meta-analysis. BMJ Open 2023, 13, e063969. [Google Scholar] [CrossRef]
- Ceban, F.; Ling, S.; Lui, L.M.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Umesh, A.; Pranay, K.; Pandey, R.C.; Gupta, M.K. Evidence mapping and review of long-COVID and its underlying pathophysiological mechanism. Infection 2022, 50, 1053–1066. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deeks, S.G. Early clues regarding the pathogenesis of long-COVID. Trends Immunol. 2022, 43, 268–270. [Google Scholar] [CrossRef]
- Mohandas, S.; Jagannathan, P.; Henrich, T.J.; A Sherif, Z.; Bime, C.; Quinlan, E.; A Portman, M.; Gennaro, M.; Rehman, J.; Force, R.M.P.T. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023, 12, e86014. [Google Scholar] [CrossRef]
- Klein, J.; Wood, J.; Jaycox, J.; Lu, P.; Dhodapkar, R.M.; Gehlhausen, J.R.; Tabachnikova, A.; Tabacof, L.; Malik, A.A.; Kamath, K.; et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv 2022, 623, 139–148. [Google Scholar] [CrossRef]
- Robinson-Agramonte, M.A.; Gonçalves, C.-A.; Noris-García, E.; Rivero, N.P.; Brigida, A.L.; Schultz, S.; Siniscalco, D.; García, R.J.G. Impact of SARS-CoV-2 on neuropsychiatric disorders. World J. Psychiatry 2021, 11, 347–354. [Google Scholar] [CrossRef]
- Taquet, M.; Skorniewska, Z.; Hampshire, A.; Chalmers, J.D.; Ho, L.-P.; Horsley, A.; Marks, M.; Poinasamy, K.; Raman, B.; Leavy, O.C.; et al. Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization. Nat. Med. 2023, 29, 2498–2508. [Google Scholar] [CrossRef]
- Peluso, M.J.; Lu, S.; Tang, A.F.; Durstenfeld, M.S.; Ho, H.-E.; A Goldberg, S.; A Forman, C.; E Munter, S.; Hoh, R.; Tai, V.; et al. Markers of Immune Activation and Inflammation in Individuals with Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Infect. Dis. 2021, 224, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Lavi, E.; Cong, L. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp. Mol. Pathol. 2020, 115, 104474. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.; Johansson, A.; Jonsson, J.; Schiöth, H.B. Dissecting the Molecular Mechanisms Surrounding Post-COVID-19 Syndrome and Neurological Features. Int. J. Mol. Sci. 2022, 23, 4275. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.-E.; Madore, C.; Bordeleau, M.; Tian, L.; Verkhratsky, A. Neuropathobiology of COVID-19: The Role for Glia. Front. Cell. Neurosci. 2020, 14, 592214. [Google Scholar] [CrossRef]
- De Melo, G.D.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19–related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 2021, 13, eabf8396. [Google Scholar] [CrossRef]
- Vonck, K.; Garrez, I.; De Herdt, V.; Hemelsoet, D.; Laureys, G.; Raedt, R.; Boon, P. Neurological manifestations and neuro-invasive mechanisms of the severe acute respiratory syndrome coronavirus type 2. Eur. J. Neurol. 2020, 27, 1578–1587. [Google Scholar] [CrossRef]
- Thye, A.Y.-K.; Law, J.W.-F.; Tan, L.T.-H.; Pusparajah, P.; Ser, H.-L.; Thurairajasingam, S.; Letchumanan, V.; Lee, L.-H. Psychological Symptoms in COVID-19 Patients: Insights into Pathophysiology and Risk Factors of Long COVID-19. Biology 2022, 11, 61. [Google Scholar] [CrossRef]
- Desai, I.; Manchanda, R.; Kumar, N.; Tiwari, A.; Kumar, M. Neurological manifestations of coronavirus disease 2019: Exploring past to understand present. Neurol. Sci. 2021, 42, 773–785. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Choutka, J.; Jansari, V.; Hornig, M.; Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 2022, 28, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Bartley, C.M.; Chow, R.D.; Ngo, T.T.; Jiang, R.; Zamecnik, C.R.; Dandekar, R.; Loudermilk, R.P.; Dai, Y.; Liu, F.; et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep. Med. 2021, 2, 100288. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.M. Deleterious Outcomes in Long-Hauler COVID-19: The Effects of SARS-CoV-2 on the CNS in Chronic COVID Syndrome. ACS Chem. Neurosci. 2020, 11, 4017–4020. [Google Scholar] [CrossRef]
- Perrin, P.; Collongues, N.; Baloglu, S.; Bedo, D.; Bassand, X.; Lavaux, T.; Gautier-Vargas, G.; Keller, N.; Kremer, S.; Fafi-Kremer, S.; et al. Cytokine release syndrome-associated encephalopathy in patients with COVID-19. Eur. J. Neurol. 2021, 28, 248–258. [Google Scholar] [CrossRef]
- Lee, M.-H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with Covid-19. N. Engl. J. Med. 2021, 384, 481–483. [Google Scholar] [CrossRef]
- Pretorius, E.; Venter, C.; Laubscher, G.J.; Kotze, M.J.; Oladejo, S.O.; Watson, L.R.; Rajaratnam, K.; Watson, B.W.; Kell, D.B. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 2022, 21, 148. [Google Scholar] [CrossRef]
- Gąsecka, A.; Borovac, J.A.; Guerreiro, R.A.; Giustozzi, M.; Parker, W.; Caldeira, D.; Chiva-Blanch, G. Thrombotic Complications in Patients with COVID-19: Pathophysiological Mechanisms, Diagnosis, and Treatment. Cardiovasc. Drugs Ther. 2021, 35, 215–229. [Google Scholar] [CrossRef]
- McAlpine, L.S.; Zubair, A.S.; Maran, I.; Chojecka, P.; Lleva, P.; Jasne, A.S.; Navaratnam, D.; Matouk, C.; Schindler, J.; Sheth, K.N.; et al. Ischemic Stroke, Inflammation, and Endotheliopathy in COVID-19 Patients. Stroke 2021, 52, e233–e238. [Google Scholar] [CrossRef]
- Zhou, T.; Sawano, M.; Arun, A.S.; Caraballo, C.; Michelsen, T.; McAlpine, L.S.; Bhattacharjee, B.; Lu, Y.; Khera, R.; Huang, C.; et al. Internal Tremors and Vibrations in Long COVID: A Cross-Sectional Study. Am. J. Med. 2024, in press. [Google Scholar] [CrossRef]
- Abdennour, L.; Zeghal, C.; Dème, M.; Puybasset, L. Interaction cerveau-poumon. Ann. Françaises D’anesthésie Et De Réanimation 2012, 31, e101–e107. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.; Devason, A.S.; Umana, I.C.; Cox, T.O.; Dohnalová, L.; Litichevskiy, L.; Perla, J.; Lundgren, P.; Etwebi, Z.; Izzo, L.T.; et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023, 186, 4851–4867.e20. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, V.; Stefanou, M.-I.; Demetriou, M.; Siafakas, N.; Makris, M.; Tsivgoulis, G.; Zoumpourlis, V.; Kympouropoulos, S.P.; Tsoporis, J.N.; Spandidos, D.A.; et al. Long COVID and neuropsychiatric manifestations (Review). Exp. Ther. Med. 2022, 23, 1–12. [Google Scholar] [CrossRef]
- Attademo, L.; Bernardini, F. Are dopamine and serotonin involved in COVID-19 pathophysiology? Eur. J. Psychiatry 2020, 35, 62–63. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialog. Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef]
- Jensterle, M.; Herman, R.; Janež, A.; Al Mahmeed, W.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; et al. The Relationship between COVID-19 and Hypothalamic–Pituitary–Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess—The CAPISCO International Expert Panel. Int. J. Mol. Sci. 2022, 23, 7326. [Google Scholar] [CrossRef]
- Alzahrani, A.S.; Mukhtar, N.; Aljomaiah, A.; Aljamei, H.; Bakhsh, A.; Alsudani, N.; Elsayed, T.; Alrashidi, N.; Fadel, R.; Alqahtani, E.; et al. The Impact of COVID-19 Viral Infection on the Hypothalamic-Pituitary-Adrenal Axis. Endocr. Pract. 2021, 27, 83–89. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sahoo, S.K.; Menon, J.C.; Menon, J.C.; Tripathy, N.; Tripathy, N.; Nayak, M.; Nayak, M.; Yadav, S.; Yadav, S. Reversible central adrenal insufficiency in survivors of COVID-19: Results from a 24-month longitudinal study. Endocr. Connect. 2024, 13, e240086. [Google Scholar] [CrossRef]
- Iwasaki, A.; Putrino, D. Why we need a deeper understanding of the pathophysiology of long COVID. Lancet Infect. Dis. 2023, 23, 393–395. [Google Scholar] [CrossRef]
- Singh, R.; Rathore, S.S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Park, S.; Kim, N.-H.; Lee, Y.; Chang, Y.; Song, T.-J. Postural Orthostatic Tachycardia Syndrome Associated with COVID-19: A Narrative Review. Medicina 2024, 60, 1325. [Google Scholar] [CrossRef] [PubMed]
- Guntur, V.P.; Nemkov, T.; de Boer, E.; Mohning, M.P.; Baraghoshi, D.; Cendali, F.I.; San-Millán, I.; Petrache, I.; D’alessandro, A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-J.; Shih, H.-M.; Su, K.-P.; Hsueh, P.-R. Risk factors for poor COVID-19 outcomes in patients with psychiatric disorders. Brain Behav. Immun. 2023, 114, 255–261. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef]
- Lagadinou, M.; Kostopoulou, E.; Karatza, A.; Marangos, M.; Gkentzi, D. The prolonged effects of COVID-A new “threat”? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4611–4615. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Thakur, K.T.; Miller, E.H.; Glendinning, M.D.; Al-Dalahmah, O.; Banu, M.A.; Boehme, A.K.; Boubour, A.L.; Bruce, S.S.; Chong, A.M.; Claassen, J.; et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 2021, 144, 2696–2708. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Zakia, H.; Pradana, K.; Iskandar, S. Risk factors for psychiatric symptoms in patients with long COVID: A systematic review. PLoS ONE 2023, 18, e0284075. [Google Scholar] [CrossRef]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 Symptom Burden: What is Long-COVID and How Should We Manage It? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gouraud, C.; Bottemanne, H.; Lahlou-Laforêt, K.; Blanchard, A.; Günther, S.; El Batti, S.; Auclin, E.; Limosin, F.; Hulot, J.-S.; Lebeaux, D.; et al. Association Between Psychological Distress, Cognitive Complaints, and Neuropsychological Status After a Severe COVID-19 Episode: A Cross-Sectional Study. Front. Psychiatry 2021, 12, 725861. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef] [PubMed]
- Seens, H.; Modarresi, S.; Fraser, J.; MacDermid, J.C.; Walton, D.M.; Grewal, R. The role of sex and gender in the changing levels of anxiety and depression during the COVID-19 pandemic: A cross-sectional study. Women’s Health 2021, 17, 17455065211062964. [Google Scholar] [CrossRef]
- Müller, L.; Di Benedetto, S. Aged brain and neuroimmune responses to COVID-19: Post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun. Ageing 2023, 20, 17. [Google Scholar] [CrossRef]
- Matias-Guiu, J.A.; Herrera, E.; González-Nosti, M.; Krishnan, K.; Delgado-Alonso, C.; Díez-Cirarda, M.; Yus, M.; Martínez-Petit, Á.; Pagán, J.; Matías-Guiu, J.; et al. Development of criteria for cognitive dysfunction in post-COVID syndrome: The IC-CoDi-COVID approach. Psychiatry Res. 2023, 319, 115006. [Google Scholar] [CrossRef]
- Callender, L.A.; Curran, M.; Bates, S.M.; Mairesse, M.; Weigandt, J.; Betts, C.J. The Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19. Front. Immunol. 2020, 11, 1991. [Google Scholar] [CrossRef]
- Roberts, J.; Pritchard, A.L.; Treweeke, A.T.; Rossi, A.G.; Brace, N.; Cahill, P.; MacRury, S.M.; Wei, J.; Megson, I.L. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front. Cardiovasc. Med. 2021, 7, 629933. [Google Scholar] [CrossRef]
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef]
- Bigdelou, B.; Sepand, M.R.; Najafikhoshnoo, S.; Negrete, J.A.T.; Sharaf, M.; Ho, J.Q.; Sullivan, I.; Chauhan, P.; Etter, M.; Shekarian, T.; et al. COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes. Front. Immunol. 2022, 13, 890517. [Google Scholar] [CrossRef]
- Sakibuzzaman; Hassan, A.; Hayee, S.; Haque, F.A.; Bushra, S.S.; Maliha, M.; Tania, M.K.; Sadat, A.; Akter, F.; Mazumder, T.; et al. Exacerbation of Pre-existing Neurological Symptoms With COVID-19 in Patients With Chronic Neurological Diseases: An Updated Systematic Review. Cureus 2022, 14, e29297. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.E.; Kumar, S.; Rajji, T.K.; Pollock, B.G.; Mulsant, B.H. Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. Am. J. Geriatr. Psychiatry 2020, 28, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Ryan, F.J.; Hope, C.M.; Masavuli, M.G.; Lynn, M.A.; Mekonnen, Z.A.; Yeow, A.E.L.; Garcia-Valtanen, P.; Al-Delfi, Z.; Gummow, J.; Ferguson, C. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022, 20, 26. [Google Scholar] [CrossRef]
- Jeffers, A.; Meehan, A.A.; Barker, J.; Asher, A.; Montgomery, M.P.; Bautista, G.; Ray, C.M.; Laws, R.L.; Fields, V.L.; Radhakrishnan, L.; et al. Impact of Social Isolation during the COVID-19 Pandemic on Mental Health, Substance Use, and Home-lessness: Qualitative Interviews with Behavioral Health Providers. Int. J. Environ. Res. Public Health 2022, 19, 12120. [Google Scholar] [CrossRef]
- Bertollo, A.G.; Braga, G.d.C.; Tonin, P.T.; Luzardo, A.R.; Bagatini, M.D.; Ignácio, Z.M. The Impact of Stress from Social Isolation during the COVID-19 Pandemic on Psychiatric Disorders: An Analysis from the Scientific Literature. Brain Sci. 2023, 13, 1414. [Google Scholar] [CrossRef]
- Strausz, S.; Kiiskinen, T.; Broberg, M.; Ruotsalainen, S.; Koskela, J.; Bachour, A.; Gen, F.; Palotie, A.; Palotie, T.; Ripatti, S.; et al. Sleep apnoea is a risk factor for severe COVID-19. BMJ Open Respir. Res. 2021, 8, e000845. [Google Scholar] [CrossRef]
- Meng, S.; Lu, L.; Yuan, K.; Yang, D.; Zhang, I. Facing Sleep and Mental Health Problems in the COVID-19 Era: What Shall We Do? Heart Mind 2022, 6, 203–206. [Google Scholar] [CrossRef]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2020, 591, 92–98. [Google Scholar] [CrossRef]
- Taylor, K.; Pearson, M.; Das, S.; Sardell, J.; Chocian, K.; Gardner, S. Genetic risk factors for severe and fatigue dominant long COVID and commonalities with ME/CFS identified by combinatorial analysis. J. Transl. Med. 2023, 21, 775. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, M.; Beck, D.B.; Duggal, P.; Cummings, D.A.; Solomon, B.D. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am. J. Hum. Genet. 2020, 107, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Amo, C.; Almansour, N.; Harvey, I.S. Physical Activity and Mental Health Declined during the Time of the COVID-19 Pandemic: A Narrative Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 11230. [Google Scholar] [CrossRef] [PubMed]
- Wanjau, M.N.; Möller, H.; Haigh, F.; Milat, A.; Hayek, R.; Lucas, P.; Veerman, J.L. Physical Activity and Depression and Anxiety Disorders: A Systematic Review of Reviews and Assessment of Causality. AJPM Focus 2023, 2, 100074. [Google Scholar] [CrossRef]
- Hansel, T.C.; Saltzman, L.Y.; Melton, P.A.; Clark, T.L.; Bordnick, P.S. COVID-19 behavioral health and quality of life. Sci. Rep. 2022, 12, 961. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deveau, T.-M.; Munter, S.E.; Ryder, D.; Buck, A.; Beck-Engeser, G.; Chan, F.; Lu, S.; Goldberg, S.A.; Hoh, R.; et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Investig. 2023, 133, e163669. [Google Scholar] [CrossRef]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Jennings, G.; Monaghan, A.; Xue, F.; Duggan, E.; Romero-Ortuño, R. Comprehensive Clinical Characterisation of Brain Fog in Adults Reporting Long COVID Symptoms. J. Clin. Med. 2022, 11, 3440. [Google Scholar] [CrossRef]
- Talhari, C.; Criado, P.R.; Castro, C.C.S.; Ianhez, M.; Ramos, P.M.; Miot, H.A. Prevalence of and risk factors for post-COVID: Results from a survey of 6958 patients from Brazil. Acad. Bras. Cienc. 2023, 95, e20220143. [Google Scholar]
- Van der Maaden, T.; Mutubuki, E.N.; de Bruijn, S.; Leung, K.Y.; Knoop, H.; Slootweg, J.; Tulen, A.D.; Wong, A.; van Hoek, A.J.; Franz, E.; et al. Prevalence and Severity of Symptoms 3 Months After Infection with SARS-CoV-2 Compared to Test-Negative and Population Controls in the Netherlands. J. Infect. Dis. 2023, 227, 1059–1067. [Google Scholar] [CrossRef]
- Tran, V.-T.; Porcher, R.; Pane, I.; Ravaud, P. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat. Commun. 2022, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, N.; Di Napoli, M.; Biller, J.; Siegler, J.E.; Shekhar, R.; McCullough, L.D.; Harkins, M.S.; Hong, E.; Alaouieh, D.A.; Mansueto, G.; et al. The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 Infection. Curr. Neurol. Neurosci. Rep. 2021, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. eClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef]
- Westman, G.; Zelano, J. Epilepsy diagnosis after COVID-19: A population-wide study. Seizure 2022, 101, 11–14. [Google Scholar] [CrossRef]
- Massey, D.; Sawano, M.; Baker, A.D.; Güthe, D.B.; Güthe, N.; Shidlovsky, S.P.; Fisher, L.; Grady, C.B.; Caraballo, C.; Zhou, T.; et al. Characterisation of internal tremors and vibration symptoms. BMJ Open 2023, 13, e077389. [Google Scholar] [CrossRef]
- Otani, K.; Fukushima, H.; Matsuishi, K. COVID-19 delirium and encephalopathy: Pathophysiology assumed in the first 3 years of the ongoing pandemic. Brain Disord. 2023, 10, 100074. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef]
- Bereda, G. How is ischemic stroke linked to a COVID-19-infected patient different from other cardiovascular risk factors? a case report. Ann. Med. Surg. 2023, 85, 2995–2998. [Google Scholar] [CrossRef]
- Tonkal, A.; Alamri, A.A.; Al Maghrabi, S.J.; Mozahim, N.F.; Mozahim, S.F.; Alsubaie, S.A.; Alsehly, A.A.; Alshuaibi, R.O.; Alotaibi, L.A.; Qashgari, F.S. Cranial Nerve Impairment Associated With COVID-19 Infections: A Systematic Review. Cureus 2022, 14, e31997. [Google Scholar] [CrossRef]
- Heidari, M.E.; Nazemi, P.; Feizabad, E.; Beiranvand, F.; Afzali, M. Cranial nerve involvement among COVID-19 survivors. Front. Neurol. 2023, 14, 1182543. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A. The role of sleep and sleep disorders in the development, diagnosis, and management of neurocognitive disorders. Front. Neurol. 2015, 6, 224. [Google Scholar] [CrossRef] [PubMed]
- Marchi, M.; Grenzi, P.; Serafini, V.; Capoccia, F.; Rossi, F.; Marrino, P.; Pingani, L.; Galeazzi, G.M.; Ferrari, S. Psychiatric symptoms in Long-COVID patients: A systematic review. Front. Psychiatry 2023, 14, 1138389. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Kuczyńska, K. Psychiatric and neurological complications of long COVID. J. Psychiatr. Res. 2022, 156, 349–360. [Google Scholar] [CrossRef]
- Giraldo, G.S.P.; Ali, S.T.; Kang, A.K.; Patel, T.R.; Budhiraja, S.; Gaelen, J.I.; Lank, G.K.; Clark, J.R.; Mukherjee, S.; Singer, T.; et al. Neurologic Manifestations of Long COVID Differ Based on Acute COVID-19 Severity. Ann. Neurol. 2023, 94, 146–159. [Google Scholar] [CrossRef]
- Orrù, G.; Bertelloni, D.; Diolaiuti, F.; Mucci, F.; Di Giuseppe, M.; Biella, M.; Gemignani, A.; Ciacchini, R.; Conversano, C. Long-COVID Syndrome? A Study on the Persistence of Neurological, Psychological and Physiological Symptoms. Healthcare 2021, 9, 575. [Google Scholar] [CrossRef]
- Williams, S.; Wynford-Thomas, R.; Robertson, N.P. Long-COVID: Neurological manifestations and management. J. Neurol. 2021, 268, 4915–4917. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Piccinelli, S.C.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-term neurological manifestations of COVID-19: Prevalence and predictive factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Cheng, Y. Neurological manifestations of long COVID: A single-center one-year experience [Letter]. Neuropsychiatr. Dis. Treat. 2023, 19, 1605–1606. [Google Scholar] [CrossRef]
- Soares, M.N.; Eggelbusch, M.; Naddaf, E.; Gerrits, K.; van der Schaaf, M.; van den Borst, B.; Wiersinga, W.J.; van Vugt, M.; Weijs, P.; Murray, A.J.; et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J. Cachexia Sarcopenia Muscle 2022, 13, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Montes-Ibarra, M.; Oliveira, C.L.; Orsso, C.E.; Landi, F.; Marzetti, E.; Prado, C.M. The Impact of Long COVID-19 on Muscle Health. Clin. Geriatr. Med. 2022, 38, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Torre, F.; Mínguez-Olaondo, A.; López-Bravo, A.; Tijero, B.; Grozeva, V.; Walcker, M.; Azkune-Galparsoro, H.; de Munain, A.L.; Alcaide, A.B.; Quiroga, J.; et al. Dysautonomia in COVID-19 Patients: A Narrative Review on Clinical Course, Diagnostic and Therapeutic Strategies. Front. Neurol. 2022, 13, 886609. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.C.; Barlow, P.B.; Comellas, A.P.; Garg, A. Anxiety and depression symptoms among patients with long COVID: A retrospective cohort study. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1879–1886. [Google Scholar] [CrossRef]
- Perna, G.; Caldirola, D. COVID-19 and panic disorder: Clinical considerations for the most physical of mental disorders. Rev. Bras. Psiquiatr. 2020, 43, 110–111. [Google Scholar] [CrossRef]
- Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020, 89, 594–600. [Google Scholar] [CrossRef]
- Benke, C.; Wallenfels, L.-M.; Bleichhardt, G.M.; Melzig, C.A. Health anxiety amplifies fearful responses to illness-related imagery. Sci. Rep. 2024, 14, 4345. [Google Scholar] [CrossRef]
- A Shetty, P.; Ayari, L.; Madry, J.; Betts, C.; Robinson, D.M.; Kirmani, B.F. The Relationship Between COVID-19 and the Development of Depression: Implications on Mental Health. Neurosci. Insights 2023, 18, 26331055231191513. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: A meta-analysis. Ann. N. Y. Acad. Sci. 2021, 1486, 90–111. [Google Scholar] [CrossRef]
- Lopes, L.d.S.; Silva, R.O.; Lima, G.d.S.; Costa, A.C.d.A.; Barros, D.F.; Silva-Néto, R.P. Is there a common pathophysiological mechanism between COVID-19 and depression? Acta Neurol. Belg. 2021, 121, 1117–1122. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef] [PubMed]
- E Sommer, I.; Bakker, P.R. What can psychiatrists learn from SARS and MERS outbreaks? Lancet Psychiatry 2020, 7, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Martin, E.M.; Reuken, P.A.; Scholcz, A.; Ganse-Dumrath, A.; Srowig, A.; Utech, I.; Kozik, V.; Radscheidt, M.; Brodoehl, S.; et al. Long COVID is associated with severe cognitive slowing: A multicentre cross-sectional study. eClinicalMedicine 2024, 68, 102434. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Martín-Guerrero, J.D.; Cancela-Cilleruelo, I.; Moro-López-Menchero, P.; Rodríguez-Jiménez, J.; Pellicer-Valero, O.J. Trajectory curves of post-COVID anxiety/depressive symptoms and sleep quality in previously hospitalized COVID-19 survivors: The LONG-COVID-EXP-CM multicenter study. Psychol. Med. 2023, 53, 4298–4299. [Google Scholar] [CrossRef]
- Gross, M.; Lansang, N.M.; Gopaul, U.; Ogawa, E.F.; Heyn, P.C.; Santos, F.H.; Sood, P.; Zanwar, P.P.; Schwertfeger, J.; Faieta, J. What Do I Need to Know About Long-Covid-related Fatigue, Brain Fog, and Mental Health Changes? Arch. Phys. Med. Rehabil. 2023, 104, 996–1002. [Google Scholar] [CrossRef]
- Van Ameringen, M.; Patterson, B.; Turna, J.; Lethbridge, G.; Bergmann, C.G.; Lamberti, N.; Rahat, M.; Sideris, B.; Francisco, A.; Fineberg, N.; et al. Obsessive-compulsive disorder during the COVID-19 pandemic. J. Psychiatr. Res. 2022, 149, 114–123. [Google Scholar] [CrossRef]
- Demaria, F.; Pontillo, M.; Di Vincenzo, C.; Di Luzio, M.; Vicari, S. Hand Washing: When Ritual Behavior Protects! Obsessive–Compulsive Symptoms in Young People during the COVID-19 Pandemic: A Narrative Review. J. Clin. Med. 2022, 11, 3191. [Google Scholar] [CrossRef]
- Samper-Pardo, M.; Oliván-Blázquez, B.; Magallón-Botaya, R.; Méndez-López, F.; Bartolomé-Moreno, C.; León-Herrera, S. The emotional well-being of Long COVID patients in relation to their symptoms, social support and stigmatization in social and health services: A qualitative study. BMC Psychiatry 2023, 23, 68. [Google Scholar] [CrossRef]
- Iovino, P.; Vellone, E.; Cedrone, N.; Riegel, B. A Middle-Range Theory of Social Isolation in Chronic Illness. Int. J. Environ. Res. Public Health 2023, 20, 4940. [Google Scholar] [CrossRef]
- Kingstone, T.; Taylor, A.K.; O’Donnell, C.A.; Atherton, H.; Blane, D.N.; Chew-Graham, C.A. Finding the ‘right’ GP: A qualitative study of the experiences of people with long-COVID. BJGP Open 2020, 4, bjgpopen20X101143. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Kuroda, N.; Sone, D. Neuropsychiatric aspects of long COVID: A comprehensive review. Psychiatry Clin. Neurosci. 2023, 77, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Badenoch, J.B.; Rengasamy, E.R.; Watson, C.; Jansen, K.; Chakraborty, S.; Sundaram, R.D.; Hafeez, D.; Burchill, E.; Saini, A.; Thomas, L.; et al. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis. Brain Commun. 2022, 4, fcab297. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, D.M.; Basso, M.R.; Naini, S.M.; Porter, J.; Holker, E.; Waldron, E.J.; Melnik, T.E.; Niskanen, N.; Taylor, S.E. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection Part 1: Cognitive functioning. Clin. Neuropsychol. 2022, 36, 806–828. [Google Scholar] [CrossRef]
- Krishnan, K.; Miller, A.K.; Reiter, K.; Bonner-Jackson, A. Neurocognitive Profiles in Patients With Persisting Cognitive Symptoms Associated With COVID-19. Arch. Clin. Neuropsychol. 2022, 37, 729–737. [Google Scholar] [CrossRef]
- Aiello, E.N.; Fiabane, E.; Manera, M.R.; Radici, A.; Grossi, F.; Ottonello, M.; Pain, D.; Pistarini, C. Screening for cognitive sequelae of SARS-CoV-2 infection: A comparison between the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Neurol. Sci. 2022, 43, 81–84. [Google Scholar] [CrossRef]
- Dressing, A.; Bormann, T.; Blazhenets, G.; Schroeter, N.; Walter, L.I.; Thurow, J.; August, D.; Hilger, H.; Stete, K.; Gerstacker, K.; et al. Neuropsychologic Profiles and Cerebral Glucose Metabolism in Neurocognitive Long COVID Syndrome. J. Nucl. Med. 2022, 63, 1058–1063. [Google Scholar] [CrossRef]
- Ferrando, S.J.; Dornbush, R.; Lynch, S.; Shahar, S.; Klepacz, L.; Karmen, C.L.; Chen, D.; Lobo, S.A.; Lerman, D. Neuropsychological, Medical, and Psychiatric Findings After Recovery from Acute COVID-19: A Cross-sectional Study. Psychosom 2022, 63, 474–484. [Google Scholar] [CrossRef]
- Crivelli, L.; Palmer, K.; Calandri, I.; Guekht, A.; Beghi, E.; Carroll, W.; Frontera, J.; García-Azorín, D.; Westenberg, E.; Winkler, A.S.; et al. Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s Dement. 2022, 18, 1047–1066. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Calabria, M.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; Lleó, A.; Alcolea, D.; Belvís, R.; Morollón, N.; et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 2022, 12, e2508. [Google Scholar] [CrossRef]
- Giurgi-Oncu, C.; Tudoran, C.; Pop, G.N.; Bredicean, C.; Pescariu, S.A.; Giurgiuca, A.; Tudoran, M. Cardiovascular Abnormalities and Mental Health Difficulties Result in a Reduced Quality of Life in the Post-Acute COVID-19 Syndrome. Brain Sci. 2021, 11, 1456. [Google Scholar] [CrossRef] [PubMed]
- Houben-Wilke, S.; Goërtz, Y.M.; Delbressine, J.M.; Vaes, A.W.; Meys, R.; Machado, F.V.; van Herck, M.; Burtin, C.; Posthuma, R.; Franssen, F.M.; et al. The Impact of Long COVID-19 on Mental Health: Observational 6-Month Follow-Up Study. JMIR Ment. Health 2022, 9, e33704. [Google Scholar] [CrossRef] [PubMed]
- Benítez, I.D.M.; Moncusí-Moix, A.M.; Vaca, R.M.; Gort-Paniello, C.M.; Minguez, O.M.; Santisteve, S.M.; Carmona, P.M.; Torres, G.; Fagotti, J.; Labarca, G.; et al. Sleep and Circadian Health of Critical COVID-19 Survivors 3 Months After Hospital Discharge. Crit. Care Med. 2022, 50, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Dini, M.; Rosci, C.; Capozza, A.; Groppo, E.; Reitano, M.R.; Allocco, E.; Poletti, B.; Brugnera, A.; Bai, F.; et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur. J. Neurol. 2022, 29, 2006–2014. [Google Scholar] [CrossRef]
- Sujan, S.H.; Tasnim, R.; Haghighathoseini, A.; Hasan, M.M.; Islam, S. Investigating posttraumatic stress disorder among COVID-19 recovered patients: A cross-sectional study. Heliyon 2023, 9, e14499. [Google Scholar] [CrossRef]
- Shiwaku, H.; Doi, S.; Miyajima, M.; Matsumoto, Y.; Fujino, J.; Hirai, N.; Jitoku, D.; Takagi, S.; Tamura, T.; Maruo, T.; et al. Novel brief screening scale, Tokyo Metropolitan Distress Scale for Pandemic (TMDP), for assessing mental and social stress of medical personnel in COVID-19 pandemic. Psychiatry Clin. Neurosci. 2021, 75, 24–25. [Google Scholar] [CrossRef]
- George, K.M.; Lutsey, P.L.; Selvin, E.; Palta, P.; Windham, B.G.; Folsom, A.R. Association Between Thyroid Dysfunction and Incident Dementia in the Atherosclerosis Risk in Communities Neurocognitive Study. J. Endocrinol. Metab. 2019, 9, 82–89. [Google Scholar] [CrossRef]
- Obeid, R.; Andrès, E.; Češka, R.; Hooshmand, B.; Guéant-Rodriguez, R.-M.; Prada, G.I.; Sławek, J.; Traykov, L.; Van, B.T.; Várkonyi, T.; et al. Diagnosis, Treatment and Long-Term Management of Vitamin B12 Deficiency in Adults: A Delphi Expert Consensus. J. Clin. Med. 2024, 13, 2176. [Google Scholar] [CrossRef]
- Boyarchuk, O.; Volianska, L. Autoimmunity and long COVID in children. Rheumatology 2024, 61, 492–501. [Google Scholar] [CrossRef]
- Graham, E.L.; Koralnik, I.J.; Liotta, E.M. Therapeutic Approaches to the Neurologic Manifestations of COVID-19. Neurotherapeutics 2022, 19, 1435–1466. [Google Scholar] [CrossRef]
- Dennis, A.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Eichert, N.; Mouchti, S.; Pansini, M.; Roca-Fernandez, A.; Thomaides-Brears, H.; et al. Multi-organ impairment and long COVID: A 1-year prospective, longitudinal cohort study. J. Royal Soc. Med. 2023, 116, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Al-Faraj, A.; Ayub, N.; Bravo, P.; Das, S.; Ferlini, L.; Karakis, I.; Lee, J.W.; Mukerji, S.S.; Newey, C.R.; et al. Electroencephalographic Abnormalities are Common in COVID-19 and are Associated with Outcomes. Ann. Neurol. 2021, 89, 872–883. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Lipkin, W.I. ME/CFS and Long COVID share similar symptoms and biological abnormalities: Road map to the literature. Front. Med. 2023, 10, 1187163. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Greene, C.; Dayaramani, C.; Rauchman, S.H.; Stecker, M.M.; De Leon, J.; Pinkhasov, A. Long COVID, the Brain, Nerves, and Cognitive Function. Neurol. Int. 2023, 15, 821–841. [Google Scholar] [CrossRef]
- Kuut, T.A.; Müller, F.; Csorba, I.; Braamse, A.; Aldenkamp, A.; Appelman, B.; Assmann-Schuilwerve, E.; Geerlings, S.E.; Gibney, K.B.; Kanaan, R.A.A.; et al. Efficacy of Cognitive-Behavioral Therapy Targeting Severe Fatigue Following Coronavirus Disease 2019: Results of a Randomized Controlled Trial. Clin. Infect. Dis. 2023, 77, 687–695. [Google Scholar] [CrossRef]
- Kutashov, V.A. Actovegin use in patients with cognitive impairment after coronavirus infection (COVID-19). Neurol. Neuropsychiatry Psychosom. 2021, 13, 65–72. [Google Scholar] [CrossRef]
- Fu, Y.; Song, Y.; Li, Y.; Sanchez-Vidana, D.I.; Zhang, J.J.; Lau, W.K.; Tan, D.G.H.; Ngai, S.P.C.; Lau, B.W.-M. The effect of mindfulness meditation on depressive symptoms during the COVID-19 pandemic: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 20189. [Google Scholar] [CrossRef]
- Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, S.; Khullar, G.; Setia, D.; et al. Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals 2021, 14, 381. [Google Scholar] [CrossRef]
- Colas, C.; Le Berre, Y.; Fanget, M.; Savall, A.; Killian, M.; Goujon, I.; Labeix, P.; Bayle, M.; Féasson, L.; Roche, F.; et al. Physical Activity in Long COVID: A Comparative Study of Exercise Rehabilitation Benefits in Patients with Long COVID, Coronary Artery Disease and Fibromyalgia. Int. J. Environ. Res. Public Health 2023, 20, 6513. [Google Scholar] [CrossRef]
- Zeraatkar, D.; Ling, M.; Kirsh, S.; Jassal, T.; Shahab, M.; Movahed, H.; Talukdar, J.R.; Walch, A.; Chakraborty, S.; Turner, T.; et al. Interventions for the management of long covid (post-covid condition): Living systematic review. BMJ 2024, 387, e081318. [Google Scholar] [CrossRef]
- Mazza, M.G.; Zanardi, R.; Palladini, M.; Rovere-Querini, P.; Benedetti, F. Rapid response to selective serotonin reuptake inhibitors in post-COVID depression. Eur. Neuropsychopharmacol. 2022, 54, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rus, C.P.; de Vries, B.E.K.; de Vries, I.E.J.; Nutma, I.; Kooij, J.J.S. Treatment of 95 post-Covid patients with SSRIs. Sci. Rep. 2023, 13, 18599. [Google Scholar] [CrossRef] [PubMed]
- Butzin-Dozier, Z.; Ji, Y.; Deshpande, S.; Hurwitz, E.; Anzalone, A.J.; Coyle, J.; Shi, J.; Mertens, A.; van der Laan, M.J.; Colford, J.M.; et al. SSRI use during acute COVID-19 and risk of Long COVID among patients with depression. BMC Med. 2024, 22, 445. [Google Scholar] [CrossRef] [PubMed]
- Pashaei, Y. Drug repurposing of selective serotonin reuptake inhibitors: Could these drugs help fight COVID-19 and save lives? J. Clin. Neurosci. 2021, 88, 163–172. [Google Scholar] [CrossRef]
- Sanilevici, M.; Reuveni, O.; Lev-Ari, S.; Golland, Y.; Levit-Binnun, N. Mindfulness-Based Stress Reduction Increases Mental Wellbeing and Emotion Regulation During the First Wave of the COVID-19 Pandemic: A Synchronous Online Intervention Study. Front. Psychol. 2021, 12, 720965. [Google Scholar] [CrossRef]
- Guezguez, F.; Romdhani, M.; Boutaleb-Joutei, A.; Chamari, K.; Ben Saad, H. Management of long-COVID-19 patients with sleep disorders: Practical advice to general practitioners. Libyan J. Med. 2023, 18, 2182704. [Google Scholar] [CrossRef]
- Anderson, G.M. Fluvoxamine, melatonin and COVID-19. Psychopharmacol 2021, 238, 611. [Google Scholar] [CrossRef]
- Anderson, G.; Reiter, R.J. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol. 2020, 30, e2109. [Google Scholar] [CrossRef]
- Weise, A.; Ott, E.; Hersche, R. Energy Management Education in Persons with Long COVID-Related Fatigue: Insights from Focus Group Results on Occupational Therapy Approach. Healthcare 2024, 12, 150. [Google Scholar] [CrossRef]
- Spencer, L.H.; Hendry, A.; Makanjuola, A.; Anthony, B.F.; Davies, J.; Pisavadia, K.; Hughes, D.; Fitzsimmons, D.; Wilkinson, C.; Edwards, R.T.; et al. What interventions or best practice are there to support people with Long COVID, or similar post-viral conditions or conditions characterised by fatigue, to return to normal activities: A rapid review. medRxiv 2023, 2023.01.24.23284947. [Google Scholar] [CrossRef]
- Sanal-Hayes, N.E.M.; Mclaughlin, M.; Hayes, L.D.; Mair, J.L.; Ormerod, J.; Carless, D.; Hilliard, N.; Meach, R.; Ingram, J.; Sculthorpe, N.F. A scoping review of ‘Pacing’ for management of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Lessons learned for the long COVID pandemic. J. Transl. Med. 2023, 21, 720. [Google Scholar] [CrossRef] [PubMed]
- Younes, S. The role of nutrition on the treatment of COVID-19. Hum. Nutr. Metab. 2024, 36, 200255. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Nijs, J.; Neblett, R.; Polli, A.; Moens, M.; Goudman, L.; Patil, M.S.; Knaggs, R.D.; Pickering, G.; Arendt-Nielsen, L. Phenotyping Post-COVID Pain as a Nociceptive, Neuropathic, or Nociplastic Pain Condition. Biomedicines 2022, 10, 2562. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, G.; Falco, P.; Galosi, E.; Di Pietro, G.; Leone, C.; Truini, A. A systematic review and meta-analysis of neuropathic pain associated with coronavirus disease2019. Eur. J. Pain. 2023, 27, 44–53. [Google Scholar] [CrossRef]
- El-Tallawy, S.N.; Perglozzi, J.V.; Ahmed, R.S.; Kaki, A.M.; Nagiub, M.S.; LeQuang, J.K.; Hadarah, M.M. Pain Management in the Post-COVID Era—An Update: A Narrative Review. Pain. Ther. 2023, 12, 423–448. [Google Scholar] [CrossRef]
- Taube, M. Depression and brain fog as long-COVID mental health consequences: Difficult, complex and partially successful treatment of a 72-year-old patient—A case report. Front. Psychiatry 2023, 14, 1153512. [Google Scholar] [CrossRef]
- Veronese, N.; Bonica, R.; Cotugno, S.; Tulone, O.; Camporeale, M.; Smith, L.; Trott, M.; Bruyere, O.; Mirarchi, L.; Rizzo, G.; et al. Interventions for Improving Long COVID-19 Symptomatology: A Systematic Review. Viruses 2022, 14, 1863. [Google Scholar] [CrossRef]
- Samper-Pardo, M.; León-Herrera, S.; Oliván-Blázquez, B.; Méndez-López, F.; Domínguez-García, M.; Sánchez-Recio, R. Effectiveness of a telerehabilitation intervention using ReCOVery APP of long COVID patients: A randomized, 3-month follow-up clinical trial. Sci. Rep. 2023, 13, 7943. [Google Scholar] [CrossRef]
- Kapur, A. Is Methylphenidate Beneficial and Safe in Pharmacological Cognitive Enhancement? CNS Drugs 2020, 34, 1045–1062. [Google Scholar] [CrossRef]
- Clark, P.; Rosenberg, P.; Oh, E.S.; Parker, A.; Vannorsdall, T.; Azola, A.; Nickles, E.; Galiatsatos, P.; Malik, M. Methylphenidate for the Treatment of Post-COVID Cognitive Dysfunction (Brain Fog). J. Med. Cases 2024, 15, 195–200. [Google Scholar] [CrossRef]
- Carrasco-Garrido, P.; Fernández-De-Las-Peñas, C.; Hernández-Barrera, V.; Palacios-Ceña, D.; Jiménez-Trujillo, I.; Gallardo-Pino, C. Benzodiazepines and Z-hypnotics consumption in long-COVID-19 patients: Gender differences and associated factors. Front. Med. 2022, 9, 975930. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Reiersen, A.M.; Zorumski, C.F.; Santosh, P.J. Beyond “Psychotropic”. J. Clin. Psychiatry 2023, 84, 46251. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ho, C.S.; Liu, X.; Chua, A.N.; Wang, W.; McIntyre, R.S.; Ho, R.C. Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression. PLoS ONE 2017, 12, e0186700. [Google Scholar] [CrossRef] [PubMed]
- Carpinteiro, A.; Edwards, M.J.; Hoffmann, M.; Kochs, G.; Gripp, B.; Weigang, S.; Adams, C.; Carpinteiro, E.; Gulbins, A.; Keitsch, S.; et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep. Med. 2020, 1, 100142. [Google Scholar] [CrossRef]
- Kornhuber, J.; Muehlbacher, M.; Trapp, S.; Pechmann, S.; Friedl, A.; Reichel, M.; Mühle, C.; Terfloth, L.; Groemer, T.W.; Spitzer, G.M.; et al. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLoS ONE 2011, 6, e23852. [Google Scholar] [CrossRef]
- Homolak, J.; Kodvanj, I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int. J. Antimicrob. Agents 2020, 56, 106044. [Google Scholar] [CrossRef]
- Schlienger, R.G.; Meier, C.R. Effect of Selective Serotonin Reuptake Inhibitors on Platelet Activation. Am. J. Cardiovasc. Drugs 2003, 3, 149–162. [Google Scholar] [CrossRef]
- Reiersen, A.M.; Vayttaden, S.J.; Sukhatme, V.V. Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Front. Pharmacol. 2021, 12, 652688. [Google Scholar] [CrossRef]
- Russo, S.; Fiani, F.; Napoli, C. Remote Eye Movement Desensitization and Reprocessing Treatment of Long-COVID-19 and Post-COVID-Related Traumatic Disorders: An Innovative Approach. Brain Sci. 2024, 14, 1212. [Google Scholar] [CrossRef]
- Fan, Y.; Shi, Y.; Zhang, J.; Sun, D.; Wang, X.; Fu, G.; Mo, D.; Wen, J.; Xiao, X.; Kong, L. The effects of narrative exposure therapy on COVID-19 patients with post-traumatic stress symptoms: A randomized controlled trial. J. Affect. Disord. 2021, 293, 141–147. [Google Scholar] [CrossRef]
- Walker, J.; Muench, A.; Perlis, M.; Vargas, I. Cognitive Behavioral Therapy for Insomnia (CBT-I): A Primer. Clin. Psychol. Spéc. Educ. 2022, 11, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.M. Overview of sleep management during COVID-19. Sleep Med. 2021, 91, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Soyka, M.; Wild, I.; Caulet, B.; Leontiou, C.; Lugoboni, F.; Hajak, G. Long-term use of benzodiazepines in chronic insomnia: A European perspective. Front. Psychiatry 2023, 14, 1212028. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Grant, W.B.; Frias-Toral, E.; Sarno, G.; Vetrani, C.; Ceriani, F.; Garcia-Velasquez, E.; Contreras-Briceño, J.; Savastano, S.; et al. Vitamin D: A Role Also in Long COVID-19? Nutrients 2022, 14, 1625. [Google Scholar] [CrossRef]
- Mantle, D.; Hargreaves, I.P.; Domingo, J.C.; Castro-Marrero, J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. Int. J. Mol. Sci. 2024, 25, 574. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Segundo, M.J.; Lacasa, M.; Martinez-Martinez, A.; Sentañes, R.S.; Alegre-Martin, J. Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2658. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Association of Treatment with Nirmatrelvir and the Risk of Post–COVID-19 Condition. JAMA Intern. Med. 2023, 183, 554–564. [Google Scholar] [CrossRef]
- Antar, A.A.R.; Peluso, M.J. CROI 2023: Acute and Post-Acute COVID-19. Top. Antivir. Med. 2025, 31, 493. [Google Scholar]
- Cohen, A.K.; Jaudon, T.W.; Schurman, E.M.; Kava, L.; Vogel, J.M.; Haas-Godsil, J.; Lewis, D.; Crausman, S.; Leslie, K.; Bligh, S.C.; et al. Impact of extended-course oral nirmatrelvir/ritonavir (Paxlovid) in established Long COVID: Case series and research considerations. Res. Sq. 2023, 3, rs-3359429. [Google Scholar] [CrossRef]
- Fernández-De-Las-Peñas, C.; Torres-Macho, J.; Macasaet, R.; Velasco, J.V.; Ver, A.T.; Carandang, T.H.D.C.; Guerrero, J.J.; Franco-Moreno, A.; Chung, W.; Notarte, K.I. Presence of SARS-CoV-2 RNA in COVID-19 survivors with post-COVID symptoms: A systematic review of the literature. Clin. Chem. Lab. Med. 2024, 62, 1044–1052. [Google Scholar] [CrossRef]
- Sharif-Askari, F.S.; Alsayed, H.A.H.; Sharif-Askari, N.S.; Hussain, A.A.S.; Al-Muhsen, S.; Halwani, R. Nirmatrelvir plus ritonavir reduces COVID-19 hospitalization and prevents long COVID in adult outpatients. Sci. Rep. 2024, 14, 25901. [Google Scholar] [CrossRef] [PubMed]
- Congdon, S.; Narrowe, Z.; Yone, N.; Gunn, J.; Deng, Y.; Nori, P.; Cowman, K.; Islam, M.; Rikin, S.; Starrels, J. Nirmatrelvir/ritonavir and risk of long COVID symptoms: A retrospective cohort study. Sci. Rep. 2023, 13, 19688. [Google Scholar] [CrossRef] [PubMed]
- Fernández-De-Las-Peñas, C.; Torres-Macho, J.; Catahay, J.A.; Macasaet, R.; Velasco, J.V.; Macapagal, S.; Caldararo, M.; Henry, B.M.; Lippi, G.; Franco-Moreno, A.; et al. Is antiviral treatment at the acute phase of COVID-19 effective for decreasing the risk of long-COVID? A systematic review. Infection 2024, 52, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z. Prevention of long COVID: Progress and challenges. Lancet Infect. Dis. 2023, 23, 776–777. [Google Scholar] [CrossRef]
- Sam, K.S.; Khosla, P.; Taneja, V.; Dessai, R. Casirivimab-imdevimab monoclonal antibody treatment for an immunocompromised patient with persistent SARS-CoV-2 infection: A case report. Commun. Med. 2024, 4, 103. [Google Scholar] [CrossRef]
- Negrut, N.; Codrean, A.; Hodisan, I.; Bungau, S.; Tit, D.M.; Marin, R.; Behl, T.; Banica, F.; Diaconu, C.C.; Nistor-Cseppento, D.C. Efficiency of antiviral treatment in COVID-19. Exp. Ther. Med. 2021, 21, 648. [Google Scholar] [CrossRef]
- Gaylis, N.B.; Ritter, A.; Kelly, S.A.; Pourhassan, N.Z.; Tiwary, M.; Sacha, J.B.; Hansen, S.G.; Recknor, C.; Yang, O.O. Reduced Cell Surface Levels of C-C Chemokine Receptor 5 and Immunosuppression in Long Coronavirus Disease 2019 Syndrome. Clin. Infect. Dis. 2022, 75, 1232–1234. [Google Scholar] [CrossRef]
- Sizyakina, L.; Zakurskaya, V.; Guryanova, S. Glucosaminylmuramyl dipeptide efficacy in post-COVID-19 patient rehabilitation treatment. Infect. Dis. News Opin. Train. 2023, 12, 17–25. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Phan, L.; Kwan, A.T.H.; Mansur, R.B.; Rosenblat, J.D.; Guo, Z.; Le, G.H.; Lui, L.M.W.; Teopiz, K.M.; Ceban, F.; et al. Vortioxetine for the treatment of post-COVID-19 condition: A randomized controlled trial. Brain 2024, 147, 849–857. [Google Scholar] [CrossRef]
- Lau, R.I.; Su, Q.; Lau, I.S.F.; Ching, J.Y.L.; Wong, M.C.S.; Lau, L.H.S.; Tun, H.M.; Mok, C.K.P.; Chau, S.W.H.; Tse, Y.K.; et al. A synbiotic preparation (SIM01) for post-acute COVID-19 syndrome in Hong Kong (RECOVERY): A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 2024, 24, 256–265. [Google Scholar] [CrossRef]
- Liu, Q.; Mak, J.W.Y.; Su, Q.; Yeoh, Y.K.; Lui, G.C.-Y.; Ng, S.S.S.; Zhang, F.; Li, A.Y.L.; Lu, W.; Hui, D.S.-C.; et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 2022, 71, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Zilberman-Itskovich, S.; Catalogna, M.; Sasson, E.; Elman-Shina, K.; Hadanny, A.; Lang, E.; Finci, S.; Polak, N.; Fishlev, G.; Korin, C.; et al. Hyperbaric oxygen therapy improves neurocognitive functions and symptoms of post-COVID condition: Randomized controlled trial. Sci. Rep. 2022, 12, 11252. [Google Scholar] [CrossRef] [PubMed]
- Santana, K.; França, E.; Sato, J.; Silva, A.; Queiroz, M.; de Farias, J.; Rodrigues, D.; Souza, I.; Ribeiro, V.; Caparelli-Dáquer, E.; et al. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul. 2023, 16, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Elbannaa, R.; Mogahed, H.; Zahran, M.; Mohamed, E. The effect of photobiomodulation versus placebo on functional capacity and fatigability in post COVID-19 elderly. Adv. Rehabil. 2022, 36, 19–25. [Google Scholar] [CrossRef]
- Florencio, L.L.; Fernández-De-Las-Peñas, C. Long COVID: Systemic inflammation and obesity as therapeutic targets. Lancet Respir. Med. 2022, 10, 726–727. [Google Scholar] [CrossRef]
- Palaiodimou, L.; Stefanou, M.; Katsanos, A.H.; Fragkou, P.C.; Papadopoulou, M.; Moschovos, C.; Michopoulos, I.; Kokotis, P.; Bakirtzis, C.; Naska, A.; et al. Prevalence, clinical characteristics and outcomes of Guillain−Barré syndrome spectrum associated with COVID-19: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 3517–3529. [Google Scholar] [CrossRef]
- Oaklander, A.L.; Mills, A.J.; Kelley, M.; Toran, L.S.; Smith, B.; Dalakas, M.C.; Nath, A. Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID. Neurol. Neuroimmunol. Neuroinflammation 2022, 9, e1146. [Google Scholar] [CrossRef]
- Yang, C.-P.; Chang, C.-M.; Yang, C.-C.; Pariante, C.M.; Su, K.-P. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav. Immun. 2022, 103, 19–27. [Google Scholar] [CrossRef]
- Chang, J.P.-C.; Pariante, C.M.; Su, K.-P. Omega-3 fatty acids in the psychological and physiological resilience against COVID-19. Prostaglandins Leukot. Essent. Fat. Acids 2020, 161, 102177. [Google Scholar] [CrossRef]
- Liu, T.-H.; Ho, C.-H.; Chen, D.T.-L.; Wu, J.-Y.; Huang, P.-Y.; Lai, C.-C.; Hsieh, K.-Y.; Su, K.-P. Omega-3 polyunsaturated fatty acids and the psychiatric post-acute sequelae of COVID-19: A one-year retrospective cohort analysis of 33,908 patients. Brain Behav. Immun. 2023, 114, 453–461. [Google Scholar] [CrossRef]
- Rodríguez-Vera, D.; Salazar, J.R.; Soriano-Ursúa, M.A.; Guzmán-Pérez, J.; Vergara-Castañeda, A.; Muñoz-Durán, H.; Ramírez-Velez, G.L.; Vivar-Sierra, A.; Naranjo-Navarro, C.R.; Meza-Meneses, P.A.; et al. Effectiveness of Omega-3 Fatty Acid Supplementation in Improving the Metabolic and Inflammatory Profiles of Mexican Adults Hospitalized with COVID-19. Diseases 2024, 12, 28. [Google Scholar] [CrossRef]
- Sarkar, A.; Speiser, E.; Dara, S.; Ogedegbe, C.; Chinnery, P.; Estanbouli, M.-T.; Kasselman, L.; Kligler, B.; Paleoudis, E.G.; Parulekar, M. The Feasibility of Omega-3 Supplementation Compared to Placebo in the Management of Long COVID Symptoms Among Healthcare Workers: A Randomized Controlled Trial. Cureus 2024, 16, e76148. [Google Scholar] [CrossRef] [PubMed]
- Líška, D.; Liptaková, E.; Babičová, A.; Batalik, L.; Baňárová, P.S.; Dobrodenková, S. What is the quality of life in patients with long COVID compared to a healthy control group? Front. Public Health 2022, 10, 975992. [Google Scholar] [CrossRef] [PubMed]
- Malesevic, S.; Sievi, N.A.; Baumgartner, P.; Roser, K.; Sommer, G.; Schmidt, D.; Vallelian, F.; Jelcic, I.; Clarenbach, C.F.; Kohler, M. Impaired health-related quality of life in long-COVID syndrome after mild to moderate COVID-19. Sci. Rep. 2023, 13, 7717. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Z.; Li, S.; Wang, Y.; Liu, G. Impact of Long COVID on Health-Related Quality of Life Among Patients After Acute COVID-19 Infection: A Cross-Sectional Study. Inq. J. Health Care Organ. Provis. Financ. 2024, 61, 00469580241246461. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rodríguez, E.; Perula-De-Torres, L.Á.; González-Lama, J.; Castro-Jiménez, R.Á.; Jiménez-García, C.; Priego-Pérez, C.; Vélez-Santamaría, R.; Simón-Vicente, L.; González-Santos, J.; González-Bernal, J.J. Long COVID Symptomatology and Associated Factors in Primary Care Patients: The EPICOVID-AP21 Study. Healthcare 2023, 11, 218. [Google Scholar] [CrossRef]
- Vélez-Santamaría, R.; Fernández-Solana, J.; Méndez-López, F.; Domínguez-García, M.; González-Bernal, J.J.; Magallón-Botaya, R.; Oliván-Blázquez, B.; González-Santos, J.; Santamaría-Peláez, M. Functionality, physical activity, fatigue and quality of life in patients with acute COVID-19 and Long COVID infection. Sci. Rep. 2023, 13, 19907. [Google Scholar] [CrossRef]
- Miskowiak, K.; Pedersen, J.; Gunnarsson, D.; Roikjer, T.; Podlekareva, D.; Hansen, H.; Dall, C.; Johnsen, S. Cognitive impairments among patients in a long-COVID clinic: Prevalence, pattern and relation to illness severity, work function and quality of life. J. Affect. Disord. 2023, 324, 162–169. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Zhang, Z.; Wang, Z.; Li, H. Cognitive impairment after long COVID-19: Current evidence and perspectives. Front. Neurol. 2023, 14, 1239182. [Google Scholar] [CrossRef]
- Liang, L.; Hou, W.; Li, T.; Liu, H.; Goodwin, R.; Lee, T. Latent Profiles and Transitions of Daily Routine Disruptions Are Associated with Severity of Symptoms of Anxiety and Depression. Leis. Sci. 2023, 1–16. [Google Scholar] [CrossRef]
- Ladds, E.; Rushforth, A.; Wieringa, S.; Taylor, S.; Rayner, C.; Husain, L.; Greenhalgh, T. Persistent symptoms after COVID-19: Qualitative study of 114 “long Covid” patients and draft quality principles for services. BMC Health Serv. Res. 2020, 20, 1144. [Google Scholar] [CrossRef] [PubMed]
- Parkin, A.; Davison, J.; Tarrant, R.; Ross, D.; Halpin, S.; Simms, A.; Salman, R.; Sivan, M. A Multidisciplinary NHS COVID-19 Service to Manage Post-COVID-19 Syndrome in the Community. J. Prim. Care Community Health 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Roy, D.; Sinha, K.; Parveen, S.; Sharma, G.; Joshi, G. Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations. Psychiatry Res. 2020, 293, 113429. [Google Scholar] [CrossRef]
- Sanchez-Gomez, M.; Giorgi, G.; Finstad, G.L.; Urbini, F.; Foti, G.; Mucci, N.; Zaffina, S.; León-Perez, J.M. COVID-19 Pandemic as a Traumatic Event and Its Associations with Fear and Mental Health: A Cognitive-Activation Approach. Int. J. Environ. Res. Public Health 2021, 18, 7422. [Google Scholar] [CrossRef]
- Bonati, M.; Campi, R.; Segre, G. Psychological impact of the quarantine during the COVID-19 pandemic on the general European adult population: A systematic review of the evidence. Epidemiol. Psychiatr. Sci. 2022, 31, e27. [Google Scholar] [CrossRef]
- Dos Santos, E.R.R.; de Paula, J.L.S.; Tardieux, F.M.; Costa-E-Silva, V.N.; Lal, A.; Leite, A.F.B. Association between COVID-19 and anxiety during social isolation: A systematic review. World J. Clin. Cases 2021, 9, 7433–7444. [Google Scholar] [CrossRef]
- Pietrabissa, G.; Simpson, S.G. Psychological Consequences of Social Isolation During COVID-19 Outbreak. Front. Psychol. 2020, 11, 2201. [Google Scholar] [CrossRef]
- Marashi, M.Y.; Nicholson, E.; Ogrodnik, M.; Fenesi, B.; Heisz, J.J. A mental health paradox: Mental health was both a motivator and barrier to physical activity during the COVID-19 pandemic. PLoS ONE 2021, 16, e0239244. [Google Scholar] [CrossRef]
- Young, E.; Milligan, K.; Henze, M.; Johnson, S.; Weyman, K. Caregiver burnout, gaps in care, and COVID-19. Can. Fam. Physician 2021, 67, 506–508. [Google Scholar] [CrossRef]
- Torres, C.; Maeda, K.; Johnson, M.; Jason, L.A. Understanding Experiences of Youth with Long COVID: A Qualitative Approach. Children 2024, 11, 335. [Google Scholar] [CrossRef]
- Brackel, C.L.H.; Lap, C.R.; Buddingh, E.P.; van Houten, M.A.; van der Sande, L.J.T.M.; Langereis, E.J.; Bannier, M.A.G.E.; Pijnenburg, M.W.H.; Hashimoto, S.; Terheggen-Lagro, S.W.J. Pediatric long-COVID: An overlooked phenomenon? Pediatr. Pulmonol. 2021, 56, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Fink, T.T.; Marques, H.H.; Gualano, B.; Lindoso, L.; Bain, V.; Astley, C.; Martins, F.; Matheus, D.; Matsuo, O.M.; Suguita, P.; et al. Persistent symptoms and decreased health-related quality of life after symptomatic pediatric COVID-19: A prospective study in a Latin American tertiary hospital. Clinics 2021, 76, e3511. [Google Scholar] [CrossRef] [PubMed]
- Jason, L.A.; Johnson, M.; Torres, C. Pediatric Post-Acute Sequelae of SARS-CoV-2 infection. Fatigue Biomed. Health Behav. 2023, 11, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Turkel, S.; Pao, M. Late Consequences of Chronic Pediatric Illness. Psychiatr. Clin. N. Am. 2007, 30, 819–835. [Google Scholar] [CrossRef]
- Hassan, N.M.; Salim, H.S.; Amaran, S.; Yunus, N.I.; Yusof, N.A.; Daud, N.; Fry, D. Prevalence of mental health problems among children with long COVID: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0282538. [Google Scholar] [CrossRef]
- Liu, S.-T.; Lin, S.-C.; Chang, J.P.-C.; Yang, K.-J.; Chu, C.-S.; Yang, C.-C.; Liang, C.-S.; Sun, C.-F.; Wang, S.-C.; Satyanarayanan, S.K.; et al. The Clinical Observation of Inflammation Theory for Depression: The Initiative of the Formosa Long COVID Multicenter Study (FOCuS). Clin. Psychopharmacol. Neurosci. 2023, 21, 10–18. [Google Scholar] [CrossRef]
- Byrne, E.A. Understanding Long Covid: Nosology, social attitudes and stigma. Brain Behav. Immun. 2022, 99, 17–24. [Google Scholar] [CrossRef]
- Shachar-Lavie, I.; Shorer, M.; Segal, H.; Fennig, S.; Ashkenazi-Hoffnung, L. Mental health among children with long COVID during the COVID-19 pandemic. Eur. J. Pediatr. 2023, 182, 1793–1801. [Google Scholar] [CrossRef]
- Ha, E.K.; Kim, J.H.; Han, M.Y. Long COVID in children and adolescents: Prevalence, clinical manifestations, and management strategies. Clin. Exp. Pediatr. 2023, 66, 465–474. [Google Scholar] [CrossRef]
- Borch, L.; Holm, M.; Knudsen, M.; Ellermann-Eriksen, S.; Hagstroem, S. Long COVID symptoms and duration in SARS-CoV-2 positive children—A nationwide cohort study. Eur. J. Pediatr. 2022, 181, 1597–1607. [Google Scholar] [CrossRef]
- Berg, S.K.; Nielsen, S.D.; Nygaard, U.; Bundgaard, H.; Palm, P.; Rotvig, C.; Christensen, A.V. Long COVID symptoms in SARS-CoV-2-positive adolescents and matched controls (LongCOVIDKidsDK): A national, cross-sectional study. Lancet Child. Adolesc. Health 2022, 6, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Tedjasukmana, R.; Budikayanti, A.; Islamiyah, W.R.; Witjaksono, A.M.A.L.; Hakim, M. Sleep disturbance in post COVID-19 conditions: Prevalence and quality of life. Front. Neurol. 2023, 13, 1095606. [Google Scholar] [CrossRef] [PubMed]
- Bothe, K.; Schabus, M.; Eigl, E.-S.; Kerbl, R.; Hoedlmoser, K. Self-reported changes in sleep patterns and behavior in children and adolescents during COVID-19. Sci. Rep. 2022, 12, 20412. [Google Scholar] [CrossRef] [PubMed]
- Zavala, M.; Ireland, G.; Amin-Chowdhury, Z.; E Ramsay, M.; Ladhani, S.N. Acute and Persistent Symptoms in Children With Polymerase Chain Reaction (PCR)–Confirmed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Compared With Test-Negative Children in England: Active, Prospective, National Surveillance. Clin. Infect. Dis. 2022, 75, e191–e200. [Google Scholar] [CrossRef]
- Swartz, M.K. Post-COVID Conditions in Children. J. Pediatr. Health Care 2021, 35, 457–458. [Google Scholar] [CrossRef]
- Faux-Nightingale, A.; Saunders, B.; Burton, C.; Chew-Graham, C.A.; Somayajula, G.; Twohig, H.; Welsh, V. Experiences and care needs of children with long COVID: A qualitative study. BJGP Open 2024, 8, 143. [Google Scholar] [CrossRef]
- Savino, R.; Polito, A.N.; Arcidiacono, G.; Poliseno, M.; Caputo, S.L. Neuropsychiatric Disorders in Pediatric Long COVID-19: A Case Series. Brain Sci. 2022, 12, 514. [Google Scholar] [CrossRef]
- Behnood, S.; Shafran, R.; Bennett, S.; Zhang, A.; O’Mahoney, L.; Stephenson, T.; Ladhani, S.; De Stavola, B.; Viner, R.; Swann, O. Persistent symptoms following SARS-CoV-2 infection amongst children and young people: A meta-analysis of controlled and uncontrolled studies. J. Infect. 2022, 84, 158–170. [Google Scholar] [CrossRef]
- Faux-Nightingale, A.; Burton, C.; Twohig, H.; Blagojevic-Bucknall, M.; Carroll, W.; A Chew-Graham, C.; Dunn, K.; Gilchrist, F.; Helliwell, T.; Lawton, O.; et al. Symptom patterns and life with post-acute COVID-19 in children aged 8–17 years: A mixed-methods study protocol. BJGP Open 2023, 7, 149. [Google Scholar] [CrossRef]
- MacLean, A.; Wild, C.; Hunt, K.; Nettleton, S.; Skea, Z.C.; Ziebland, S. Impact of Long Covid on the school experiences of children and young people: A qualitative study. BMJ Open 2023, 13, e075756. [Google Scholar] [CrossRef]
- Ng, C.S.M.; Ng, S.S.L. Impact of the COVID-19 pandemic on children’s mental health: A systematic review. Front. Psychiatry 2022, 13, 975936. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Aumatell, A.; Bovo, M.V.; Carreras-Abad, C.; Cuso-Perez, S.; Marsal, È.D.; Coll-Fernández, R.; Calvo, A.G.; Giralt-López, M.; Cantallops, A.E.; Moron-Lopez, S.; et al. Social, Academic and Health Status Impact of Long COVID on Children and Young People: An Observational, Descriptive, and Longitudinal Cohort Study. Children 2022, 9, 1677. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Chiappini, E.; Licari, A.; Galli, L.; Marseglia, G.L. Prevalence and clinical presentation of long COVID in children: A systematic review. Eur. J. Pediatr. 2022, 181, 3995–4009. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, T.; Shafran, R.; Ladhani, S.N. Long COVID in children and adolescents. Curr. Opin. Infect. Dis. 2022, 35, 461–467. [Google Scholar] [CrossRef]
Manifestations | Population (n =) | Observations | References |
---|---|---|---|
Depression, post-traumatic symptoms, and anxiety | 282,711 | Interventions should be focused on reducing the inflammatory process (reconditioning or mindfulness). | [114] |
Ischemic and hemorrhagic stroke, cognition and memory disorders, and peripheral nervous system disorders | 154,068 | The risks were evident in people who were not hospitalized during the acute phase of the disease. | [115] |
Chronic fatigue, pain, sleep disorders, and concentration problems | 25,268 | Fatigue was reported by women more than men. | [116] |
Fatigue, post-exertional malaise, and cognitive dysfunction | 3762 | Seven months after the C-19 acute phase, many patients had not returned to previous levels of work and continued to experience significant symptom burden. | [16] |
Anxiety, depression, and sleep disorders | 606 | Patients with neurological complications during index hospitalization had significantly worse 6-month functional outcomes than those without them. | [19] |
Brain fog, headache, and dizziness | 600 | Anosmia, dysgeusia, and myalgia were more frequent in the non-hospitalized patients than in patients who were hospitalized in the C-19 acute phase (59 vs. 39). | [16] |
Headache, fatigue, muscle aches/myalgia, articular pains, cognitive impairment, loss of concentration, and loss of smell | 507 | Subjects with L-C19 presented a lower self-esteem and a lower level of quality of life. | [117] |
Fatigue, myalgia, sleep disorders, cognitive impairment, hyposmia, and dysgeusia | 303 | A higher prevalence of persisting symptoms was noted in older age groups (47–58 years) as well as in female participants. | [118] |
Fatigue, memoryand sleep disorders | 165 | Age, the presence of comorbidities, and the severity of acute C-19 were independent factors. | [119] |
Fatigue, headache, sleep disorders, and sensitivity alterations | 103 | Most of the symptoms started in the acute phase of C-19. | [120] |
Fatigue, depression, and autoimmune disease | 100 | Non-hospitalized L-C19 patients experienced persistent fatigue and brain fog, which affected their quality of life. | [121] |
Diagnostic Method | Purpose | Examples of Tools/Tests |
---|---|---|
Clinical Interview | Assess symptom onset, duration, and severity. | Structured interviews and medical history review |
Self-Reported Questionnaires | Screen for cognitive and psychiatric symptoms. | MoCA, MMSE, CFQ, HADS, PHQ-9, GAD-7, BDI, and PCL-5 |
Neuropsychological Testing | Evaluate cognitive functions (memory, attention, etc.). | Paper-and-pencil tasks and computerized assessments |
Laboratory Tests | Rule out alternative causes (e.g., vitamin deficiencies). | TSH, T4, Vitamin B12, Vitamin D, CBC, and Liver/Kidney function |
Brain Imaging | Detect structural or functional abnormalities. | MRI and CT scans |
Electroencephalogram (EEG) | Assess brain activity in cases of seizures or abnormalities. | EEG recording of electrical activity |
Autoimmune and Other Biomarkers | Exclude autoimmune disorders mimicking symptoms. | Rheumatoid factor and anti-nuclear antibodies |
Multidisciplinary Assessment | Comprehensive evaluation by specialists. | Neurologists, psychiatrists, and sleep specialists |
Type of Test | Usefulness | References |
---|---|---|
Montreal Cognitive Assessment (MoCA) | Screens for cognitive impairment, especially mild dysfunction. | [145,146,147,148,149,150,151] |
Mini-Mental State Examination (MMSE) | Assesses cognitive function, focusing on memory, attention, and orientation. | [145,146,147,148,149,150,151] |
Cognitive Failures Questionnaire (CFQ) | Evaluates everyday cognitive failures like forgetfulness and attention problems. | [145,146,147,148,149,150,151] |
Hospital Anxiety and Depression Scale (HADS) | Screens for anxiety and depression symptoms in clinical settings. | [145,146,147,148,149,150,151] |
Patient Health Questionnaire (PHQ-9) | Assesses the severity of depressive symptoms. | [146,149,151,152,153,154,155] |
Generalized Anxiety Disorder-7 (GAD-7) | Screens for generalized anxiety disorder symptoms. | [146,149,151,152,153,154,155] |
Beck Depression Inventory (BDI) | Measures the severity of depressive symptoms through self-reporting. | [146,149,151,152,153,154,155] |
PTSD Checklist for DSM-5 (PCL-5) | Screens for and helps diagnose PTSD symptoms, especially after trauma or severe illness. | [156] |
Pittsburgh Sleep Quality Index (PSQI) | Assesses sleep quality and disturbances common in L-C19 patients. | [156] |
Symptom Category | Main Manifestations | Conventional Treatment | Alternative Therapies | References |
---|---|---|---|---|
Cognitive issues | Brain fog and memory problems | Cognitive rehabilitation, stimulants, actovegin, exercise, and mindfulness. | Nootropic supplements (omega-3 and ginkgo biloba), meditation, and acupuncture. | [166,167,168,169,170] |
Mood disorders | Anxiety, depression, and PTSD-like symptoms | SSRIs/SNRIs, psychotherapy (CBT), and lifestyle modifications. | Adaptogenic herbs (ashwagandha and rhodiola), mindfulness-based stress reduction (MBSR), and breathwork techniques. | [166,169,170,171,172,173,174,175,176] |
Fatigue and sleep disturbances | Fatigue and insomnia | Sleep hygiene, cognitive behavioral therapy for insomnia (CBT-I), melatonin, graded exercise therapy, and cognitive pacing. | Yoga, Tai Chi, acupuncture, and herbal supplements (valerian root, magnesium, and ashwagandha). | [169,177,178,179,180,181,182] |
Neuropathic | Headaches, paresthesia, dizziness, and autonomic dysfunctions | Neuromodulators (gabapentin and amitriptyline), hydration, and autonomic rehabilitation. | Acupuncture, biofeedback, vagus nerve stimulation, and anti-inflammatory diets. | [183,184,185,186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliman-Sturdza, O.A.; Gheorghita, R.; Lobiuc, A. Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches. Life 2025, 15, 439. https://doi.org/10.3390/life15030439
Caliman-Sturdza OA, Gheorghita R, Lobiuc A. Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches. Life. 2025; 15(3):439. https://doi.org/10.3390/life15030439
Chicago/Turabian StyleCaliman-Sturdza, Olga Adriana, Roxana Gheorghita, and Andrei Lobiuc. 2025. "Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches" Life 15, no. 3: 439. https://doi.org/10.3390/life15030439
APA StyleCaliman-Sturdza, O. A., Gheorghita, R., & Lobiuc, A. (2025). Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches. Life, 15(3), 439. https://doi.org/10.3390/life15030439